aboutsummaryrefslogtreecommitdiffstats
path: root/Alc
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2018-11-17 04:14:57 -0800
committerChris Robinson <[email protected]>2018-11-17 04:14:57 -0800
commitccdaca80c910047e16f710d44f640a6d6f86a195 (patch)
tree0cf95ed7a5fd6478c01cea8bd8e9c521478ccf0d /Alc
parent09943683b5872943cd1f9211ef2a77922906b906 (diff)
Use standard complex types instead of custom
Diffstat (limited to 'Alc')
-rw-r--r--Alc/effects/fshifter.cpp41
-rw-r--r--Alc/effects/pshifter.cpp101
2 files changed, 65 insertions, 77 deletions
diff --git a/Alc/effects/fshifter.cpp b/Alc/effects/fshifter.cpp
index 23291ccd..e0dced3a 100644
--- a/Alc/effects/fshifter.cpp
+++ b/Alc/effects/fshifter.cpp
@@ -22,6 +22,8 @@
#include <cmath>
#include <cstdlib>
+#include <complex>
+#include <algorithm>
#include "alMain.h"
#include "alAuxEffectSlot.h"
@@ -33,6 +35,8 @@
namespace {
+using complex_d = std::complex<double>;
+
#define HIL_SIZE 1024
#define OVERSAMP (1<<2)
@@ -64,10 +68,10 @@ struct ALfshifterState final : public ALeffectState {
/*Effects buffers*/
ALfloat InFIFO[HIL_SIZE];
- ALcomplex OutFIFO[HIL_SIZE];
- ALcomplex OutputAccum[HIL_SIZE];
- ALcomplex Analytic[HIL_SIZE];
- ALcomplex Outdata[BUFFERSIZE];
+ complex_d OutFIFO[HIL_SIZE];
+ complex_d OutputAccum[HIL_SIZE];
+ complex_d Analytic[HIL_SIZE];
+ complex_d Outdata[BUFFERSIZE];
alignas(16) ALfloat BufferOut[BUFFERSIZE];
@@ -105,13 +109,13 @@ ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *UNUSED
state->Phase = 0;
state->ld_sign = 1.0;
- memset(state->InFIFO, 0, sizeof(state->InFIFO));
- memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
- memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
- memset(state->Analytic, 0, sizeof(state->Analytic));
+ std::fill(std::begin(state->InFIFO), std::end(state->InFIFO), 0.0f);
+ std::fill(std::begin(state->OutFIFO), std::end(state->OutFIFO), complex_d{});
+ std::fill(std::begin(state->OutputAccum), std::end(state->OutputAccum), complex_d{});
+ std::fill(std::begin(state->Analytic), std::end(state->Analytic), complex_d{});
- memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
- memset(state->TargetGains, 0, sizeof(state->TargetGains));
+ std::fill(std::begin(state->CurrentGains), std::end(state->CurrentGains), 0.0f);
+ std::fill(std::begin(state->TargetGains), std::end(state->TargetGains), 0.0f);
return AL_TRUE;
}
@@ -147,7 +151,7 @@ ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context,
ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
- static const ALcomplex complex_zero = { 0.0, 0.0 };
+ static const complex_d complex_zero{0.0, 0.0};
ALfloat *RESTRICT BufferOut = state->BufferOut;
ALsizei j, k, base;
@@ -175,8 +179,8 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Real signal windowing and store in Analytic buffer */
for(k = 0;k < HIL_SIZE;k++)
{
- state->Analytic[k].Real = state->InFIFO[k] * HannWindow[k];
- state->Analytic[k].Imag = 0.0;
+ state->Analytic[k].real(state->InFIFO[k] * HannWindow[k]);
+ state->Analytic[k].imag(0.0);
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
@@ -184,10 +188,7 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
- {
- state->OutputAccum[k].Real += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Real;
- state->OutputAccum[k].Imag += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Imag;
- }
+ state->OutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k];
/* Shift accumulator, input & output FIFO */
for(k = 0;k < HIL_STEP;k++) state->OutFIFO[k] = state->OutputAccum[k];
@@ -200,9 +201,9 @@ ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, cons
/* Process frequency shifter using the analytic signal obtained. */
for(k = 0;k < SamplesToDo;k++)
{
- ALdouble phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
