aboutsummaryrefslogtreecommitdiffstats
path: root/alc/alu.cpp
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2019-12-12 19:21:00 +0100
committerSven Gothel <[email protected]>2019-12-12 19:21:00 +0100
commit4df06c6894b39af5bf4681c0acf0c1c080084c80 (patch)
tree2505eb6e3b5798db34033c4cac2d4613bf6bda44 /alc/alu.cpp
parent8915501ed02eac2b3bce9a7fc06cb1ab562901c3 (diff)
parentc0cf323e1d56ce605e90927324d2fdafcfbb564a (diff)
merge v1.20.0
Diffstat (limited to 'alc/alu.cpp')
-rw-r--r--alc/alu.cpp1842
1 files changed, 1842 insertions, 0 deletions
diff --git a/alc/alu.cpp b/alc/alu.cpp
new file mode 100644
index 00000000..9bf052e1
--- /dev/null
+++ b/alc/alu.cpp
@@ -0,0 +1,1842 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 1999-2007 by authors.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include "alu.h"
+
+#include <algorithm>
+#include <array>
+#include <atomic>
+#include <chrono>
+#include <climits>
+#include <cmath>
+#include <cstdarg>
+#include <cstdio>
+#include <cstdlib>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <new>
+#include <numeric>
+#include <utility>
+
+#include "AL/al.h"
+#include "AL/alc.h"
+#include "AL/efx.h"
+
+#include "al/auxeffectslot.h"
+#include "al/buffer.h"
+#include "al/effect.h"
+#include "al/event.h"
+#include "al/listener.h"
+#include "alcmain.h"
+#include "alcontext.h"
+#include "almalloc.h"
+#include "alnumeric.h"
+#include "alspan.h"
+#include "alstring.h"
+#include "ambidefs.h"
+#include "atomic.h"
+#include "bformatdec.h"
+#include "bs2b.h"
+#include "cpu_caps.h"
+#include "devformat.h"
+#include "effects/base.h"
+#include "filters/biquad.h"
+#include "filters/nfc.h"
+#include "filters/splitter.h"
+#include "fpu_modes.h"
+#include "hrtf.h"
+#include "inprogext.h"
+#include "mastering.h"
+#include "math_defs.h"
+#include "mixer/defs.h"
+#include "opthelpers.h"
+#include "ringbuffer.h"
+#include "strutils.h"
+#include "threads.h"
+#include "uhjfilter.h"
+#include "vecmat.h"
+#include "voice.h"
+
+#include "bsinc_inc.h"
+
+
+static_assert(!(MAX_RESAMPLER_PADDING&1) && MAX_RESAMPLER_PADDING >= bsinc24.m[0],
+ "MAX_RESAMPLER_PADDING is not a multiple of two, or is too small");
+
+
+namespace {
+
+using namespace std::placeholders;
+
+ALfloat InitConeScale()
+{
+ ALfloat ret{1.0f};
+ if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
+ {
+ if(al::strcasecmp(optval->c_str(), "true") == 0
+ || strtol(optval->c_str(), nullptr, 0) == 1)
+ ret *= 0.5f;
+ }
+ return ret;
+}
+
+ALfloat InitZScale()
+{
+ ALfloat ret{1.0f};
+ if(auto optval = al::getenv("__ALSOFT_REVERSE_Z"))
+ {
+ if(al::strcasecmp(optval->c_str(), "true") == 0
+ || strtol(optval->c_str(), nullptr, 0) == 1)
+ ret *= -1.0f;
+ }
+ return ret;
+}
+
+} // namespace
+
+/* Cone scalar */
+const ALfloat ConeScale{InitConeScale()};
+
+/* Localized Z scalar for mono sources */
+const ALfloat ZScale{InitZScale()};
+
+MixerFunc MixSamples{Mix_<CTag>};
+RowMixerFunc MixRowSamples{MixRow_<CTag>};
+
+namespace {
+
+struct ChanMap {
+ Channel channel;
+ ALfloat angle;
+ ALfloat elevation;
+};
+
+HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>;
+
+inline MixerFunc SelectMixer()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Mix_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return Mix_<SSETag>;
+#endif
+ return Mix_<CTag>;
+}
+
+inline RowMixerFunc SelectRowMixer()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return MixRow_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixRow_<SSETag>;
+#endif
+ return MixRow_<CTag>;
+}
+
+inline HrtfDirectMixerFunc SelectHrtfMixer(void)
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return MixDirectHrtf_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixDirectHrtf_<SSETag>;
+#endif
+
+ return MixDirectHrtf_<CTag>;
+}
+
+
+inline void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
+{
+ size_t si{BSINC_SCALE_COUNT - 1};
+ float sf{0.0f};
+
+ if(increment > FRACTIONONE)
+ {
+ sf = FRACTIONONE / static_cast<float>(increment);
+ sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
+ si = float2uint(sf);
+ /* The interpolation factor is fit to this diagonally-symmetric curve
+ * to reduce the transition ripple caused by interpolating different
+ * scales of the sinc function.
