diff options
author | Sven Gothel <[email protected]> | 2019-12-12 19:21:00 +0100 |
---|---|---|
committer | Sven Gothel <[email protected]> | 2019-12-12 19:21:00 +0100 |
commit | 4df06c6894b39af5bf4681c0acf0c1c080084c80 (patch) | |
tree | 2505eb6e3b5798db34033c4cac2d4613bf6bda44 /alc/alu.cpp | |
parent | 8915501ed02eac2b3bce9a7fc06cb1ab562901c3 (diff) | |
parent | c0cf323e1d56ce605e90927324d2fdafcfbb564a (diff) |
merge v1.20.0
Diffstat (limited to 'alc/alu.cpp')
-rw-r--r-- | alc/alu.cpp | 1842 |
1 files changed, 1842 insertions, 0 deletions
diff --git a/alc/alu.cpp b/alc/alu.cpp new file mode 100644 index 00000000..9bf052e1 --- /dev/null +++ b/alc/alu.cpp @@ -0,0 +1,1842 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 1999-2007 by authors. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include "alu.h" + +#include <algorithm> +#include <array> +#include <atomic> +#include <chrono> +#include <climits> +#include <cmath> +#include <cstdarg> +#include <cstdio> +#include <cstdlib> +#include <functional> +#include <iterator> +#include <limits> +#include <memory> +#include <new> +#include <numeric> +#include <utility> + +#include "AL/al.h" +#include "AL/alc.h" +#include "AL/efx.h" + +#include "al/auxeffectslot.h" +#include "al/buffer.h" +#include "al/effect.h" +#include "al/event.h" +#include "al/listener.h" +#include "alcmain.h" +#include "alcontext.h" +#include "almalloc.h" +#include "alnumeric.h" +#include "alspan.h" +#include "alstring.h" +#include "ambidefs.h" +#include "atomic.h" +#include "bformatdec.h" +#include "bs2b.h" +#include "cpu_caps.h" +#include "devformat.h" +#include "effects/base.h" +#include "filters/biquad.h" +#include "filters/nfc.h" +#include "filters/splitter.h" +#include "fpu_modes.h" +#include "hrtf.h" +#include "inprogext.h" +#include "mastering.h" +#include "math_defs.h" +#include "mixer/defs.h" +#include "opthelpers.h" +#include "ringbuffer.h" +#include "strutils.h" +#include "threads.h" +#include "uhjfilter.h" +#include "vecmat.h" +#include "voice.h" + +#include "bsinc_inc.h" + + +static_assert(!(MAX_RESAMPLER_PADDING&1) && MAX_RESAMPLER_PADDING >= bsinc24.m[0], + "MAX_RESAMPLER_PADDING is not a multiple of two, or is too small"); + + +namespace { + +using namespace std::placeholders; + +ALfloat InitConeScale() +{ + ALfloat ret{1.0f}; + if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES")) + { + if(al::strcasecmp(optval->c_str(), "true") == 0 + || strtol(optval->c_str(), nullptr, 0) == 1) + ret *= 0.5f; + } + return ret; +} + +ALfloat InitZScale() +{ + ALfloat ret{1.0f}; + if(auto optval = al::getenv("__ALSOFT_REVERSE_Z")) + { + if(al::strcasecmp(optval->c_str(), "true") == 0 + || strtol(optval->c_str(), nullptr, 0) == 1) + ret *= -1.0f; + } + return ret; +} + +} // namespace + +/* Cone scalar */ +const ALfloat ConeScale{InitConeScale()}; + +/* Localized Z scalar for mono sources */ +const ALfloat ZScale{InitZScale()}; + +MixerFunc MixSamples{Mix_<CTag>}; +RowMixerFunc MixRowSamples{MixRow_<CTag>}; + +namespace { + +struct ChanMap { + Channel channel; + ALfloat angle; + ALfloat elevation; +}; + +HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>; + +inline MixerFunc SelectMixer() +{ +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return Mix_<NEONTag>; +#endif +#ifdef HAVE_SSE + if((CPUCapFlags&CPU_CAP_SSE)) + return Mix_<SSETag>; +#endif + return Mix_<CTag>; +} + +inline RowMixerFunc SelectRowMixer() +{ +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return MixRow_<NEONTag>; +#endif +#ifdef HAVE_SSE + if((CPUCapFlags&CPU_CAP_SSE)) + return MixRow_<SSETag>; +#endif + return MixRow_<CTag>; +} + +inline HrtfDirectMixerFunc SelectHrtfMixer(void) +{ +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return MixDirectHrtf_<NEONTag>; +#endif +#ifdef HAVE_SSE + if((CPUCapFlags&CPU_CAP_SSE)) + return MixDirectHrtf_<SSETag>; +#endif + + return MixDirectHrtf_<CTag>; +} + + +inline void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table) +{ + size_t si{BSINC_SCALE_COUNT - 1}; + float sf{0.0f}; + + if(increment > FRACTIONONE) + { + sf = FRACTIONONE / static_cast<float>(increment); + sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange); + si = float2uint(sf); + /* The interpolation factor is fit to this diagonally-symmetric curve + * to reduce the transition ripple caused by