diff options
author | Chris Robinson <[email protected]> | 2017-05-27 03:36:34 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2017-05-27 03:36:34 -0700 |
commit | c4ef7399f84f4085ceb77f9897f9c9502d2cfd0d (patch) | |
tree | 5cd6863602b9c569c8aeb99a08fcfd00cb4f864c /Alc | |
parent | 653f0a1405b5dbceab6c2d8adc8fa246bdb5f607 (diff) |
Add a new compressor/limiter
This is just for the output limiter right now, but in the future can be used
for the compressor EFX effect. The parameters are also hardcoded, but can be
made configurable after 1.18.
Diffstat (limited to 'Alc')
-rw-r--r-- | Alc/ALc.c | 21 | ||||
-rw-r--r-- | Alc/ALu.c | 95 | ||||
-rw-r--r-- | Alc/mastering.c | 255 |
3 files changed, 274 insertions, 97 deletions
@@ -1738,6 +1738,12 @@ static void alcSetError(ALCdevice *device, ALCenum errorCode) } +struct Compressor *CreateDeviceLimiter(const ALCdevice *device) +{ + return CompressorInit(0.0f, 0.0f, AL_FALSE, AL_TRUE, 0.0f, 0.0f, 0.5f, 2.0f, + 0.0f, -0.5f, 3.0f, device->Frequency); +} + /* UpdateClockBase * * Updates the device's base clock time with however many samples have been @@ -2224,8 +2230,11 @@ static ALCenum UpdateDeviceParams(ALCdevice *device, const ALCint *attrList) */ if(gainLimiter != ALC_FALSE) { - if(!device->Limiter) - device->Limiter = alloc_limiter(); + if(!device->Limiter || device->Frequency != GetCompressorSampleRate(device->Limiter)) + { + al_free(device->Limiter); + device->Limiter = CreateDeviceLimiter(device); + } } else { @@ -3845,7 +3854,7 @@ ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; - device->Limiter = alloc_limiter(); + device->Limiter = NULL; device->AvgSpeakerDist = 0.0f; ATOMIC_INIT(&device->ContextList, NULL); @@ -4021,6 +4030,8 @@ ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) alstr_get_cstr(device->DeviceName), NULL, "dither", 1 ); + device->Limiter = CreateDeviceLimiter(device); + if(DefaultEffect.type != AL_EFFECT_NULL) { device->DefaultSlot = (ALeffectslot*)device->_slot_mem; @@ -4378,7 +4389,7 @@ ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceN device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; - device->Limiter = alloc_limiter(); + device->Limiter = NULL; device->AvgSpeakerDist = 0.0f; ATOMIC_INIT(&device->ContextList, NULL); @@ -4441,6 +4452,8 @@ ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceN device->DitherEnabled = GetConfigValueBool(NULL, NULL, "dither", 1); + device->Limiter = CreateDeviceLimiter(device); + { ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList); do { @@ -100,17 +100,6 @@ const aluMatrixf IdentityMatrixf = {{ }}; -struct OutputLimiter *alloc_limiter(void) -{ - struct OutputLimiter *limiter = al_calloc(16, sizeof(*limiter)); - /* Limiter attack drops -80dB in 50ms. */ - limiter->AttackRate = 0.05f; - /* Limiter release raises +80dB in 1s. */ - limiter->ReleaseRate = 1.0f; - limiter->Gain = 1.0f; - return limiter; -} - void DeinitVoice(ALvoice *voice) { struct ALvoiceProps *props; @@ -1538,78 +1527,6 @@ static void ApplyDistanceComp(ALfloatBUFFERSIZE *restrict Samples, DistanceComp } -static_assert(LIMITER_VALUE_MAX < (UINT_MAX/LIMITER_WINDOW_SIZE), "LIMITER_VALUE_MAX is too big"); - -static void ApplyLimiter(struct OutputLimiter *Limiter, - ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALsizei NumChans, - const ALfloat AttackRate, const ALfloat ReleaseRate, - ALfloat *restrict Values, const ALsizei SamplesToDo) -{ - bool do_limit = false; - ALsizei c, i; - - OutBuffer = ASSUME_ALIGNED(OutBuffer, 16); - Values = ASSUME_ALIGNED(Values, 16); - - for(i = 0;i < SamplesToDo;i++) - Values[i] = 0.0f; - - /* First, find the maximum amplitude (squared) for each sample position in each channel. */ - for(c = 0;c < NumChans;c++) - { - for(i = 0;i < SamplesToDo;i++) - { - ALfloat amp = OutBuffer[c][i]; - Values[i] = maxf(Values[i], amp*amp); - } - } - - /* Next, calculate the gains needed to limit the output. */ - { - ALfloat lastgain = Limiter->Gain; - ALsizei wpos = Limiter->Pos; - ALuint sum = Limiter->SquaredSum; - ALfloat gain, rms; - - for(i = 0;i < SamplesToDo;i++) - { - sum -= Limiter->Window[wpos]; - Limiter->Window[wpos] = fastf2u(minf(Values[i]*65536.0f, LIMITER_VALUE_MAX)); - sum += Limiter->Window[wpos]; - - rms = sqrtf((ALfloat)sum / ((ALfloat)LIMITER_WINDOW_SIZE*65536.0f)); - - /* Clamp the minimum RMS to 0dB. The uint used for the squared sum - * inherently limits the maximum RMS to about 21dB, thus the gain - * ranges from 0dB to -21dB. - */ - gain = 1.0f / maxf(rms, 1.0f); - if(lastgain >= gain) - lastgain = maxf(lastgain*AttackRate, gain); - else - lastgain = minf(lastgain/ReleaseRate, gain); - do_limit |= (lastgain < 1.0f); - Values[i] = lastgain; - - wpos = (wpos+1)&LIMITER_WINDOW_MASK; - } - - Limiter->Gain = lastgain; - Limiter->Pos = wpos; - Limiter->SquaredSum = sum; - } - if(do_limit) - { - /* Finally, apply the gains to each channel. */ - for(c = 0;c < NumChans;c++) - { - for(i = 0;i < SamplesToDo;i++) - OutBuffer[c][i] *= Values[i]; - } - } -} - - /* NOTE: Non-dithered conversions have unused extra parameters. */ static inline ALfloat aluF2F(ALfloat val, ...) { return val; } @@ -1857,7 +1774,7 @@ void aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size) { ALfloat (*OutBuffer)[BUFFERSIZE] = device->RealOut.Buffer; ALsizei OutChannels = device->RealOut.NumChannels; - struct OutputLimiter *Limiter = device->Limiter; + struct Compressor *Limiter = device->Limiter; ALfloat *DitherValues; /* Use NFCtrlData for temp value storage. */ @@ -1865,15 +1782,7 @@ void aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size) SamplesToDo, OutChannels); if(Limiter) - { - const ALfloat AttackRate = powf(0.0001f, 1.0f/(device->Frequency*Limiter->AttackRate)); - const ALfloat ReleaseRate = powf(0.0001f, 1.0f/(device->Frequency*Limiter->ReleaseRate)); - - /* Use NFCtrlData for temp value storage. */ - ApplyLimiter(Limiter, OutBuffer, OutChannels, - AttackRate, ReleaseRate, device->NFCtrlData, SamplesToDo - ); - } + ApplyCompression(Limiter, OutChannels, SamplesToDo, OutBuffer); /* Dithering. Step 1, generate whitenoise (uniform distribution of * random values between -1 and +1). Use NFCtrlData for random diff --git a/Alc/mastering.c b/Alc/mastering.c new file mode 100644 index 00000000..c9f5bebd --- /dev/null +++ b/Alc/mastering.c @@ -0,0 +1,255 @@ +#include "config.h" + +#include <math.h> + +#include "alu.h" +#include "almalloc.h" + +#define RMS_WINDOW_SIZE (1<<7) +#define RMS_WINDOW_MASK (RMS_WINDOW_SIZE-1) +#define RMS_VALUE_MAX (1<<24) + +#define LOOKAHEAD_SIZE (1<<13) +#define LOOKAHEAD_MASK (LOOKAHEAD_SIZE-1) + +static_assert(RMS_VALUE_MAX < (UINT_MAX / RMS_WINDOW_SIZE), "RMS_VALUE_MAX is too big"); + +typedef struct Compressor { + ALfloat PreGain; + ALfloat PostGain; + ALboolean SummedLink; + ALfloat AttackMin; + ALfloat AttackMax; + ALfloat ReleaseMin; + ALfloat ReleaseMax; + ALfloat Ratio; + ALfloat Threshold; + ALfloat Knee; + ALuint SampleRate; + + ALuint RmsSum; + ALuint *RmsWindow; + ALsizei RmsIndex; + ALfloat Envelope[BUFFERSIZE]; + ALfloat EnvLast; +} Compressor; + +/* Multichannel compression is linked via one of two modes: + * + * Summed - Absolute sum of all channels. + * Maxed - Absolute maximum of any channel. + */ +static void SumChannels(Compressor *Comp, const ALsizei NumChans, const ALsizei SamplesToDo, + ALfloat (*restrict OutBuffer)[BUFFERSIZE]) +{ + ALsizei c, i; + + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] = 0.0f; + + for(c = 0;c < NumChans;c++) + { + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] += OutBuffer[c][i]; + } + + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] = fabsf(Comp->Envelope[i]); +} + +static void MaxChannels(Compressor *Comp, const ALsizei NumChans, const ALsizei SamplesToDo, + ALfloat (*restrict OutBuffer)[BUFFERSIZE]) +{ + ALsizei c, i; + + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] = 0.0f; + + for(c = 0;c < NumChans;c++) + { + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] = maxf(Comp->Envelope[i], fabsf(OutBuffer[c][i])); + } +} + +/* Envelope detection/sensing can be done via: + * + * RMS - Rectangular windowed root mean square of linking stage. + * Peak - Implicit output from linking stage. + */ +static void RmsDetection(Compressor *Comp, const ALsizei SamplesToDo) +{ + ALuint sum = Comp->RmsSum; + ALuint *window = Comp->RmsWindow; + ALsizei index = Comp->RmsIndex; + ALsizei i; + + for(i = 0;i < SamplesToDo;i++) + { + ALfloat sig = Comp->Envelope[i]; + + sum -= window[index]; + window[index] = fastf2u(minf(sig * sig * 65536.0f, RMS_VALUE_MAX)); + sum += window[index]; + index = (index + 1) & RMS_WINDOW_MASK; + + Comp->Envelope[i] = sqrtf(sum / 65536.0f / RMS_WINDOW_SIZE); + } + + Comp->RmsSum = sum; + Comp->RmsIndex = index; +} + +/* This isn't a very sophisticated envelope follower, but it gets the job + * done. First, it operates at logarithmic scales to keep transitions + * appropriate for human hearing. Second, it can apply adaptive (automated) + * attack/release adjustments based on the signal. + */ +static void FollowEnvelope(Compressor *Comp, const ALsizei SamplesToDo) +{ + ALfloat attackMin = Comp->AttackMin; + ALfloat attackMax = Comp->AttackMax; + ALfloat releaseMin = Comp->ReleaseMin; + ALfloat releaseMax = Comp->ReleaseMax; + ALfloat last = Comp->EnvLast; + ALsizei i; + + for(i = 0;i < SamplesToDo;i++) + { + ALfloat env = maxf(-6.0f, log10f(Comp->Envelope[i])); + ALfloat slope = minf(1.0f, fabsf(env - last) / 4.5f); + + if(env > last) + last = minf(env, last + lerp(attackMin, attackMax, 1.0f - (slope * slope))); + else + last = maxf(env, last + lerp(releaseMin, releaseMax, 1.0f - (slope * slope))); + + Comp->Envelope[i] = last; + } + + Comp->EnvLast = last; +} + +/* The envelope is converted to control gain with an optional soft knee. */ +static void EnvelopeGain(Compressor *Comp, const ALsizei SamplesToDo, const ALfloat Slope) +{ + const ALfloat threshold = Comp->Threshold; + const ALfloat knee = Comp->Knee; + ALsizei i; + + if(!