aboutsummaryrefslogtreecommitdiffstats
path: root/Alc
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2015-10-28 01:57:51 -0700
committerChris Robinson <[email protected]>2015-10-28 01:57:51 -0700
commit8f8bf1f6057316e9eeb7a848f3f21b01a52fbd91 (patch)
tree06132d488420bc0b62ddd25f03d25934a1a186bd /Alc
parente472cfcc53c723d87087ddf44fc2a153a9a7a3a2 (diff)
Do multiple samples at once in each reverb component
Diffstat (limited to 'Alc')
-rw-r--r--Alc/effects/reverb.c512
1 files changed, 267 insertions, 245 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c
index 1b9c37d9..00b07b57 100644
--- a/Alc/effects/reverb.c
+++ b/Alc/effects/reverb.c
@@ -32,6 +32,10 @@
#include "alError.h"
+/* This is the maximum number of samples processed for each inner loop
+ * iteration. */
+#define MAX_UPDATE_SAMPLES 64
+
typedef struct DelayLine
{
// The delay lines use sample lengths that are powers of 2 to allow the
@@ -234,40 +238,22 @@ static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
Delay->Line[offset&Delay->Mask] = in;
}
-// Attenuated delay line output routine.
-static inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff)
-{
- return coeff * Delay->Line[offset&Delay->Mask];
-}
-
-// Basic attenuated all-pass input/output routine.
-static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
-{
- ALfloat out, feed;
-
- out = DelayLineOut(Delay, outOffset);
- feed = feedCoeff * in;
- DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
-
- // The time-based attenuation is only applied to the delay output to
- // keep it from affecting the feed-back path (which is already controlled
- // by the all-pass feed coefficient).
- return (coeff * out) - feed;
-}
-
// Given an input sample, this function produces modulation for the late
// reverb.
-static inline ALfloat EAXModulation(ALreverbState *State, ALfloat in)
+static inline ALfloat EAXModulation(ALreverbState *State, ALuint offset, ALfloat in)
{
ALfloat sinus, frac;
- ALuint offset;
ALfloat out0, out1;
+ ALuint delay;
// Calculate the sinus rythm (dependent on modulation time and the
// sampling rate). The center of the sinus is moved to reduce the delay
// of the effect when the time or depth are low.
sinus = 1.0f - cosf(F_TAU * State->Mod.Index / State->Mod.Range);
+ // Step the modulation index forward, keeping it bound to its range.
+ State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
+
// The depth determines the range over which to read the input samples
// from, so it must be filtered to reduce the distortion caused by even
// small parameter changes.
@@ -275,95 +261,97 @@ static inline ALfloat EAXModulation(ALreverbState *State, ALfloat in)
State->Mod.Coeff);
// Calculate the read offset and fraction between it and the next sample.
- frac = (1.0f + (State->Mod.Filter * sinus));
- offset = fastf2u(frac);
- frac -= offset;
+ frac = (1.0f + (State->Mod.Filter * sinus));
+ delay = fastf2u(frac);
+ frac -= delay;
// Get the two samples crossed by the offset, and feed the delay line
// with the next input sample.
- out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset);
- out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1);
- DelayLineIn(&State->Mod.Delay, State->Offset, in);
-
- // Step the modulation index forward, keeping it bound to its range.
- State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
+ out0 = DelayLineOut(&State->Mod.Delay, offset - delay);
+ out1 = DelayLineOut(&State->Mod.Delay, offset - delay - 1);
+ DelayLineIn(&State->Mod.Delay, offset, in);
// The output is obtained by linearly interpolating the two samples that
// were acquired above.
return lerp(out0, out1, frac);
}
-// Delay line output routine for early reflections.
-static inline ALfloat EarlyDelayLineOut(ALreverbState *State, ALuint index)
+// Given some input sample, this function produces four-channel outputs for the
+// early reflections.
+static inline ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
{
- return AttenuatedDelayLineOut(&State->Early.Delay[index],
- State->Offset - State->Early.Offset[index],
- State->Early.Coeff[index]);
+ ALfloat d[4], v, f[4];
+ ALuint i;
+
+ for(i = 0;i < todo;i++)
+ {
+ ALuint offset = State->Offset+i;
+
+ // Obtain the decayed results of each early delay line.