+ */
+ sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
+ }
+
+ state->sf = sf;
+ state->m = table->m[si];
+ state->l = (state->m/2) - 1;
+ state->filter = table->Tab + table->filterOffset[si];
+}
+
+inline ResamplerFunc SelectResampler(Resampler resampler, ALuint increment)
+{
+ switch(resampler)
+ {
+ case Resampler::Point:
+ return Resample_<PointTag,CTag>;
+ case Resampler::Linear:
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Resample_<LerpTag,NEONTag>;
+#endif
+#ifdef HAVE_SSE4_1
+ if((CPUCapFlags&CPU_CAP_SSE4_1))
+ return Resample_<LerpTag,SSE4Tag>;
+#endif
+#ifdef HAVE_SSE2
+ if((CPUCapFlags&CPU_CAP_SSE2))
+ return Resample_<LerpTag,SSE2Tag>;
+#endif
+ return Resample_<LerpTag,CTag>;
+ case Resampler::Cubic:
+ return Resample_<CubicTag,CTag>;
+ case Resampler::BSinc12:
+ case Resampler::BSinc24:
+ if(increment <= FRACTIONONE)
+ {
+ /* fall-through */
+ case Resampler::FastBSinc12:
+ case Resampler::FastBSinc24:
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Resample_<FastBSincTag,NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return Resample_<FastBSincTag,SSETag>;
+#endif
+ return Resample_<FastBSincTag,CTag>;
+ }
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Resample_<BSincTag,NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return Resample_<BSincTag,SSETag>;
+#endif
+ return Resample_<BSincTag,CTag>;
+ }
+
+ return Resample_<PointTag,CTag>;
+}
+
+} // namespace
+
+void aluInit(void)
+{
+ MixSamples = SelectMixer();
+ MixRowSamples = SelectRowMixer();
+ MixDirectHrtf = SelectHrtfMixer();
+}
+
+
+ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state)
+{
+ switch(resampler)
+ {
+ case Resampler::Point:
+ case Resampler::Linear:
+ case Resampler::Cubic:
+ break;
+ case Resampler::FastBSinc12:
+ case Resampler::BSinc12:
+ BsincPrepare(increment, &state->bsinc, &bsinc12);
+ break;
+ case Resampler::FastBSinc24:
+ case Resampler::BSinc24:
+ BsincPrepare(increment, &state->bsinc, &bsinc24);
+ break;
+ }
+ return SelectResampler(resampler, increment);
+}
+
+
+void ALCdevice::ProcessHrtf(const size_t SamplesToDo)
+{
+ /* HRTF is stereo output only. */
+ const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
+ const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
+
+ MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
+ mHrtfState.get(), SamplesToDo);
+}
+
+void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo)
+{
+ AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
+}
+
+void ALCdevice::ProcessUhj(const size_t SamplesToDo)
+{
+ /* UHJ is stereo output only. */
+ const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
+ const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
+
+ /* Encode to stereo-compatible 2-channel UHJ output. */
+ Uhj_Encoder->encode(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer.data(),
+ SamplesToDo);
+}
+
+void ALCdevice::ProcessBs2b(const size_t SamplesToDo)
+{
+ /* First, decode the ambisonic mix to the "real" output. */
+ AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
+
+ /* BS2B is stereo output only. */
+ const ALuint lidx{RealOut.ChannelIndex[FrontLeft]};
+ const ALuint ridx{RealOut.ChannelIndex[FrontRight]};
+
+ /* Now apply the BS2B binaural/crossfeed filter. */
+ bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
+ SamplesToDo);
+}
+
+
+namespace {
+
+/* This RNG method was created based on the math found in opusdec. It's quick,
+ * and starting with a seed value of 22222, is suitable for generating
+ * whitenoise.
+ */
+inline ALuint dither_rng(ALuint *seed) noexcept
+{
+ *seed = (*seed * 96314165) + 907633515;
+ return *seed;
+}
+
+
+inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2)
+{
+ return alu::Vector{
+ in1[1]*in2[2] - in1[2]*in2[1],
+ in1[2]*in2[0] - in1[0]*in2[2],
+ in1[0]*in2[1] - in1[1]*in2[0],
+ 0.0f
+ };
+}
+
+inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2)
+{
+ return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
+}
+
+
+alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept
+{
+ return alu::Vector{
+ vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
+ vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
+ vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
+ vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]
+ };
+}
+
+
+bool CalcContextParams(ALCcontext *Context)
+{
+ ALcontextProps *props{Context->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
+ if(!props) return false;
+
+ ALlistener &Listener = Context->mListener;
+ Listener.Params.DopplerFactor = props->DopplerFactor;
+ Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
+
+ Listener.Params.SourceDistanceModel = props->SourceDistanceModel;
+ Listener.Params.mDistanceModel = props->mDistanceModel;
+
+ AtomicReplaceHead(Context->mFreeContextProps, props);
+ return true;
+}
+
+bool CalcListenerParams(ALCcontext *Context)
+{
+ ALlistener &Listener = Context->mListener;
+
+ ALlistenerProps *props{Listener.Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
+ if(!props) return false;
+
+ /* AT then UP */
+ alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
+ N.normalize();
+ alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
+ V.normalize();
+ /* Build and normalize right-vector */
+ alu::Vector U{aluCrossproduct(N, V)};
+ U.normalize();
+
+ Listener.Params.Matrix = alu::Matrix{
+ U[0], V[0], -N[0], 0.0f,
+ U[1], V[1], -N[1], 0.0f,
+ U[2], V[2], -N[2], 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f
+ };
+
+ const alu::Vector P{Listener.Params.Matrix *
+ alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}};
+ Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f);
+
+ const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
+ Listener.Params.Velocity = Listener.Params.Matrix * vel;
+
+ Listener.Params.Gain = props->Gain * Context->mGainBoost;
+ Listener.Params.MetersPerUnit = props->MetersPerUnit;
+
+ AtomicReplaceHead(Context->mFreeListenerProps, props);
+ return true;
+}
+
+bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context)
+{
+ ALeffectslotProps *props{slot->Params.Update.exchange(nullptr, std::memory_order_acq_rel)};
+ if(!props) return false;
+
+ slot->Params.Gain = props->Gain;
+ slot->Params.AuxSendAuto = props->AuxSendAuto;
+ slot->Params.Target = props->Target;
+ slot->Params.EffectType = props->Type;
+ slot->Params.mEffectProps = props->Props;
+ if(IsReverbEffect(props->Type))
+ {
+ slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
+ slot->Params.DecayTime = props->Props.Reverb.DecayTime;
+ slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
+ slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
+ slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
+ slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
+ }
+ else
+ {
+ slot->Params.RoomRolloff = 0.0f;
+ slot->Params.DecayTime = 0.0f;
+ slot->Params.DecayLFRatio = 0.0f;
+ slot->Params.DecayHFRatio = 0.0f;
+ slot->Params.DecayHFLimit = AL_FALSE;
+ slot->Params.AirAbsorptionGainHF = 1.0f;
+ }
+
+ EffectState *state{props->State};
+ props->State = nullptr;
+ EffectState *oldstate{slot->Params.mEffectState};
+ slot->Params.mEffectState = state;
+
+ /* Only release the old state if it won't get deleted, since we can't be
+ * deleting/freeing anything in the mixer.
+ */
+ if(!oldstate->releaseIfNoDelete())
+ {
+ /* Otherwise, if it would be deleted send it off with a release event. */
+ RingBuffer *ring{context->mAsyncEvents.get()};
+ auto evt_vec = ring->getWriteVector();
+ if LIKELY(evt_vec.first.len > 0)
+ {
+ AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}};
+ evt->u.mEffectState = oldstate;
+ ring->writeAdvance(1);
+ context->mEventSem.post();
+ }
+ else
+ {
+ /* If writing the event failed, the queue was probably full. Store
+ * the old state in the property object where it can eventually be
+ * cleaned up sometime later (not ideal, but better than blocking
+ * or leaking).