- BufferOut[k] = (ALfloat)(state->Outdata[k].Real*cos(phase) +
- state->Outdata[k].Imag*sin(phase)*state->ld_sign);
+ double phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI);
+ BufferOut[k] = (float)(state->Outdata[k].real()*std::cos(phase) +
+ state->Outdata[k].imag()*std::sin(phase)*state->ld_sign);
state->Phase += state->PhaseStep;
state->Phase &= FRACTIONMASK;
diff --git a/Alc/effects/pshifter.cpp b/Alc/effects/pshifter.cpp
index 410eb982..f1a80254 100644
--- a/Alc/effects/pshifter.cpp
+++ b/Alc/effects/pshifter.cpp
@@ -22,6 +22,8 @@
#include <cmath>
#include <cstdlib>
+#include <complex>
+#include <algorithm>
#include "alMain.h"
#include "alAuxEffectSlot.h"
@@ -34,6 +36,8 @@
namespace {
+using complex_d = std::complex<double>;
+
#define STFT_SIZE 1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP (1<<2)
@@ -41,7 +45,7 @@ namespace {
#define STFT_STEP (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
-inline ALint double2int(ALdouble d)
+inline int double2int(double d)
{
#if ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
!defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
@@ -98,28 +102,18 @@ struct ALfrequencyDomain {
};
-/* Converts ALcomplex to ALphasor */
-inline ALphasor rect2polar(ALcomplex number)
+/* Converts complex to ALphasor */
+inline ALphasor rect2polar(const complex_d &number)
{
ALphasor polar;
-
- polar.Amplitude = std::sqrt(number.Real*number.Real + number.Imag*number.Imag);
- polar.Phase = std::atan2(number.Imag, number.Real);
-
+ polar.Amplitude = std::abs(number);
+ polar.Phase = std::arg(number);
return polar;
}
-/* Converts ALphasor to ALcomplex */
-inline ALcomplex polar2rect(ALphasor number)
-{
- ALcomplex cartesian;
-
- cartesian.Real = number.Amplitude * std::cos(number.Phase);
- cartesian.Imag = number.Amplitude * std::sin(number.Phase);
-
- return cartesian;
-}
-
+/* Converts ALphasor to complex */
+inline complex_d polar2rect(const ALphasor &number)
+{ return std::polar<double>(number.Amplitude, number.Phase); }
struct ALpshifterState final : public ALeffectState {
@@ -136,7 +130,7 @@ struct ALpshifterState final : public ALeffectState {
ALdouble SumPhase[STFT_HALF_SIZE+1];
ALdouble OutputAccum[STFT_SIZE];
- ALcomplex FFTbuffer[STFT_SIZE];
+ complex_d FFTbuffer[STFT_SIZE];
ALfrequencyDomain Analysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain Syntesis_buffer[STFT_HALF_SIZE+1];
@@ -177,17 +171,17 @@ ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device
state->PitchShift = 1.0f;
state->FreqPerBin = device->Frequency / (ALfloat)STFT_SIZE;
- memset(state->InFIFO, 0, sizeof(state->InFIFO));
- memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
- memset(state->FFTbuffer, 0, sizeof(state->FFTbuffer));
- memset(state->LastPhase, 0, sizeof(state->LastPhase));
- memset(state->SumPhase, 0, sizeof(state->SumPhase));
- memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
- memset(state->Analysis_buffer, 0, sizeof(state->Analysis_buffer));
- memset(state->Syntesis_buffer, 0, sizeof(state->Syntesis_buffer));
+ std::fill(std::begin(state->InFIFO), std::end(state->InFIFO), 0.0f);
+ std::fill(std::begin(state->OutFIFO), std::end(state->OutFIFO), 0.0f);
+ std::fill(std::begin(state->LastPhase), std::end(state->LastPhase), 0.0);
+ std::fill(std::begin(state->SumPhase), std::end(state->SumPhase), 0.0);
+ std::fill(std::begin(state->OutputAccum), std::end(state->OutputAccum), 0.0);
+ std::fill(std::begin(state->FFTbuffer), std::end(state->FFTbuffer), complex_d{});
+ std::fill(std::begin(state->Analysis_buffer), std::end(state->Analysis_buffer), ALfrequencyDomain{});
+ std::fill(std::begin(state->Syntesis_buffer), std::end(state->Syntesis_buffer), ALfrequencyDomain{});
- memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