+ d[0] = DelayLineOut(&State->Early.Delay[0], offset-State->Early.Offset[0]) * State->Early.Coeff[0];
+ d[1] = DelayLineOut(&State->Early.Delay[1], offset-State->Early.Offset[1]) * State->Early.Coeff[1];
+ d[2] = DelayLineOut(&State->Early.Delay[2], offset-State->Early.Offset[2]) * State->Early.Coeff[2];
+ d[3] = DelayLineOut(&State->Early.Delay[3], offset-State->Early.Offset[3]) * State->Early.Coeff[3];
+
+ /* The following uses a lossless scattering junction from waveguide
+ * theory. It actually amounts to a householder mixing matrix, which
+ * will produce a maximally diffuse response, and means this can
+ * probably be considered a simple feed-back delay network (FDN).
+ * N
+ * ---
+ * \
+ * v = 2/N / d_i
+ * ---
+ * i=1
+ */
+ v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
+ // The junction is loaded with the input here.
+ v += DelayLineOut(&State->Delay, offset-State->DelayTap[0]);
+
+ // Calculate the feed values for the delay lines.
+ f[0] = v - d[0];
+ f[1] = v - d[1];
+ f[2] = v - d[2];
+ f[3] = v - d[3];
+
+ // Re-feed the delay lines.
+ DelayLineIn(&State->Early.Delay[0], offset, f[0]);
+ DelayLineIn(&State->Early.Delay[1], offset, f[1]);
+ DelayLineIn(&State->Early.Delay[2], offset, f[2]);
+ DelayLineIn(&State->Early.Delay[3], offset, f[3]);
+
+ // Output the results of the junction for all four channels.
+ out[i][0] += State->Early.Gain * f[0];
+ out[i][1] += State->Early.Gain * f[1];
+ out[i][2] += State->Early.Gain * f[2];
+ out[i][3] += State->Early.Gain * f[3];
+ }
}
-// Given an input sample, this function produces four-channel output for the
-// early reflections.
-static inline ALvoid EarlyReflection(ALreverbState *State, ALfloat in, ALfloat *restrict out)
+// Basic attenuated all-pass input/output routine.
+static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
{
- ALfloat d[4], v, f[4];
+ ALfloat out, feed;
- // Obtain the decayed results of each early delay line.
- d[0] = EarlyDelayLineOut(State, 0);
- d[1] = EarlyDelayLineOut(State, 1);
- d[2] = EarlyDelayLineOut(State, 2);
- d[3] = EarlyDelayLineOut(State, 3);
-
- /* The following uses a lossless scattering junction from waveguide
- * theory. It actually amounts to a householder mixing matrix, which
- * will produce a maximally diffuse response, and means this can probably
- * be considered a simple feed-back delay network (FDN).
- * N
- * ---
- * \
- * v = 2/N / d_i
- * ---
- * i=1
- */
- v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
- // The junction is loaded with the input here.
- v += in;
-
- // Calculate the feed values for the delay lines.
- f[0] = v - d[0];
- f[1] = v - d[1];
- f[2] = v - d[2];
- f[3] = v - d[3];
-
- // Re-feed the delay lines.
- DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
- DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
- DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
- DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
-
- // Output the results of the junction for all four channels.
- out[0] = State->Early.Gain * f[0];
- out[1] = State->Early.Gain * f[1];
- out[2] = State->Early.Gain * f[2];
- out[3] = State->Early.Gain * f[3];
+ out = DelayLineOut(Delay, outOffset);
+ feed = feedCoeff * in;
+ DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
+
+ // The time-based attenuation is only applied to the delay output to
+ // keep it from affecting the feed-back path (which is already controlled
+ // by the all-pass feed coefficient).
+ return (coeff * out) - feed;
}
// All-pass input/output routine for late reverb.