interpolating different + * scales of the sinc function. + */ + sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si))); + } + + state->sf = sf; + state->m = table->m[si]; + state->l = (state->m/2) - 1; + state->filter = table->Tab + table->filterOffset[si]; +} + +inline ResamplerFunc SelectResampler(Resampler resampler, ALuint increment) +{ + switch(resampler) + { + case Resampler::Point: + return Resample_<PointTag,CTag>; + case Resampler::Linear: +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return Resample_<LerpTag,NEONTag>; +#endif +#ifdef HAVE_SSE4_1 + if((CPUCapFlags&CPU_CAP_SSE4_1)) + return Resample_<LerpTag,SSE4Tag>; +#endif +#ifdef HAVE_SSE2 + if((CPUCapFlags&CPU_CAP_SSE2)) + return Resample_<LerpTag,SSE2Tag>; +#endif + return Resample_<LerpTag,CTag>; + case Resampler::Cubic: + return Resample_<CubicTag,CTag>; + case Resampler::BSinc12: + case Resampler::BSinc24: + if(increment <= FRACTIONONE) + { + /* fall-through */ + case Resampler::FastBSinc12: + case Resampler::FastBSinc24: +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return Resample_<FastBSincTag,NEONTag>; +#endif +#ifdef HAVE_SSE + if((CPUCapFlags&CPU_CAP_SSE)) + return Resample_<FastBSincTag,SSETag>; +#endif + return Resample_<FastBSincTag,CTag>; + } +#ifdef HAVE_NEON + if((CPUCapFlags&CPU_CAP_NEON)) + return Resample_<BSincTag,NEONTag>; +#endif +#ifdef HAVE_SSE + if((CPUCapFlags&CPU_CAP_SSE)) + return Resample_<BSincTag,SSETag>; +#endif + return Resample_<BSincTag,CTag>; + } + + return Resample_<PointTag,CTag>; +} + +} // namespace + +void aluInit(void) +{ + MixSamples = SelectMixer(); + MixRowSamples = SelectRowMixer(); + MixDirectHrtf = SelectHrtfMixer(); +} + + +ResamplerFunc PrepareResampler(Resampler resampler, ALuint increment, InterpState *state) +{ + switch(resampler) + { + case Resampler::Point: + case Resampler::Linear: + case Resampler::Cubic: + break; + case Resampler::FastBSinc12: + case Resampler::BSinc12: + BsincPrepare(increment, &state->bsinc, &bsinc12); + break; + case Resampler::FastBSinc24: + case Resampler::BSinc24: + BsincPrepare(increment, &state->bsinc, &bsinc24); + break; + } + return SelectResampler(resampler, increment); +} + + +void ALCdevice::ProcessHrtf(const size_t SamplesToDo) +{ + /* HRTF is stereo output only. */ + const ALuint lidx{RealOut.ChannelIndex[FrontLeft]}; + const ALuint ridx{RealOut.ChannelIndex[FrontRight]}; + + MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData, + mHrtfState.get(), SamplesToDo); +} + +void ALCdevice::ProcessAmbiDec(const size_t SamplesToDo) +{ + AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo); +} + +void ALCdevice::ProcessUhj(const size_t SamplesToDo) +{ + /* UHJ is stereo output only. */ + const ALuint lidx{RealOut.ChannelIndex[FrontLeft]}; + const ALuint ridx{RealOut.ChannelIndex[FrontRight]}; + + /* Encode to stereo-compatible 2-channel UHJ output. */ + Uhj_Encoder->encode(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer.data(), + SamplesToDo); +} + +void ALCdevice::ProcessBs2b(const size_t SamplesToDo) +{ + /* First, decode the ambisonic mix to the "real" output. */ + AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo); + + /* BS2B is stereo output only. */ + const ALuint lidx{RealOut.ChannelIndex[FrontLeft]}; + const ALuint ridx{RealOut.ChannelIndex[FrontRight]}; + + /* Now apply the BS2B binaural/crossfeed filter. */ + bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(), + SamplesToDo); +} + + +namespace { + +/* This RNG method was created based on the math found in opusdec. It's quick, + * and starting with a seed value of 22222, is suitable for generating + * whitenoise. + */ +inline ALuint dither_rng(ALuint *seed) noexcept +{ + *seed = (*seed * 96314165) + 907633515; + return *seed; +} + + +inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2) +{ + return alu::Vector{ + in1[1]*in2[2] - in1[2]*in2[1], + in1[2]*in2[0] - in1[0]*in2[2], + in1[0]*in2[1] - in1[1]*in2[0], + 0.0f + }; +} + +inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2) +{ + return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]; +} + + +alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept +{ + return alu::Vector{ + vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0], + vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1], + vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2], + vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3] + }; +} + + +bool