+ */
+ props->State = oldstate;
+ }
+ }
+
+ AtomicReplaceHead(context->mFreeEffectslotProps, props);
+
+ EffectTarget output;
+ if(ALeffectslot *target{slot->Params.Target})
+ output = EffectTarget{&target->Wet, nullptr};
+ else
+ {
+ ALCdevice *device{context->mDevice.get()};
+ output = EffectTarget{&device->Dry, &device->RealOut};
+ }
+ state->update(context, slot, &slot->Params.mEffectProps, output);
+ return true;
+}
+
+
+/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
+ * front.
+ */
+inline float ScaleAzimuthFront(float azimuth, float scale)
+{
+ const ALfloat abs_azi{std::fabs(azimuth)};
+ if(!(abs_azi >= al::MathDefs<float>::Pi()*0.5f))
+ return std::copysign(minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f), azimuth);
+ return azimuth;
+}
+
+void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos,
+ const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain,
+ const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS],
+ const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS],
+ ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props,
+ const ALlistener &Listener, const ALCdevice *Device)
+{
+ static const ChanMap MonoMap[1]{
+ { FrontCenter, 0.0f, 0.0f }
+ }, RearMap[2]{
+ { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
+ }, QuadMap[4]{
+ { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
+ { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ }, X51Map[6]{
+ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
+ }, X61Map[7]{
+ { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
+ { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ }, X71Map[8]{
+ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
+ { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ };
+
+ ChanMap StereoMap[2]{
+ { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
+ };
+
+ const auto Frequency = static_cast<ALfloat>(Device->Frequency);
+ const ALuint NumSends{Device->NumAuxSends};
+
+ bool DirectChannels{props->DirectChannels != AL_FALSE};
+ const ChanMap *chans{nullptr};
+ ALuint num_channels{0};
+ bool isbformat{false};
+ ALfloat downmix_gain{1.0f};
+ switch(voice->mFmtChannels)
+ {
+ case FmtMono:
+ chans = MonoMap;
+ num_channels = 1;
+ /* Mono buffers are never played direct. */
+ DirectChannels = false;
+ break;
+
+ case FmtStereo:
+ /* Convert counter-clockwise to clockwise. */
+ StereoMap[0].angle = -props->StereoPan[0];
+ StereoMap[1].angle = -props->StereoPan[1];
+
+ chans = StereoMap;
+ num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
+ break;
+
+ case FmtRear:
+ chans = RearMap;
+ num_channels = 2;
+ downmix_gain = 1.0f / 2.0f;
+ break;
+
+ case FmtQuad:
+ chans = QuadMap;
+ num_channels = 4;
+ downmix_gain = 1.0f / 4.0f;
+ break;
+
+ case FmtX51:
+ chans = X51Map;
+ num_channels = 6;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 5.0f;
+ break;
+
+ case FmtX61:
+ chans = X61Map;
+ num_channels = 7;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 6.0f;
+ break;
+
+ case FmtX71:
+ chans = X71Map;
+ num_channels = 8;
+ /* NOTE: Excludes LFE. */
+ downmix_gain = 1.0f / 7.0f;
+ break;
+
+ case FmtBFormat2D:
+ num_channels = 3;
+ isbformat = true;
+ DirectChannels = false;
+ break;
+
+ case FmtBFormat3D:
+ num_channels = 4;
+ isbformat = true;
+ DirectChannels = false;
+ break;
+ }
+ ASSUME(num_channels > 0);
+
+ std::for_each(voice->mChans.begin(), voice->mChans.begin()+num_channels,
+ [NumSends](ALvoice::ChannelData &chandata) -> void
+ {
+ chandata.mDryParams.Hrtf.Target = HrtfFilter{};
+ chandata.mDryParams.Gains.Target.fill(0.0f);
+ std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
+ [](SendParams &params) -> void { params.Gains.Target.fill(0.0f); });
+ });
+
+ voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
+ if(isbformat)
+ {
+ /* Special handling for B-Format sources. */
+
+ if(Distance > std::numeric_limits<float>::epsilon())
+ {
+ /* Panning a B-Format sound toward some direction is easy. Just pan
+ * the first (W) channel as a normal mono sound and silence the
+ * others.
+ */
+
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* Clamp the distance for really close sources, to prevent
+ * excessive bass.
+ */
+ const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
+ const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
+
+ /* Only need to adjust the first channel of a B-Format source. */
+ voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
+
+ voice->mFlags |= VOICE_HAS_NFC;
+ }
+
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ if(Device->mRenderMode != StereoPair)
+ CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
+ else
+ {
+ /* Clamp Y, in case rounding errors caused it to end up outside
+ * of -1...+1.
+ */
+ const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
+ /* Negate Z for right-handed coords with -Z in front. */
+ const ALfloat az{std::atan2(xpos, -zpos)};
+
+ /* A scalar of 1.5 for plain stereo results in +/-60 degrees
+ * being moved to +/-90 degrees for direct right and left
+ * speaker responses.
+ */
+ CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
+ }
+
+ /* NOTE: W needs to be scaled due to FuMa normalization. */
+ const ALfloat &scale0 = AmbiScale::FromFuMa[0];
+ ComputePanGains(&Device->Dry, coeffs, DryGain*scale0,
+ voice->mChans[0].mDryParams.Gains.Target);
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0,
+ voice->mChans[0].mWetParams[i].Gains.Target);
+ }
+ }
+ else
+ {
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
+ * is what we want for FOA input. The first channel may have
+ * been previously re-adjusted if panned, so reset it.
+ */
+ voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
+
+ voice->mFlags |= VOICE_HAS_NFC;
+ }
+
+ /* Local B-Format sources have their XYZ channels rotated according
+ * to the orientation.
+ */
+ /* AT then UP */
+ alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
+ N.normalize();
+ alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
+ V.normalize();
+ if(!props->HeadRelative)
+ {
+ N = Listener.Params.Matrix * N;
+ V = Listener.Params.Matrix * V;
+ }
+ /* Build and normalize right-vector */
+ alu::Vector U{aluCrossproduct(N, V)};
+ U.normalize();
+
+ /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
+ * matrix is transposed, for the inputs to align on the rows and
+ * outputs on the columns.