-static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint index, ALfloat in)
+static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in)
{
return AllpassInOut(&State->Late.ApDelay[index],
- State->Offset - State->Late.ApOffset[index],
- State->Offset, in, State->Late.ApFeedCoeff,
+ offset - State->Late.ApOffset[index],
+ offset, in, State->Late.ApFeedCoeff,
State->Late.ApCoeff[index]);
}
-// Delay line output routine for late reverb.
-static inline ALfloat LateDelayLineOut(ALreverbState *State, ALuint index)
-{
- return AttenuatedDelayLineOut(&State->Late.Delay[index],
- State->Offset - State->Late.Offset[index],
- State->Late.Coeff[index]);
-}
-
// Low-pass filter input/output routine for late reverb.
static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
{
@@ -374,186 +362,204 @@ static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALflo
// Given four decorrelated input samples, this function produces four-channel
// output for the late reverb.
-static inline ALvoid LateReverb(ALreverbState *State, const ALfloat *restrict in, ALfloat *restrict out)
+static inline ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
{
ALfloat d[4], f[4];
+ ALuint i;
- // Obtain the decayed results of the cyclical delay lines, and add the
- // corresponding input channels. Then pass the results through the
- // low-pass filters.
-
- // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
- // to 0.
- d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2));
- d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0));
- d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3));
- d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1));
-
- // To help increase diffusion, run each line through an all-pass filter.
- // When there is no diffusion, the shortest all-pass filter will feed the
- // shortest delay line.
- d[0] = LateAllPassInOut(State, 0, d[0]);
- d[1] = LateAllPassInOut(State, 1, d[1]);
- d[2] = LateAllPassInOut(State, 2, d[2]);
- d[3] = LateAllPassInOut(State, 3, d[3]);
-
- /* Late reverb is done with a modified feed-back delay network (FDN)
- * topology. Four input lines are each fed through their own all-pass
- * filter and then into the mixing matrix. The four outputs of the
- * mixing matrix are then cycled back to the inputs. Each output feeds
- * a different input to form a circlular feed cycle.
- *
- * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
- * using a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
- * with differing signs, and d is the coefficient x. The matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * To reduce the number of multiplies, the x coefficient is applied with
- * the cyclical delay line coefficients. Thus only the y coefficient is
- * applied when mixing, and is modified to be: y / x.
- */
- f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
- f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
- f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
- f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
-
- // Output the results of the matrix for all four channels, attenuated by
- // the late reverb gain (which is attenuated by the 'x' mix coefficient).
- out[0] = State->Late.Gain * f[0];
- out[1] = State->Late.Gain * f[1];
- out[2] = State->Late.Gain * f[2];
- out[3] = State->Late.Gain * f[3];
-
- // Re-feed the cyclical delay lines.
- DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]);
- DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]);
- DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]);
- DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]);
+ for(i = 0;i < todo;i++)
+ {
+ ALuint offset = State->Offset+i;
+
+ f[0] = DelayLineOut(&State->Decorrelator, offset);
+ f[1] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[0]);
+ f[2] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[1]);
+ f[3] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[2]);
+
+ // Obtain the decayed results of the cyclical delay lines, and add the
+ // corresponding input channels. Then pass the results through the
+ // low-pass filters.
+ f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0];
+ f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1];
+ f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2];
+ f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3];
+
+ // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and
+ // back to 0.
+ d[0] = LateLowPassInOut(State, 2, f[2]);
+ d[1] = LateLowPassInOut(State, 0, f[0]);
+ d[2] = LateLowPassInOut(State, 3, f[3]);
+ d[3] = LateLowPassInOut(State, 1, f[1]);
+
+ // To help increase diffusion, run each line through an all-pass filter.
+ // When there is no diffusion, the shortest all-pass filter will feed
+ // the shortest delay line.
+ d[0] = LateAllPassInOut(State, offset, 0, d[0]);
+ d[1] = LateAllPassInOut(State, offset, 1, d[1]);
+ d[2] = LateAllPassInOut(State, offset, 2, d[2]);
+ d[3] = LateAllPassInOut(State, offset, 3, d[3]);
+
+ /* Late reverb is done with a modified feed-back delay network (FDN)
+ * topology. Four input lines are each fed through their own all-pass
+ * filter and then into the mixing matrix. The four outputs of the
+ * mixing matrix are then cycled back to the inputs. Each output feeds
+ * a different input to form a circlular feed cycle.