CalcContextParams(ALCcontext *Context) +{ + ALcontextProps *props{Context->mUpdate.exchange(nullptr, std::memory_order_acq_rel)}; + if(!props) return false; + + ALlistener &Listener = Context->mListener; + Listener.Params.DopplerFactor = props->DopplerFactor; + Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity; + + Listener.Params.SourceDistanceModel = props->SourceDistanceModel; + Listener.Params.mDistanceModel = props->mDistanceModel; + + AtomicReplaceHead(Context->mFreeContextProps, props); + return true; +} + +bool CalcListenerParams(ALCcontext *Context) +{ + ALlistener &Listener = Context->mListener; + + ALlistenerProps *props{Listener.Params.Update.exchange(nullptr, std::memory_order_acq_rel)}; + if(!props) return false; + + /* AT then UP */ + alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; + N.normalize(); + alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; + V.normalize(); + /* Build and normalize right-vector */ + alu::Vector U{aluCrossproduct(N, V)}; + U.normalize(); + + Listener.Params.Matrix = alu::Matrix{ + U[0], V[0], -N[0], 0.0f, + U[1], V[1], -N[1], 0.0f, + U[2], V[2], -N[2], 0.0f, + 0.0f, 0.0f, 0.0f, 1.0f + }; + + const alu::Vector P{Listener.Params.Matrix * + alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}}; + Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f); + + const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f}; + Listener.Params.Velocity = Listener.Params.Matrix * vel; + + Listener.Params.Gain = props->Gain * Context->mGainBoost; + Listener.Params.MetersPerUnit = props->MetersPerUnit; + + AtomicReplaceHead(Context->mFreeListenerProps, props); + return true; +} + +bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context) +{ + ALeffectslotProps *props{slot->Params.Update.exchange(nullptr, std::memory_order_acq_rel)}; + if(!props) return false; + + slot->Params.Gain = props->Gain; + slot->Params.AuxSendAuto = props->AuxSendAuto; + slot->Params.Target = props->Target; + slot->Params.EffectType = props->Type; + slot->Params.mEffectProps = props->Props; + if(IsReverbEffect(props->Type)) + { + slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor; + slot->Params.DecayTime = props->Props.Reverb.DecayTime; + slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio; + slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio; + slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit; + slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF; + } + else + { + slot->Params.RoomRolloff = 0.0f; + slot->Params.DecayTime = 0.0f; + slot->Params.DecayLFRatio = 0.0f; + slot->Params.DecayHFRatio = 0.0f; + slot->Params.DecayHFLimit = AL_FALSE; + slot->Params.AirAbsorptionGainHF = 1.0f; + } + + EffectState *state{props->State}; + props->State = nullptr; + EffectState *oldstate{slot->Params.mEffectState}; + slot->Params.mEffectState = state; + + /* Only release the old state if it won't get deleted, since we can't be + * deleting/freeing anything in the mixer. + */ + if(!oldstate->releaseIfNoDelete()) + { + /* Otherwise, if it would be deleted send it off with a release event. */ + RingBuffer *ring{context->mAsyncEvents.get()}; + auto evt_vec = ring->getWriteVector(); + if LIKELY(evt_vec.first.len > 0) + { + AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}}; + evt->u.mEffectState = oldstate; + ring->writeAdvance(1); + context->mEventSem.post(); + } + else + { + /* If writing the event failed, the queue was probably full. Store + * the old state in the property object where it can eventually be + * cleaned up sometime later (not ideal, but better than blocking + * or leaking). + */ + props->State = oldstate; + } + } + + AtomicReplaceHead(context->mFreeEffectslotProps, props); + + EffectTarget output; + if(ALeffectslot *target{slot->Params.Target}) + output = EffectTarget{&target->Wet, nullptr}; + else + { + ALCdevice *device{context->mDevice.get()}; + output = EffectTarget{&device->Dry, &device->RealOut}; + } + state->update(context, slot, &slot->Params.mEffectProps, output); + return true; +} + + +/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in + * front. + */ +inline float ScaleAzimuthFront(float azimuth, float scale) +{ + const ALfloat abs_azi{std::fabs(azimuth)}; + if(!