+ */
+ const ALfloat &wscale = AmbiScale::FromFuMa[0];
+ const ALfloat &yscale = AmbiScale::FromFuMa[1];
+ const ALfloat &zscale = AmbiScale::FromFuMa[2];
+ const ALfloat &xscale = AmbiScale::FromFuMa[3];
+ const ALfloat matrix[4][MAX_AMBI_CHANNELS]{
+ // ACN0 ACN1 ACN2 ACN3
+ { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W
+ { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X
+ { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y
+ { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z
+ };
+
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ ComputePanGains(&Device->Dry, matrix[c], DryGain,
+ voice->mChans[c].mDryParams.Gains.Target);
+
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, matrix[c], WetGain[i],
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+ }
+ else if(DirectChannels)
+ {
+ /* Direct source channels always play local. Skip the virtual channels
+ * and write inputs to the matching real outputs.
+ */
+ voice->mDirect.Buffer = Device->RealOut.Buffer;
+
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
+ if(idx != INVALID_CHANNEL_INDEX)
+ voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
+ }
+
+ /* Auxiliary sends still use normal channel panning since they mix to
+ * B-Format, which can't channel-match.
+ */
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
+
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+ else if(Device->mRenderMode == HrtfRender)
+ {
+ /* Full HRTF rendering. Skip the virtual channels and render to the
+ * real outputs.
+ */
+ voice->mDirect.Buffer = Device->RealOut.Buffer;
+
+ if(Distance > std::numeric_limits<float>::epsilon())
+ {
+ const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
+ const ALfloat az{std::atan2(xpos, -zpos)};
+
+ /* Get the HRIR coefficients and delays just once, for the given
+ * source direction.
+ */
+ GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread,
+ voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
+ voice->mChans[0].mDryParams.Hrtf.Target.Delay);
+ voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain * downmix_gain;
+
+ /* Remaining channels use the same results as the first. */
+ for(ALuint c{1};c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel == LFE) continue;
+ voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target;
+ }
+
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels of the source sends.
+ */
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
+
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel == LFE)
+ continue;
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+ else
+ {
+ /* Local sources on HRTF play with each channel panned to its
+ * relative location around the listener, providing "virtual
+ * speaker" responses.
+ */
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ /* Skip LFE */
+ if(chans[c].channel == LFE)
+ continue;
+
+ /* Get the HRIR coefficients and delays for this channel
+ * position.
+ */
+ GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle,
+ std::numeric_limits<float>::infinity(), Spread,
+ voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
+ voice->mChans[c].mDryParams.Hrtf.Target.Delay);
+ voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain;
+
+ /* Normal panning for auxiliary sends. */
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
+
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+
+ voice->mFlags |= VOICE_HAS_HRTF;
+ }
+ else
+ {
+ /* Non-HRTF rendering. Use normal panning to the output. */
+
+ if(Distance > std::numeric_limits<float>::epsilon())
+ {
+ /* Calculate NFC filter coefficient if needed. */
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* Clamp the distance for really close sources, to prevent
+ * excessive bass.
+ */
+ const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
+ const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
+
+ /* Adjust NFC filters. */
+ for(ALuint c{0};c < num_channels;c++)
+ voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
+
+ voice->mFlags |= VOICE_HAS_NFC;
+ }
+
+ /* Calculate the directional coefficients once, which apply to all
+ * input channels.
+ */
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ if(Device->mRenderMode != StereoPair)
+ CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
+ else
+ {
+ const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
+ const ALfloat az{std::atan2(xpos, -zpos)};
+ CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
+ }
+
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ /* Special-case LFE */
+ if(chans[c].channel == LFE)
+ {
+ if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
+ {
+ const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
+ if(idx != INVALID_CHANNEL_INDEX)
+ voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
+ }
+ continue;
+ }
+
+ ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
+ voice->mChans[c].mDryParams.Gains.Target);
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+ else
+ {
+ if(Device->AvgSpeakerDist > 0.0f)
+ {
+ /* If the source distance is 0, set w0 to w1 to act as a pass-
+ * through. We still want to pass the signal through the
+ * filters so they keep an appropriate history, in case the
+ * source moves away from the listener.
+ */
+ const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)};
+
+ for(ALuint c{0};c < num_channels;c++)
+ voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
+
+ voice->mFlags |= VOICE_HAS_NFC;
+ }
+
+ for(ALuint c{0};c < num_channels;c++)
+ {
+ /* Special-case LFE */
+ if(chans[c].channel == LFE)
+ {
+ if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
+ {
+ const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
+ if(idx != INVALID_CHANNEL_INDEX)
+ voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain;
+ }
+ continue;
+ }
+
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ CalcAngleCoeffs(
+ (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
+ : chans[c].angle,
+ chans[c].elevation, Spread, coeffs
+ );
+
+ ComputePanGains(&Device->Dry, coeffs, DryGain,
+ voice->mChans[c].mDryParams.Gains.Target);
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(const ALeffectslot *Slot{SendSlots[i]})
+ ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
+ voice->mChans[c].mWetParams[i].Gains.Target);
+ }
+ }
+ }
+ }
+
+ {
+ const ALfloat hfScale{props->Direct.HFReference / Frequency};
+ const ALfloat lfScale{props->Direct.LFReference / Frequency};
+ const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */
+ const ALfloat gainLF{maxf(DryGainLF, 0.001f)};
+
+ voice->mDirect.FilterType = AF_None;
+ if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
+ auto &lowpass = voice->mChans[0].mDryParams.LowPass;
+ auto &highpass = voice->mChans[0].mDryParams.HighPass;
+ lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
+ lowpass.rcpQFromSlope(gainHF, 1.0f));
+ highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
+ highpass.rcpQFromSlope(gainLF, 1.0f));
+ for(ALuint c{1};c < num_channels;c++)
+ {
+ voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
+ voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
+ }
+ }
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ const ALfloat hfScale{props->Send[i].HFReference / Frequency};
+ const ALfloat lfScale{props->Send[i].LFReference / Frequency};
+ const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)};
+ const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)};
+
+ voice->mSend[i].FilterType = AF_None;
+ if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
+ if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
+
+ auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
+ auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
+ lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale,
+ lowpass.rcpQFromSlope(gainHF, 1.0f));
+ highpass.setParams(BiquadType::LowShelf, gainLF, lfScale,
+ highpass.rcpQFromSlope(gainLF, 1.0f));
+ for(ALuint c{1};c < num_channels;c++)
+ {
+ voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
+ voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
+ }
+ }
+}
+
+void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
+{
+ const ALCdevice *Device{ALContext->mDevice.get()};
+ ALeffectslot *SendSlots[MAX_SENDS];
+
+ voice->mDirect.Buffer = Device->Dry.Buffer;
+ for(ALuint i{0};i < Device->NumAuxSends;i++)