+ *
+ * The mixing matrix used is a 4D skew-symmetric rotation matrix
+ * derived using a single unitary rotational parameter:
+ *
+ * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
+ * [ -a, d, c, -b ]
+ * [ -b, -c, d, a ]
+ * [ -c, b, -a, d ]
+ *
+ * The rotation is constructed from the effect's diffusion parameter,
+ * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
+ * with differing signs, and d is the coefficient x. The matrix is
+ * thus:
+ *
+ * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
+ * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
+ * [ y, -y, x, y ] x = cos(t)
+ * [ -y, -y, -y, x ] y = sin(t) / n
+ *
+ * To reduce the number of multiplies, the x coefficient is applied
+ * with the cyclical delay line coefficients. Thus only the y
+ * coefficient is applied when mixing, and is modified to be: y / x.
+ */
+ f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
+ f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
+ f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
+ f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
+
+ // Output the results of the matrix for all four channels, attenuated by
+ // the late reverb gain (which is attenuated by the 'x' mix coefficient).
+ // Mix early reflections and late reverb.
+ out[i][0] += State->Late.Gain * f[0];
+ out[i][1] += State->Late.Gain * f[1];
+ out[i][2] += State->Late.Gain * f[2];
+ out[i][3] += State->Late.Gain * f[3];
+
+ // Re-feed the cyclical delay lines.
+ DelayLineIn(&State->Late.Delay[0], offset, f[0]);
+ DelayLineIn(&State->Late.Delay[1], offset, f[1]);
+ DelayLineIn(&State->Late.Delay[2], offset, f[2]);
+ DelayLineIn(&State->Late.Delay[3], offset, f[3]);
+ }
}
// Given an input sample, this function mixes echo into the four-channel late
// reverb.
-static inline ALvoid EAXEcho(ALreverbState *State, ALfloat in, ALfloat *restrict late)
+static inline ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[4])
{
ALfloat out, feed;
+ ALuint i;
- // Get the latest attenuated echo sample for output.
- feed = AttenuatedDelayLineOut(&State->Echo.Delay,
- State->Offset - State->Echo.Offset,
- State->Echo.Coeff);
-
- // Mix the output into the late reverb channels.
- out = State->Echo.MixCoeff[0] * feed;
- late[0] = (State->Echo.MixCoeff[1] * late[0]) + out;
- late[1] = (State->Echo.MixCoeff[1] * late[1]) + out;
- late[2] = (State->Echo.MixCoeff[1] * late[2]) + out;
- late[3] = (State->Echo.MixCoeff[1] * late[3]) + out;
-
- // Mix the energy-attenuated input with the output and pass it through
- // the echo low-pass filter.
- feed += State->Echo.DensityGain * in;
- feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
- State->Echo.LpSample = feed;
-
- // Then the echo all-pass filter.
- feed = AllpassInOut(&State->Echo.ApDelay,
- State->Offset - State->Echo.ApOffset,
- State->Offset, feed, State->Echo.ApFeedCoeff,
- State->Echo.ApCoeff);
-
- // Feed the delay with the mixed and filtered sample.
- DelayLineIn(&State->Echo.Delay, State->Offset, feed);
+ for(i = 0;i < todo;i++)
+ {
+ ALuint offset = State->Offset+i;
+
+ // Get the latest attenuated echo sample for output.
+ feed = DelayLineOut(&State->Echo.Delay, offset-State->Echo.Offset) *
+ State->Echo.Coeff;
+
+ // Mix the output into the late reverb channels.
+ out = State->Echo.MixCoeff[0] * feed;
+ late[i][0] = (State->Echo.MixCoeff[1] * late[i][0]) + out;
+ late[i][1] = (State->Echo.MixCoeff[1] * late[i][1]) + out;
+ late[i][2] = (State->Echo.MixCoeff[1] * late[i][2]) + out;
+ late[i][3] = (State->Echo.MixCoeff[1] * late[i][3]) + out;
+
+ // Mix the energy-attenuated input with the output and pass it through
+ // the echo low-pass filter.