(abs_azi >= al::MathDefs<float>::Pi()*0.5f)) + return std::copysign(minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f), azimuth); + return azimuth; +} + +void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos, + const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain, + const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS], + const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS], + ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props, + const ALlistener &Listener, const ALCdevice *Device) +{ + static const ChanMap MonoMap[1]{ + { FrontCenter, 0.0f, 0.0f } + }, RearMap[2]{ + { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) } + }, QuadMap[4]{ + { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }, + { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) } + }, X51Map[6]{ + { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) } + }, X61Map[7]{ + { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) }, + { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } + }, X71Map[8]{ + { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }, + { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } + }; + + ChanMap StereoMap[2]{ + { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) } + }; + + const auto Frequency = static_cast<ALfloat>(Device->Frequency); + const ALuint NumSends{Device->NumAuxSends}; + + bool DirectChannels{props->DirectChannels != AL_FALSE}; + const ChanMap *chans{nullptr}; + ALuint num_channels{0}; + bool isbformat{false}; + ALfloat downmix_gain{1.0f}; + switch(voice->mFmtChannels) + { + case FmtMono: + chans = MonoMap; + num_channels = 1; + /* Mono buffers are never played direct. */ + DirectChannels = false; + break; + + case FmtStereo: + /* Convert counter-clockwise to clockwise. */ + StereoMap[0].angle = -props->StereoPan[0]; + StereoMap[1].angle = -props->StereoPan[1]; + + chans = StereoMap; + num_channels = 2; + downmix_gain = 1.0f / 2.0f; + break; + + case FmtRear: + chans = RearMap; + num_channels = 2; + downmix_gain = 1.0f / 2.0f; + break; + + case FmtQuad: + chans = QuadMap; + num_channels = 4; + downmix_gain = 1.0f / 4.0f; + break; + + case FmtX51: + chans = X51Map; + num_channels = 6; + /* NOTE: Excludes LFE. */ + downmix_gain = 1.0f / 5.0f; + break; + + case FmtX61: + chans = X61Map; + num_channels = 7; + /* NOTE: Excludes LFE. */ + downmix_gain = 1.0f / 6.0f; + break; + + case FmtX71: + chans = X71Map; + num_channels = 8; + /* NOTE: Excludes LFE. */ + downmix_gain = 1.0f / 7.0f; + break; + + case FmtBFormat2D: + num_channels = 3; + isbformat = true; + DirectChannels = false; + break; + + case FmtBFormat3D: + num_channels = 4; + isbformat = true; + DirectChannels = false; + break; + } + ASSUME(num_channels > 0); + + std::for_each(voice->mChans.begin(), voice->mChans.begin()+num_channels, + [NumSends](ALvoice::ChannelData &chandata) -> void + { + chandata.mDryParams.Hrtf.Target = HrtfFilter{}; + chandata.mDryParams.Gains.Target.fill(0.0f); + std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends, + [](SendParams ¶ms) -> void { params.Gains.Target.fill(0.0f); }); + }); + + voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC); + if(isbformat) + { + /* Special handling for B-Format sources. */ + + if(Distance > std::numeric_limits<float>::epsilon()) + { + /* Panning a B-Format sound toward some direction is easy. Just pan + * the first (W) channel as a normal mono sound and silence the + * others. + */ + + if(Device->AvgSpeakerDist > 0.0f) + { + /* Clamp the distance for really close sources, to prevent + * excessive bass. + */ + const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; + const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)}; + + /* Only need to adjust the first channel of a B-Format source. */ + voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0); + + voice->mFlags |= VOICE_HAS_NFC; + } + + ALfloat coeffs[MAX_AMBI_CHANNELS]; + if(Device->mRenderMode != StereoPair) + CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); + else + { + /* Clamp Y, in case rounding errors caused it to end up outside + * of -1...