+ {
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->mDefaultSlot.get();
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
+ {
+ SendSlots[i] = nullptr;
+ voice->mSend[i].Buffer = {};
+ }
+ else
+ voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
+ }
+
+ /* Calculate the stepping value */
+ const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
+ static_cast<ALfloat>(Device->Frequency) * props->Pitch;
+ if(Pitch > float{MAX_PITCH})
+ voice->mStep = MAX_PITCH<<FRACTIONBITS;
+ else
+ voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
+ voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
+
+ /* Calculate gains */
+ const ALlistener &Listener = ALContext->mListener;
+ ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)};
+ DryGain *= props->Direct.Gain * Listener.Params.Gain;
+ DryGain = minf(DryGain, GAIN_MIX_MAX);
+ ALfloat DryGainHF{props->Direct.GainHF};
+ ALfloat DryGainLF{props->Direct.GainLF};
+ ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
+ for(ALuint i{0};i < Device->NumAuxSends;i++)
+ {
+ WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
+ WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain;
+ WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
+ WetGainHF[i] = props->Send[i].GainHF;
+ WetGainLF[i] = props->Send[i].GainLF;
+ }
+
+ CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF,
+ WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
+}
+
+void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
+{
+ const ALCdevice *Device{ALContext->mDevice.get()};
+ const ALuint NumSends{Device->NumAuxSends};
+ const ALlistener &Listener = ALContext->mListener;
+
+ /* Set mixing buffers and get send parameters. */
+ voice->mDirect.Buffer = Device->Dry.Buffer;
+ ALeffectslot *SendSlots[MAX_SENDS];
+ ALfloat RoomRolloff[MAX_SENDS];
+ ALfloat DecayDistance[MAX_SENDS];
+ ALfloat DecayLFDistance[MAX_SENDS];
+ ALfloat DecayHFDistance[MAX_SENDS];
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ SendSlots[i] = props->Send[i].Slot;
+ if(!SendSlots[i] && i == 0)
+ SendSlots[i] = ALContext->mDefaultSlot.get();
+ if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
+ {
+ SendSlots[i] = nullptr;
+ RoomRolloff[i] = 0.0f;
+ DecayDistance[i] = 0.0f;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
+ }
+ else if(SendSlots[i]->Params.AuxSendAuto)
+ {
+ RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
+ /* Calculate the distances to where this effect's decay reaches
+ * -60dB.
+ */
+ DecayDistance[i] = SendSlots[i]->Params.DecayTime * SPEEDOFSOUNDMETRESPERSEC;
+ DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
+ DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
+ if(SendSlots[i]->Params.DecayHFLimit)
+ {
+ ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF};
+ if(airAbsorption < 1.0f)
+ {
+ /* Calculate the distance to where this effect's air
+ * absorption reaches -60dB, and limit the effect's HF
+ * decay distance (so it doesn't take any longer to decay
+ * than the air would allow).
+ */
+ ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)};
+ DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
+ }
+ }
+ }
+ else
+ {
+ /* If the slot's auxiliary send auto is off, the data sent to the
+ * effect slot is the same as the dry path, sans filter effects */
+ RoomRolloff[i] = props->RolloffFactor;
+ DecayDistance[i] = 0.0f;
+ DecayLFDistance[i] = 0.0f;
+ DecayHFDistance[i] = 0.0f;
+ }
+
+ if(!SendSlots[i])
+ voice->mSend[i].Buffer = {};
+ else
+ voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
+ }
+
+ /* Transform source to listener space (convert to head relative) */
+ alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
+ alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
+ alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
+ if(props->HeadRelative == AL_FALSE)
+ {
+ /* Transform source vectors */
+ Position = Listener.Params.Matrix * Position;
+ Velocity = Listener.Params.Matrix * Velocity;
+ Direction = Listener.Params.Matrix * Direction;
+ }
+ else
+ {
+ /* Offset the source velocity to be relative of the listener velocity */
+ Velocity += Listener.Params.Velocity;
+ }
+
+ const bool directional{Direction.normalize() > 0.0f};
+ alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
+ const ALfloat Distance{ToSource.normalize()};
+
+ /* Initial source gain */
+ ALfloat DryGain{props->Gain};
+ ALfloat DryGainHF{1.0f};
+ ALfloat DryGainLF{1.0f};
+ ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ WetGain[i] = props->Gain;
+ WetGainHF[i] = 1.0f;
+ WetGainLF[i] = 1.0f;
+ }
+
+ /* Calculate distance attenuation */
+ ALfloat ClampedDist{Distance};
+
+ switch(Listener.Params.SourceDistanceModel ?
+ props->mDistanceModel : Listener.Params.mDistanceModel)
+ {
+ case DistanceModel::InverseClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance) break;
+ /*fall-through*/
+ case DistanceModel::Inverse:
+ if(!(props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
+ if(dist > 0.0f) DryGain *= props->RefDistance / dist;
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
+ if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
+ }
+ }
+ break;
+
+ case DistanceModel::LinearClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance) break;
+ /*fall-through*/
+ case DistanceModel::Linear:
+ if(!(props->MaxDistance != props->RefDistance))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ DryGain *= maxf(1.0f - attn, 0.0f);
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
+ (props->MaxDistance-props->RefDistance);
+ WetGain[i] *= maxf(1.0f - attn, 0.0f);
+ }
+ }
+ break;
+
+ case DistanceModel::ExponentClamped:
+ ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
+ if(props->MaxDistance < props->RefDistance) break;
+ /*fall-through*/
+ case DistanceModel::Exponent:
+ if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
+ ClampedDist = props->RefDistance;
+ else
+ {
+ DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor);
+ for(ALuint i{0};i < NumSends;i++)
+ WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]);
+ }
+ break;
+
+ case DistanceModel::Disable:
+ ClampedDist = props->RefDistance;
+ break;
+ }
+
+ /* Calculate directional soundcones */
+ if(directional && props->InnerAngle < 360.0f)
+ {
+ const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) *
+ ConeScale * 2.0f)};
+
+ ALfloat ConeVolume, ConeHF;
+ if(!(Angle > props->InnerAngle))
+ {
+ ConeVolume = 1.0f;
+ ConeHF = 1.0f;
+ }
+ else if(Angle < props->OuterAngle)
+ {
+ ALfloat scale = ( Angle-props->InnerAngle) /
+ (props->OuterAngle-props->InnerAngle);
+ ConeVolume = lerp(1.0f, props->OuterGain, scale);
+ ConeHF = lerp(1.0f, props->OuterGainHF, scale);
+ }
+ else
+ {
+ ConeVolume = props->OuterGain;
+ ConeHF = props->OuterGainHF;
+ }
+
+ DryGain *= ConeVolume;
+ if(props->DryGainHFAuto)
+ DryGainHF *= ConeHF;
+ if(props->WetGainAuto)
+ std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain),
+ [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; }
+ );
+ if(props->WetGainHFAuto)
+ std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
+ std::begin(WetGainHF),
+ [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; }
+ );
+ }
+
+ /* Apply gain and frequency filters */
+ DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
+ DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX);
+ DryGainHF *= props->Direct.GainHF;
+ DryGainLF *= props->Direct.GainLF;
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
+ WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX);
+ WetGainHF[i] *= props->Send[i].GainHF;
+ WetGainLF[i] *= props->Send[i].GainLF;
+ }
+
+ /* Distance-based air absorption and initial send decay. */
+ if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
+ {
+ ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor *
+ Listener.Params.MetersPerUnit};
+ if(props->AirAbsorptionFactor > 0.0f)
+ {
+ ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)};
+ DryGainHF *= hfattn;
+ std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
+ std::begin(WetGainHF),
+ [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; }
+ );
+ }
+
+ if(props->WetGainAuto)
+ {
+ /* Apply a decay-time transformation to the wet path, based on the
+ * source distance in meters. The initial decay of the reverb
+ * effect is calculated and applied to the wet path.