+ feed += DelayLineOut(&State->Delay, offset-State->DelayTap[1]) *
+ State->Echo.DensityGain;
+ feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
+ State->Echo.LpSample = feed;
+
+ // Then the echo all-pass filter.
+ feed = AllpassInOut(&State->Echo.ApDelay, offset-State->Echo.ApOffset,
+ offset, feed, State->Echo.ApFeedCoeff,
+ State->Echo.ApCoeff);
+
+ // Feed the delay with the mixed and filtered sample.
+ DelayLineIn(&State->Echo.Delay, offset, feed);
+ }
}
// Perform the non-EAX reverb pass on a given input sample, resulting in
// four-channel output.
-static inline ALvoid VerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict out)
+static inline ALvoid VerbPass(ALreverbState *State, ALuint todo, const ALfloat *in, ALfloat (*restrict out)[4])
{
- ALfloat feed, late[4], taps[4];
-
- // Filter the incoming sample.
- in = ALfilterState_processSingle(&State->LpFilter, in);
+ ALuint i;
- // Feed the initial delay line.
- DelayLineIn(&State->Delay, State->Offset, in);
+ // Low-pass filter the incoming samples.
+ for(i = 0;i < todo;i++)
+ DelayLineIn(&State->Delay, State->Offset+i,
+ ALfilterState_processSingle(&State->LpFilter, in[i])
+ );
// Calculate the early reflection from the first delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
- EarlyReflection(State, in, out);
+ EarlyReflection(State, todo, out);
// Feed the decorrelator from the energy-attenuated output of the second
// delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
- feed = in * State->Late.DensityGain;
- DelayLineIn(&State->Decorrelator, State->Offset, feed);
+ for(i = 0;i < todo;i++)
+ {
+ ALuint offset = State->Offset+i;
+ ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
+ State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, offset, sample);
+ }
// Calculate the late reverb from the decorrelator taps.
- taps[0] = feed;
- taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
- taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
- taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
- LateReverb(State, taps, late);
-
- // Mix early reflections and late reverb.
- out[0] += late[0];
- out[1] += late[1];
- out[2] += late[2];
- out[3] += late[3];
+ LateReverb(State, todo, out);
// Step all delays forward one sample.
- State->Offset++;
+ State->Offset += todo;
}
// Perform the EAX reverb pass on a given input sample, resulting in four-
// channel output.
-static inline ALvoid EAXVerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict early, ALfloat *restrict late)
+static inline ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, const ALfloat *input, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
{
- ALfloat feed, taps[4];
+ ALuint i;
- // Low-pass filter the incoming sample.
- in = ALfilterState_processSingle(&State->LpFilter, in);
- in = ALfilterState_processSingle(&State->HpFilter, in);
+ // Band-pass and modulate the incoming samples.
+ for(i = 0;i < todo;i++)
+ {
+ ALfloat sample = input[i];
+ sample = ALfilterState_processSingle(&State->LpFilter, sample);
+ sample = ALfilterState_processSingle(&State->HpFilter, sample);
- // Perform any modulation on the input.
- in = EAXModulation(State, in);
+ // Perform any modulation on the input.
+ sample = EAXModulation(State, State->Offset+i, sample);
- // Feed the initial delay line.
- DelayLineIn(&State->Delay, State->Offset, in);
+ // Feed the initial delay line.
+ DelayLineIn(&State->Delay, State->Offset+i, sample);
+ }
// Calculate the early reflection from the first delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
- EarlyReflection(State, in, early);
+ EarlyReflection(State, todo, early);
// Feed the decorrelator from the energy-attenuated output of the second
// delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
- feed = in * State->Late.DensityGain;
- DelayLineIn(&State->Decorrelator, State->Offset, feed);
+ for(i = 0;i < todo;i++)
+ {
+ ALuint offset = State->Offset+i;
+ ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
+ State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, offset, sample);
+ }
// Calculate the late reverb from the decorrelator taps.
- taps[0] = feed;
- taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
- taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
- taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
- LateReverb(State, taps, late);
+ LateReverb(State, todo, late);
// Calculate and mix in any echo.