(knee > 0.0f)) + { + for(i = 0;i < SamplesToDo;i++) + { + ALfloat gain = Slope * (threshold - Comp->Envelope[i]); + Comp->Envelope[i] = powf(10.0f, minf(0.0f, gain)); + } + } + else + { + const ALfloat lower = threshold - (0.5f * knee); + const ALfloat upper = threshold + (0.5f * knee); + const ALfloat m = 0.5f * Slope / knee; + + for(i = 0;i < SamplesToDo;i++) + { + ALfloat env = Comp->Envelope[i]; + ALfloat gain; + + if(env > lower && env < upper) + gain = m * (env - lower) * (lower - env); + else + gain = Slope * (threshold - env); + + Comp->Envelope[i] = powf(10.0f, minf(0.0f, gain)); + } + } +} + + +Compressor *CompressorInit(const ALfloat PreGainDb, const ALfloat PostGainDb, + const ALboolean SummedLink, const ALboolean RmsSensing, + const ALfloat AttackTimeMin, const ALfloat AttackTimeMax, + const ALfloat ReleaseTimeMin, const ALfloat ReleaseTimeMax, + const ALfloat Ratio, const ALfloat ThresholdDb, + const ALfloat KneeDb, const ALuint SampleRate) +{ + Compressor *Comp; + size_t size; + ALsizei i; + + size = sizeof(*Comp); + if(RmsSensing) + size += sizeof(Comp->RmsWindow[0]) * RMS_WINDOW_SIZE; + Comp = al_calloc(16, size); + + Comp->PreGain = powf(10.0f, PreGainDb / 20.0f); + Comp->PostGain = powf(10.0f, PostGainDb / 20.0f); + Comp->SummedLink = SummedLink; + Comp->AttackMin = 1.0f / maxf(0.000001f, AttackTimeMin * SampleRate * logf(10.0f)); + Comp->AttackMax = 1.0f / maxf(0.000001f, AttackTimeMax * SampleRate * logf(10.0f)); + Comp->ReleaseMin = -1.0f / maxf(0.000001f, ReleaseTimeMin * SampleRate * logf(10.0f)); + Comp->ReleaseMax = -1.0f / maxf(0.000001f, ReleaseTimeMax * SampleRate * logf(10.0f)); + Comp->Ratio = Ratio; + Comp->Threshold = ThresholdDb / 20.0f; + Comp->Knee = maxf(0.0f, KneeDb / 20.0f); + Comp->SampleRate = SampleRate; + + Comp->RmsSum = 0; + if(RmsSensing) + Comp->RmsWindow = (ALuint*)(Comp+1); + else + Comp->RmsWindow = NULL; + Comp->RmsIndex = 0; + + for(i = 0;i < BUFFERSIZE;i++) + Comp->Envelope[i] = 0.0f; + Comp->EnvLast = -6.0f; + + return Comp; +} + +ALuint GetCompressorSampleRate(const Compressor *Comp) +{ + return Comp->SampleRate; +} + +void ApplyCompression(Compressor *Comp, const ALsizei NumChans, const ALsizei SamplesToDo, + ALfloat (*restrict OutBuffer)[BUFFERSIZE]) +{ + ALsizei c, i; + + if(Comp->PreGain != 1.0f) + { + for(c = 0;c < NumChans;c++) + { + for(i = 0;i < SamplesToDo;i++) + OutBuffer[c][i] *= Comp->PreGain; + } + } + + if(Comp->SummedLink) + SumChannels(Comp, NumChans, SamplesToDo, OutBuffer); + else + MaxChannels(Comp, NumChans, SamplesToDo, OutBuffer); + + if(Comp->RmsWindow) + RmsDetection(Comp, SamplesToDo); + FollowEnvelope(Comp, SamplesToDo); + + if(Comp->Ratio > 0.0f) + EnvelopeGain(Comp, SamplesToDo, 1.0f - (1.0f / Comp->Ratio)); + else + EnvelopeGain(Comp, SamplesToDo, 1.0f); + + if(Comp->PostGain != 1.0f) + { + for(i = 0;i < SamplesToDo;i++) + Comp->Envelope[i] *= Comp->PostGain; + } + for(c = 0;c < NumChans;c++) + { + for(i = 0;i < SamplesToDo;i++) + OutBuffer[c][i] *= Comp->Envelope[i]; + } +} |