+ */
+ for(ALuint i{0};i < NumSends;i++)
+ {
+ if(!(DecayDistance[i] > 0.0f))
+ continue;
+
+ const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])};
+ WetGain[i] *= gain;
+ /* Yes, the wet path's air absorption is applied with
+ * WetGainAuto on, rather than WetGainHFAuto.
+ */
+ if(gain > 0.0f)
+ {
+ ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])};
+ WetGainHF[i] *= minf(gainhf / gain, 1.0f);
+ ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])};
+ WetGainLF[i] *= minf(gainlf / gain, 1.0f);
+ }
+ }
+ }
+ }
+
+
+ /* Initial source pitch */
+ ALfloat Pitch{props->Pitch};
+
+ /* Calculate velocity-based doppler effect */
+ ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor};
+ if(DopplerFactor > 0.0f)
+ {
+ const alu::Vector &lvelocity = Listener.Params.Velocity;
+ ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor};
+ ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor};
+
+ const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound};
+ if(!(vls < SpeedOfSound))
+ {
+ /* Listener moving away from the source at the speed of sound.
+ * Sound waves can't catch it.
+ */
+ Pitch = 0.0f;
+ }
+ else if(!(vss < SpeedOfSound))
+ {
+ /* Source moving toward the listener at the speed of sound. Sound
+ * waves bunch up to extreme frequencies.
+ */
+ Pitch = std::numeric_limits<float>::infinity();
+ }
+ else
+ {
+ /* Source and listener movement is nominal. Calculate the proper
+ * doppler shift.
+ */
+ Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
+ }
+ }
+
+ /* Adjust pitch based on the buffer and output frequencies, and calculate
+ * fixed-point stepping value.
+ */
+ Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
+ if(Pitch > float{MAX_PITCH})
+ voice->mStep = MAX_PITCH<<FRACTIONBITS;
+ else
+ voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1);
+ voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
+
+ ALfloat spread{0.0f};
+ if(props->Radius > Distance)
+ spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi();
+ else if(Distance > 0.0f)
+ spread = std::asin(props->Radius/Distance) * 2.0f;
+
+ CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale,
+ Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain,
+ WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
+}
+
+void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
+{
+ ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
+ if(!props && !force) return;
+
+ if(props)
+ {
+ voice->mProps = *props;
+
+ AtomicReplaceHead(context->mFreeVoiceProps, props);
+ }
+
+ if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) ||
+ voice->mProps.mSpatializeMode == SpatializeOn)
+ CalcAttnSourceParams(voice, &voice->mProps, context);
+ else
+ CalcNonAttnSourceParams(voice, &voice->mProps, context);
+}
+
+
+void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray &slots,
+ const al::span<ALvoice> voices)
+{
+ IncrementRef(ctx->mUpdateCount);
+ if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire))
+ {
+ bool force{CalcContextParams(ctx)};
+ force |= CalcListenerParams(ctx);
+ force = std::accumulate(slots.begin(), slots.end(), force,
+ [ctx](const bool f, ALeffectslot *slot) -> bool
+ { return CalcEffectSlotParams(slot, ctx) | f; }
+ );
+
+ auto calc_params = [ctx,force](ALvoice &voice) -> void
+ {
+ if(voice.mSourceID.load(std::memory_order_acquire) != 0)
+ CalcSourceParams(&voice, ctx, force);
+ };
+ std::for_each(voices.begin(), voices.end(), calc_params);
+ }
+ IncrementRef(ctx->mUpdateCount);
+}
+
+void ProcessContext(ALCcontext *ctx, const ALuint SamplesToDo)
+{
+ ASSUME(SamplesToDo > 0);
+
+ const ALeffectslotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
+ const al::span<ALvoice> voices{ctx->mVoices.data(), ctx->mVoices.size()};
+
+ /* Process pending propery updates for objects on the context. */
+ ProcessParamUpdates(ctx, auxslots, voices);
+
+ /* Clear auxiliary effect slot mixing buffers. */
+ std::for_each(auxslots.begin(), auxslots.end(),
+ [SamplesToDo](ALeffectslot *slot) -> void
+ {
+ for(auto &buffer : slot->MixBuffer)
+ std::fill_n(buffer.begin(), SamplesToDo, 0.0f);
+ }
+ );
+
+ /* Process voices that have a playing source. */
+ std::for_each(voices.begin(), voices.end(),
+ [SamplesToDo,ctx](ALvoice &voice) -> void
+ {
+ const ALvoice::State vstate{voice.mPlayState.load(std::memory_order_acquire)};
+ if(vstate != ALvoice::Stopped) voice.mix(vstate, ctx, SamplesToDo);
+ }
+ );
+
+ /* Process effects. */
+ if(auxslots.empty()) return;
+ auto slots = auxslots.data();
+ auto slots_end = slots + auxslots.size();
+
+ /* First sort the slots into scratch storage, so that effects come before
+ * their effect target (or their targets' target).