- EAXEcho(State, in, late);
+ EAXEcho(State, todo, late);
- // Step all delays forward one sample.
- State->Offset++;
+ // Step all delays forward.
+ State->Offset += todo;
}
static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
@@ -561,9 +567,16 @@ static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint Samples
ALfloat (*restrict out)[4] = State->ReverbSamples;
ALuint index, c;
+ memset(out, 0, SamplesToDo*4*sizeof(ALfloat));
+
/* Process reverb for these samples. */
- for(index = 0;index < SamplesToDo;index++)
- VerbPass(State, SamplesIn[index], out[index]);
+ for(index = 0;index < SamplesToDo;)
+ {
+ ALfloat todo = minu(SamplesToDo, MAX_UPDATE_SAMPLES);
+
+ VerbPass(State, todo, SamplesIn+index, out+index);
+ index += todo;
+ }
for(c = 0;c < NumChannels;c++)
{
@@ -582,9 +595,17 @@ static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo,
ALfloat (*restrict late)[4] = State->ReverbSamples;
ALuint index, c;
+ memset(early, 0, SamplesToDo*4*sizeof(ALfloat));
+ memset(late, 0, SamplesToDo*4*sizeof(ALfloat));
+
/* Process reverb for these samples. */
- for(index = 0;index < SamplesToDo;index++)
- EAXVerbPass(State, SamplesIn[index], early[index], late[index]);
+ for(index = 0;index < SamplesToDo;)
+ {
+ ALfloat todo = minu(SamplesToDo, MAX_UPDATE_SAMPLES);
+
+ EAXVerbPass(State, todo, SamplesIn+index, early+index, late+index);
+ index += todo;
+ }
for(c = 0;c < NumChannels;c++)
{
@@ -621,13 +642,13 @@ static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
}
// Calculate the length of a delay line and store its mask and offset.
-static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, DelayLine *Delay)
+static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, ALuint extra, DelayLine *Delay)
{
ALuint samples;
// All line lengths are powers of 2, calculated from their lengths, with
// an additional sample in case of rounding errors.
- samples = NextPowerOf2(fastf2u(length * frequency) + 1);
+ samples = NextPowerOf2(fastf2u(length * frequency)+extra + 1);
// All lines share a single sample buffer.
Delay->Mask = samples - 1;
Delay->Line = (ALfloat*)offset;
@@ -654,48 +675,49 @@ static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
* swing. An additional sample is added to keep it stable when there is no
* modulation.
*/
- length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f) +
- (1.0f / frequency);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
+ length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f);
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 1,
&State->Mod.Delay);
// The initial delay is the sum of the reflections and late reverb
- // delays.
+ // delays. This must include space for storing a loop update to feed the
+ // early reflections, decorrelator, and echo.
length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
totalSamples += CalcLineLength(length, totalSamples, frequency,
- &State->Delay);
+ MAX_UPDATE_SAMPLES, &State->Delay);
// The early reflection lines.
for(index = 0;index < 4;index++)
totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
- frequency, &State->Early.Delay[index]);
+ frequency, 0, &State->Early.Delay[index]);
// The decorrelator line is calculated from the lowest reverb density (a
- // parameter value of 1).
+ // parameter value of 1). This must include space for storing a loop update
+ // to feed the late reverb.
length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
+ totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
&State->Decorrelator);
// The late all-pass lines.
for(index = 0;index < 4;index++)
totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
- frequency, &State->Late.ApDelay[index]);
+ frequency, 0, &State->Late.ApDelay[index]);
// The late delay lines are calculated from the lowest reverb density.
for(index = 0;index < 4;index++)
{
length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
- totalSamples += CalcLineLength(length, totalSamples, frequency,
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
&State->Late.Delay[index]);
}
// The echo all-pass and delay lines.
totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
- frequency, &State->Echo.ApDelay);
+ frequency, 0, &State->Echo.ApDelay);
totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
- frequency, &State->Echo.Delay);
+ frequency, 0, &State->Echo.Delay);
if(totalSamples != State->TotalSamples)
{