- memset(state->TargetGains, 0, sizeof(state->TargetGains));
+ std::fill(std::begin(state->CurrentGains), std::end(state->CurrentGains), 0.0f);
+ std::fill(std::begin(state->TargetGains), std::end(state->TargetGains), 0.0f);
return AL_TRUE;
}
@@ -214,13 +208,12 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
- static const ALdouble expected = M_PI*2.0 / OVERSAMP;
- const ALdouble freq_per_bin = state->FreqPerBin;
- ALfloat *RESTRICT bufferOut = state->BufferOut;
- ALsizei count = state->count;
- ALsizei i, j, k;
+ static constexpr ALdouble expected{M_PI*2.0 / OVERSAMP};
+ const ALdouble freq_per_bin{state->FreqPerBin};
+ ALfloat *RESTRICT bufferOut{state->BufferOut};
+ ALsizei count{state->count};
- for(i = 0;i < SamplesToDo;)
+ for(ALsizei i{0};i < SamplesToDo;)
{
do {
/* Fill FIFO buffer with samples data */
@@ -235,10 +228,10 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
count = FIFO_LATENCY;
/* Real signal windowing and store in FFTbuffer */
- for(k = 0;k < STFT_SIZE;k++)
+ for(ALsizei k{0};k < STFT_SIZE;k++)
{
- state->FFTbuffer[k].Real = state->InFIFO[k] * HannWindow[k];
- state->FFTbuffer[k].Imag = 0.0;
+ state->FFTbuffer[k].real(state->InFIFO[k] * HannWindow[k]);
+ state->FFTbuffer[k].imag(0.0);
}
/* ANALYSIS */
@@ -248,20 +241,16 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
- for(k = 0;k < STFT_HALF_SIZE+1;k++)
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
- ALphasor component;
- ALdouble tmp;
- ALint qpd;
-
/* Compute amplitude and phase */
- component = rect2polar(state->FFTbuffer[k]);
+ ALphasor component{rect2polar(state->FFTbuffer[k])};
/* Compute phase difference and subtract expected phase difference */
- tmp = (component.Phase - state->LastPhase[k]) - k*expected;
+ double tmp{(component.Phase - state->LastPhase[k]) - k*expected};
/* Map delta phase into +/- Pi interval */
- qpd = double2int(tmp / M_PI);
+ int qpd{double2int(tmp / M_PI)};
tmp -= M_PI * (qpd + (qpd%2));
/* Get deviation from bin frequency from the +/- Pi interval */
@@ -280,15 +269,15 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
/* PROCESSING */
/* pitch shifting */
- for(k = 0;k < STFT_HALF_SIZE+1;k++)
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
state->Syntesis_buffer[k].Amplitude = 0.0;
state->Syntesis_buffer[k].Frequency = 0.0;
}
- for(k = 0;k < STFT_HALF_SIZE+1;k++)
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
- j = (k*state->PitchShiftI) >> FRACTIONBITS;
+ ALsizei j{(k*state->PitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude;
@@ -298,7 +287,7 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
/* SYNTHESIS */
/* Synthesis the processing data */
- for(k = 0;k < STFT_HALF_SIZE+1;k++)
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
ALphasor component;
ALdouble tmp;
@@ -316,21 +305,19 @@ ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, cons
state->FFTbuffer[k] = polar2rect(component);
}
/* zero negative frequencies for recontruct a real signal */
- for(k = STFT_HALF_SIZE+1;k < STFT_SIZE;k++)
- {
- state->FFTbuffer[k].Real = 0.0;
- state->FFTbuffer[k].Imag = 0.0;
- }
+ for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
+ state->FFTbuffer[k] = complex_d{};
/* Apply iFFT to buffer data */
complex_fft(state->FFTbuffer, STFT_SIZE, 1.0);
/* Windowing and add to output */
- for(k = 0;k < STFT_SIZE;k++)
- state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].Real /
+ for(ALsizei k{0};k < STFT_SIZE;k++)
+ state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].real() /
(0.5 * STFT_HALF_SIZE * OVERSAMP);
/* Shift accumulator, input & output FIFO */
+ ALsizei j, k;
for(k = 0;k < STFT_STEP;k++) state->OutFIFO[k] = (ALfloat)state->OutputAccum[k];
for(j = 0;k < STFT_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k];
for(;j < STFT_SIZE;j++) state->OutputAccum[j] = 0.0;