+ */
+ auto sorted_slots = const_cast<ALeffectslot**>(slots_end);
+ auto sorted_slots_end = sorted_slots;
+ auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool
+ {
+ while((slot1=slot1->Params.Target) != nullptr) {
+ if(slot1 == slot2) return true;
+ }
+ return false;
+ };
+
+ *sorted_slots_end = *slots;
+ ++sorted_slots_end;
+ while(++slots != slots_end)
+ {
+ /* If this effect slot targets an effect slot already in the list (i.e.
+ * slots outputs to something in sorted_slots), directly or indirectly,
+ * insert it prior to that element.
+ */
+ auto checker = sorted_slots;
+ do {
+ if(in_chain(*slots, *checker)) break;
+ } while(++checker != sorted_slots_end);
+
+ checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1);
+ *--checker = *slots;
+ ++sorted_slots_end;
+ }
+
+ std::for_each(sorted_slots, sorted_slots_end,
+ [SamplesToDo](const ALeffectslot *slot) -> void
+ {
+ EffectState *state{slot->Params.mEffectState};
+ state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
+ }
+ );
+}
+
+
+void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> Buffer,
+ const ALuint lidx, const ALuint ridx, const ALuint cidx, const ALuint SamplesToDo)
+{
+ ASSUME(SamplesToDo > 0);
+
+ /* Apply a delay to all channels, except the front-left and front-right, so
+ * they maintain correct timing.
+ */
+ const size_t NumChannels{Buffer.size()};
+ for(size_t i{0u};i < NumChannels;i++)
+ {
+ if(i == lidx || i == ridx)
+ continue;
+
+ auto &DelayBuf = Stablizer->DelayBuf[i];
+ auto buffer_end = Buffer[i].begin() + SamplesToDo;
+ if LIKELY(SamplesToDo >= ALuint{FrontStablizer::DelayLength})
+ {
+ auto delay_end = std::rotate(Buffer[i].begin(),
+ buffer_end - FrontStablizer::DelayLength, buffer_end);
+ std::swap_ranges(Buffer[i].begin(), delay_end, std::begin(DelayBuf));
+ }
+ else
+ {
+ auto delay_start = std::swap_ranges(Buffer[i].begin(), buffer_end,
+ std::begin(DelayBuf));
+ std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf));
+ }
+ }
+
+ ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
+ ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
+ auto &tmpbuf = Stablizer->TempBuf;
+
+ /* This applies the band-splitter, preserving phase at the cost of some
+ * delay. The shorter the delay, the more error seeps into the result.
+ */
+ auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &InBuf,
+ ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
+ ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
+ {
+ /* Combine the delayed samples and the input samples into the temp
+ * buffer, in reverse. Then copy the final samples back into the delay
+ * buffer for next time. Note that the delay buffer's samples are
+ * stored backwards here.
+ */
+ auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
+ std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
+ std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, std::begin(tmpbuf));
+ std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
+
+ /* Apply an all-pass on the reversed signal, then reverse the samples
+ * to get the forward signal with a reversed phase shift.
+ */
+ Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
+ std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
+
+ /* Now apply the band-splitter, combining its phase shift with the
+ * reversed phase shift, restoring the original phase on the split
+ * signal.
+ */
+ Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
+ };
+ apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
+ apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
+
+ for(ALuint i{0};i < SamplesToDo;i++)
+ {
+ ALfloat lfsum{lsplit[0][i] + rsplit[0][i]};
+ ALfloat hfsum{lsplit[1][i] + rsplit[1][i]};
+ ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]};
+
+ /* This pans the separate low- and high-frequency sums between being on
+ * the center channel and the left/right channels. The low-frequency
+ * sum is 1/3rd toward center (2/3rds on left/right) and the high-
+ * frequency sum is 1/4th toward center (3/4ths on left/right). These
+ * values can be tweaked.
+ */
+ ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
+ hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
+ ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
+ hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
+
+ /* The generated center channel signal adds to the existing signal,
+ * while the modified left and right channels replace.
+ */
+ Buffer[lidx][i] = (m + s) * 0.5f;
+ Buffer[ridx][i] = (m - s) * 0.5f;
+ Buffer[cidx][i] += c * 0.5f;
+ }
+}
+
+void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const ALuint SamplesToDo,
+ const DistanceComp::DistData *distcomp)
+{
+ ASSUME(SamplesToDo > 0);
+
+ for(auto &chanbuffer : Samples)
+ {
+ const ALfloat gain{distcomp->Gain};
+ const ALuint base{distcomp->Length};
+ ALfloat *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
+ ++distcomp;
+
+ if(base < 1)
+ continue;
+
+ ALfloat *inout{al::assume_aligned<16>(chanbuffer.data())};
+ auto inout_end = inout + SamplesToDo;
+ if LIKELY(SamplesToDo >= base)
+ {
+ auto delay_end = std::rotate(inout, inout_end - base, inout_end);
+ std::swap_ranges(inout, delay_end, distbuf);
+ }
+ else
+ {
+ auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
+ std::rotate(distbuf, delay_start, distbuf + base);
+ }
+ std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
+ }
+}
+
+void ApplyDither(const al::span<FloatBufferLine> Samples, ALuint *dither_seed,
+ const ALfloat quant_scale, const ALuint SamplesToDo)
+{
+ /* Dithering. Generate whitenoise (uniform distribution of random values
+ * between -1 and +1) and add it to the sample values, after scaling up to
+ * the desired quantization depth amd before rounding.
+ */
+ const ALfloat invscale{1.0f / quant_scale};
+ ALuint seed{*dither_seed};
+ auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](FloatBufferLine &input) -> void
+ {
+ ASSUME(SamplesToDo > 0);
+ auto dither_sample = [&seed,invscale,quant_scale](const ALfloat sample) noexcept -> ALfloat
+ {
+ ALfloat val{sample * quant_scale};
+ ALuint rng0{dither_rng(&seed)};
+ ALuint rng1{dither_rng(&seed)};
+ val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
+ return fast_roundf(val) * invscale;
+ };
+ std::transform(input.begin(), input.begin()+SamplesToDo, input.begin(), dither_sample);
+ };
+ std::for_each(Samples.begin(), Samples.end(), dither_channel);
+ *dither_seed = seed;
+}
+
+
+/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
+ * chokes on that given the inline specializations.
+ */
+template<typename T>
+inline T SampleConv(float) noexcept;
+
+template<> inline float SampleConv(float val) noexcept
+{ return val; }
+template<> inline int32_t SampleConv(float val) noexcept
+{
+ /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
+ * This means a normalized float has at most 25 bits of signed precision.
+ * When scaling and clamping for a signed 32-bit integer, these following
+ * values are the best a float can give.
+ */
+ return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
+}
+template<> inline int16_t SampleConv(float val) noexcept
+{ return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
+template<> inline int8_t SampleConv(float val) noexcept
+{ return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
+
+/* Define unsigned output variations. */
+template<> inline uint32_t SampleConv(float val) noexcept
+{ return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
+template<> inline uint16_t SampleConv(float val) noexcept
+{ return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
+template<> inline uint8_t SampleConv(float val) noexcept
+{ return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
+
+template<DevFmtType T>
+void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
+ const ALuint SamplesToDo)
+{
+ using SampleType = typename DevFmtTypeTraits<T>::Type;
+
+ const size_t numchans{InBuffer.size()};
+ ASSUME(numchans > 0);
+
+ SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans;
+ auto conv_channel = [&outbase,SamplesToDo,numchans](const FloatBufferLine &inbuf) -> void
+ {
+ ASSUME(SamplesToDo > 0);
+ SampleType *out{outbase++};
+ auto conv_sample = [numchans,&out](const float s) noexcept -> void
+ {
+ *out = SampleConv<SampleType>(s);
+ out += numchans;
+ };
+ std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
+ };
+ std::for_each(InBuffer.cbegin(), InBuffer.cend(), conv_channel);
+}
+
+} // namespace
+
+void aluMixData(ALCdevice *device, ALvoid *OutBuffer, const ALuint NumSamples)
+{
+ FPUCtl mixer_mode{};
+ for(ALuint SamplesDone{0u};SamplesDone < NumSamples;)
+ {
+ const ALuint SamplesToDo{minu(NumSamples-SamplesDone, BUFFERSIZE)};
+
+ /* Clear main mixing buffers. */
+ std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(),
+ [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void
+ { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); }
+ );
+
+ /* Increment the mix count at the start (lsb should now be 1). */
+ IncrementRef(device->MixCount);
+
+ /* For each context on this device, process and mix its sources and
+ * effects.
+ */
+ for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire))
+ ProcessContext(ctx, SamplesToDo);
+
+ /* Increment the clock time. Every second's worth of samples is
+ * converted and added to clock base so that large sample counts don't
+ * overflow during conversion. This also guarantees a stable
+ * conversion.
+ */
+ device->SamplesDone += SamplesToDo;
+ device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency};
+ device->SamplesDone %= device->Frequency;
+
+ /* Increment the mix count at the end (lsb should now be 0). */
+ IncrementRef(device->MixCount);
+
+ /* Apply any needed post-process for finalizing the Dry mix to the
+ * RealOut (Ambisonic decode, UHJ encode, etc).
+ */
+ device->postProcess(SamplesToDo);
+
+ const al::span<FloatBufferLine> RealOut{device->RealOut.Buffer};
+
+ /* Apply front image stablization for surround sound, if applicable. */
+ if(device->Stablizer)
+ {
+ const ALuint lidx{GetChannelIdxByName(device->RealOut, FrontLeft)};
+ const ALuint ridx{GetChannelIdxByName(device->RealOut, FrontRight)};
+ const ALuint cidx{GetChannelIdxByName(device->RealOut, FrontCenter)};
+
+ ApplyStablizer(device->Stablizer.get(), RealOut, lidx, ridx, cidx, SamplesToDo);
+ }
+
+ /* Apply compression, limiting sample amplitude if needed or desired. */
+ if(Compressor *comp{device->Limiter.get()})
+ comp->process(SamplesToDo, RealOut.data());
+
+ /* Apply delays and attenuation for mismatched speaker distances. */
+ ApplyDistanceComp(RealOut, SamplesToDo, device->ChannelDelay.as_span().cbegin());
+
+ /* Apply dithering. The compressor should have left enough headroom for
+ * the dither noise to not saturate.
+ */
+ if(device->DitherDepth > 0.0f)
+ ApplyDither(RealOut, &device->DitherSeed, device->DitherDepth, SamplesToDo);
+
+ if LIKELY(OutBuffer)
+ {
+ /* Finally, interleave and convert samples, writing to the device's
+ * output buffer.
+ */
+ switch(device->FmtType)
+ {
+#define HANDLE_WRITE(T) case T: \
+ Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break;
+ HANDLE_WRITE(DevFmtByte)
+ HANDLE_WRITE(DevFmtUByte)
+ HANDLE_WRITE(DevFmtShort)
+ HANDLE_WRITE(DevFmtUShort)
+ HANDLE_WRITE(DevFmtInt)
+ HANDLE_WRITE(DevFmtUInt)
+ HANDLE_WRITE(DevFmtFloat)
+#undef HANDLE_WRITE
+ }
+ }
+
+ SamplesDone += SamplesToDo;
+ }
+}
+
+
+void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
+{
+ if(!device->Connected.exchange(false, std::memory_order_acq_rel))
+ return;
+
+ AsyncEvent evt{EventType_Disconnected};
+ evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
+ evt.u.user.id = 0;
+ evt.u.user.param = 0;
+
+ va_list args;
+ va_start(args, msg);
+ int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)};
+ va_end(args);
+
+ if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg))
+ evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
+
+ IncrementRef(device->MixCount);
+ for(ALCcontext *ctx : *device->mContexts.load())
+ {
+ const ALbitfieldSOFT enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
+ if((enabledevt&EventType_Disconnected))
+ {
+ RingBuffer *ring{ctx->mAsyncEvents.get()};
+ auto evt_data = ring->getWriteVector().first;
+ if(evt_data.len > 0)
+ {
+ ::new (evt_data.buf) AsyncEvent{evt};
+ ring->writeAdvance(1);
+ ctx->mEventSem.post();
+ }
+ }
+
+ auto stop_voice = [](ALvoice &voice) -> void
+ {
+ voice.mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
+ voice.mLoopBuffer.store(nullptr, std::memory_order_relaxed);
+ voice.mSourceID.store(0u, std::memory_order_relaxed);
+ voice.mPlayState.store(ALvoice::Stopped, std::memory_order_release);
+ };
+ std::for_each(ctx->mVoices.begin(), ctx->mVoices.end(), stop_voice);
+ }
+ IncrementRef(device->MixCount);
+}