+1. + */ + const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; + /* Negate Z for right-handed coords with -Z in front. */ + const ALfloat az{std::atan2(xpos, -zpos)}; + + /* A scalar of 1.5 for plain stereo results in +/-60 degrees + * being moved to +/-90 degrees for direct right and left + * speaker responses. + */ + CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs); + } + + /* NOTE: W needs to be scaled due to FuMa normalization. */ + const ALfloat &scale0 = AmbiScale::FromFuMa[0]; + ComputePanGains(&Device->Dry, coeffs, DryGain*scale0, + voice->mChans[0].mDryParams.Gains.Target); + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0, + voice->mChans[0].mWetParams[i].Gains.Target); + } + } + else + { + if(Device->AvgSpeakerDist > 0.0f) + { + /* NOTE: The NFCtrlFilters were created with a w0 of 0, which + * is what we want for FOA input. The first channel may have + * been previously re-adjusted if panned, so reset it. + */ + voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f); + + voice->mFlags |= VOICE_HAS_NFC; + } + + /* Local B-Format sources have their XYZ channels rotated according + * to the orientation. + */ + /* AT then UP */ + alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f}; + N.normalize(); + alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f}; + V.normalize(); + if(!props->HeadRelative) + { + N = Listener.Params.Matrix * N; + V = Listener.Params.Matrix * V; + } + /* Build and normalize right-vector */ + alu::Vector U{aluCrossproduct(N, V)}; + U.normalize(); + + /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This + * matrix is transposed, for the inputs to align on the rows and + * outputs on the columns. + */ + const ALfloat &wscale = AmbiScale::FromFuMa[0]; + const ALfloat &yscale = AmbiScale::FromFuMa[1]; + const ALfloat &zscale = AmbiScale::FromFuMa[2]; + const ALfloat &xscale = AmbiScale::FromFuMa[3]; + const ALfloat matrix[4][MAX_AMBI_CHANNELS]{ + // ACN0 ACN1 ACN2 ACN3 + { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W + { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X + { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y + { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z + }; + + for(ALuint c{0};c < num_channels;c++) + { + ComputePanGains(&Device->Dry, matrix[c], DryGain, + voice->mChans[c].mDryParams.Gains.Target); + + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, matrix[c], WetGain[i], + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + } + else if(DirectChannels) + { + /* Direct source channels always play local. Skip the virtual channels + * and write inputs to the matching real outputs. + */ + voice->mDirect.Buffer = Device->RealOut.Buffer; + + for(ALuint c{0};c < num_channels;c++) + { + const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; + if(idx != INVALID_CHANNEL_INDEX) + voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; + } + + /* Auxiliary sends still use normal channel panning since they mix to + * B-Format, which can't channel-match. + */ + for(ALuint c{0};c < num_channels;c++) + { + ALfloat coeffs[MAX_AMBI_CHANNELS]; + CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs); + + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i], + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + else if(Device->mRenderMode == HrtfRender) + { + /* Full HRTF rendering. Skip the virtual channels and render to the + * real outputs. + */ + voice->mDirect.Buffer = Device->RealOut.Buffer; + + if(Distance > std::numeric_limits<float>::epsilon()) + { + const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; + const ALfloat az{std::atan2(xpos, -zpos)}; + + /* Get the HRIR coefficients and delays just once, for the given + * source direction. + */ + GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread, + voice->mChans[0].mDryParams.Hrtf.Target.Coeffs, + voice->mChans[0].mDryParams.Hrtf.Target.Delay); + voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain * downmix_gain; + + /* Remaining channels use the same results as the first. */ + for(ALuint c{1};c < num_channels;c++) + { + /* Skip LFE */ + if(chans[c].channel == LFE) continue; + voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target; + } + + /* Calculate the directional coefficients once, which apply to all + * input channels of the source sends. + */ + ALfloat coeffs[MAX_AMBI_CHANNELS]; + CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); + + for(ALuint c{0};c < num_channels;c++) + { + /* Skip LFE */ + if(chans[c].channel == LFE) + continue; + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain, + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + else + { + /* Local sources on HRTF play with each channel panned to its + * relative location around the listener, providing "virtual + * speaker" responses. + */ + for(ALuint c{0};c < num_channels;c++) + { + /* Skip LFE */ + if(chans[c].channel == LFE) + continue; + + /* Get the HRIR coefficients and delays for this channel + * position. + */ + GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle, + std::numeric_limits<float>::infinity(), Spread, + voice->mChans[c].mDryParams.Hrtf.Target.Coeffs, + voice->mChans[c].mDryParams.Hrtf.Target.Delay); + voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain; + + /* Normal panning for auxiliary sends. */ + ALfloat coeffs[MAX_AMBI_CHANNELS]; + CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs); + + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i], + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + + voice->mFlags |= VOICE_HAS_HRTF; + } + else + { + /* Non-HRTF rendering. Use normal panning to the output. */ + + if(Distance > std::numeric_limits<float>::epsilon()) + { + /* Calculate NFC filter coefficient if needed. */ + if(Device->AvgSpeakerDist > 0.0f) + { + /* Clamp the distance for really close sources, to prevent + * excessive bass. + */ + const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)}; + const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)}; + + /* Adjust NFC filters. */ + for(ALuint c{0};c < num_channels;c++) + voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); + + voice->mFlags |= VOICE_HAS_NFC; + } + + /* Calculate the directional coefficients once, which apply to all + * input channels. + */ + ALfloat coeffs[MAX_AMBI_CHANNELS]; + if(Device->mRenderMode != StereoPair) + CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs); + else + { + const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))}; + const ALfloat az{std::atan2(xpos, -zpos)}; + CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs); + } + + for(ALuint c{0};c < num_channels;c++) + { + /* Special-case LFE */ + if(chans[c].channel == LFE) + { + if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) + { + const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; + if(idx != INVALID_CHANNEL_INDEX) + voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; + } + continue; + } + + ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain, + voice->mChans[c].mDryParams.Gains.Target); + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain, + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + else + { + if(Device->AvgSpeakerDist > 0.0f) + { + /* If the source distance is 0, set w0 to w1 to act as a pass- + * through. We still want to pass the signal through the + * filters so they keep an appropriate history, in case the + * source moves away from the listener. + */ + const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)}; + + for(ALuint c{0};c < num_channels;c++) + voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0); + + voice->mFlags |= VOICE_HAS_NFC; + } + + for(ALuint c{0};c < num_channels;c++) + { + /* Special-case LFE */ + if(chans[c].channel == LFE) + { + if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data()) + { + const ALuint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)}; + if(idx != INVALID_CHANNEL_INDEX) + voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain; + } + continue; + } + + ALfloat coeffs[MAX_AMBI_CHANNELS]; + CalcAngleCoeffs( + (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f) + : chans[c].angle, + chans[c].elevation, Spread, coeffs + ); + + ComputePanGains(&Device->Dry, coeffs, DryGain, + voice->mChans[c].mDryParams.Gains.Target); + for(ALuint i{0};i < NumSends;i++) + { + if(const ALeffectslot *Slot{SendSlots[i]}) + ComputePanGains(&Slot->Wet, coeffs, WetGain[i], + voice->mChans[c].mWetParams[i].Gains.Target); + } + } + } + } + + { + const ALfloat hfScale{props->Direct.HFReference / Frequency}; + const ALfloat lfScale{props->Direct.LFReference / Frequency}; + const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */ + const ALfloat gainLF{maxf(DryGainLF, 0.001f)}; + + voice->mDirect.FilterType = AF_None; + if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass; + if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass; + auto &lowpass = voice->mChans[0].mDryParams.LowPass; + auto &highpass = voice->mChans[0].mDryParams.HighPass; + lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale, + lowpass.rcpQFromSlope(gainHF, 1.0f)); + highpass.setParams(BiquadType::LowShelf, gainLF, lfScale, + highpass.rcpQFromSlope(gainLF, 1.0f)); + for(ALuint c{1};c < num_channels;c++) + { + voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass); + voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass); + } + } + for(ALuint i{0};i < NumSends;i++) + { + const ALfloat hfScale{props->Send[i].HFReference / Frequency}; + const ALfloat lfScale{props->Send[i].LFReference / Frequency}; + const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)}; + const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)}; + + voice->mSend[i].FilterType = AF_None; + if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass; + if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass; + + auto &lowpass = voice->mChans[0].mWetParams[i].LowPass; + auto &highpass = voice->mChans[0].mWetParams[i].HighPass; + lowpass.setParams(BiquadType::HighShelf, gainHF, hfScale, + lowpass.rcpQFromSlope(gainHF, 1.0f)); + highpass.setParams(BiquadType::LowShelf, gainLF, lfScale, + highpass.rcpQFromSlope(gainLF, 1.0f)); + for(ALuint c{1};c < num_channels;c++) + { + voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass); + voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass); + } + } +} + +void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext) +{ + const ALCdevice *Device{ALContext->mDevice.get()}; + ALeffectslot *SendSlots[MAX_SENDS]; + + voice->mDirect.Buffer = Device->Dry.Buffer; + for(ALuint i{0};i < Device->NumAuxSends;i++) + { + SendSlots[i] = props->Send[i].Slot; + if(!SendSlots[i] && i == 0) + SendSlots[i] = ALContext->mDefaultSlot.get(); + if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL) + { + SendSlots[i] = nullptr; + voice->mSend[i].Buffer = {}; + } + else + voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; + } + + /* Calculate the stepping value */ + const auto Pitch = static_cast<ALfloat>(voice->mFrequency) / + static_cast<ALfloat>(Device->Frequency) * props->Pitch; + if(Pitch > float{MAX_PITCH}) + voice->mStep = MAX_PITCH<<FRACTIONBITS; + else + voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1); + voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState); + + /* Calculate gains */ + const ALlistener &Listener = ALContext->mListener; + ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)}; + DryGain *= props->Direct.Gain * Listener.Params.Gain; + DryGain = minf(DryGain, GAIN_MIX_MAX); + ALfloat DryGainHF{props->Direct.GainHF}; + ALfloat DryGainLF{props->Direct.GainLF}; + ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS]; + for(ALuint i{0};i < Device->NumAuxSends;i++) + { + WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain); + WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain; + WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX); + WetGainHF[i] = props->Send[i].GainHF; + WetGainLF[i] = props->Send[i].GainLF; + } + + CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF, + WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device); +} + +void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext) +{ + const ALCdevice *Device{ALContext->mDevice.get()}; + const ALuint NumSends{Device->NumAuxSends}; + const ALlistener &Listener = ALContext->mListener; + + /* Set mixing buffers and get send parameters. */ + voice->mDirect.Buffer = Device->Dry.Buffer; + ALeffectslot *SendSlots[MAX_SENDS]; + ALfloat RoomRolloff[MAX_SENDS]; + ALfloat DecayDistance[MAX_SENDS]; + ALfloat DecayLFDistance[MAX_SENDS]; + ALfloat DecayHFDistance[MAX_SENDS]; + for(ALuint i{0};i < NumSends;i++) + { + SendSlots[i] = props->Send[i].Slot; + if(!SendSlots[i] && i == 0) + SendSlots[i] = ALContext->mDefaultSlot.get(); + if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL) + { + SendSlots[i] = nullptr; + RoomRolloff[i] = 0.0f; + DecayDistance[i] = 0.0f; + DecayLFDistance[i] = 0.0f; + DecayHFDistance[i] = 0.0f; + } + else if(SendSlots[i]->Params.AuxSendAuto) + { + RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor; + /* Calculate the distances to where this effect's decay reaches + * -60dB. + */ + DecayDistance[i] = SendSlots[i]->Params.DecayTime * SPEEDOFSOUNDMETRESPERSEC; + DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio; + DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio; + if(SendSlots[i]->Params.DecayHFLimit) + { + ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF}; + if(airAbsorption < 1.0f) + { + /* Calculate the distance to where this effect's air + * absorption reaches -60dB, and limit the effect's HF + * decay distance (so it doesn't take any longer to decay + * than the air would allow). + */ + ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)}; + DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]); + } + } + } + else + { + /* If the slot's auxiliary send auto is off, the data sent to the + * effect slot is the same as the dry path, sans filter effects */ + RoomRolloff[i] = props->RolloffFactor; + DecayDistance[i] = 0.0f; + DecayLFDistance[i] = 0.0f; + DecayHFDistance[i] = 0.0f; + } + + if(!SendSlots[i]) + voice->mSend[i].Buffer = {}; + else + voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer; + } + + /* Transform source to listener space (convert to head relative) */ + alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f}; + alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f}; + alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f}; + if(props->HeadRelative == AL_FALSE) + { + /* Transform source vectors */ + Position = Listener.Params.Matrix * Position; + Velocity = Listener.Params.Matrix * Velocity; + Direction = Listener.Params.Matrix * Direction; + } + else + { + /* Offset the source velocity to be relative of the listener velocity */ + Velocity += Listener.Params.Velocity; + } + + const bool directional{Direction.normalize() > 0.0f}; + alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f}; + const ALfloat Distance{ToSource.normalize()}; + + /* Initial source gain */ + ALfloat DryGain{props->Gain}; + ALfloat DryGainHF{1.0f}; + ALfloat DryGainLF{1.0f}; + ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS]; + for(ALuint i{0};i < NumSends;i++) + { + WetGain[i] = props->Gain; + WetGainHF[i] = 1.0f; + WetGainLF[i] = 1.0f; + } + + /* Calculate distance attenuation */ + ALfloat ClampedDist{Distance}; + + switch(Listener.Params.SourceDistanceModel ? + props->mDistanceModel : Listener.Params.mDistanceModel) + { + case DistanceModel::InverseClamped: + ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); + if(props->MaxDistance < props->RefDistance) break; + /*fall-through*/ + case DistanceModel::Inverse: + if(!(props->RefDistance > 0.0f)) + ClampedDist = props->RefDistance; + else + { + ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor); + if(dist > 0.0f) DryGain *= props->RefDistance / dist; + for(ALuint i{0};i < NumSends;i++) + { + dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]); + if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist; + } + } + break; + + case DistanceModel::LinearClamped: + ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); + if(props->MaxDistance < props->RefDistance) break; + /*fall-through*/ + case DistanceModel::Linear: + if(!(props->MaxDistance != props->RefDistance)) + ClampedDist = props->RefDistance; + else + { + ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) / + (props->MaxDistance-props->RefDistance); + DryGain *= maxf(1.0f - attn, 0.0f); + for(ALuint i{0};i < NumSends;i++) + { + attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) / + (props->MaxDistance-props->RefDistance); + WetGain[i] *= maxf(1.0f - attn, 0.0f); + } + } + break; + + case DistanceModel::ExponentClamped: + ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance); + if(props->MaxDistance < props->RefDistance) break; + /*fall-through*/ + case DistanceModel::Exponent: + if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f)) + ClampedDist = props->RefDistance; + else + { + DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor); + for(ALuint i{0};i < NumSends;i++) + WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]); + } + break; + + case DistanceModel::Disable: + ClampedDist = props->RefDistance; + break; + } + + /* Calculate directional soundcones */ + if(directional && props->InnerAngle < 360.0f) + { + const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) * + ConeScale * 2.0f)}; + + ALfloat ConeVolume, ConeHF; + if(!(Angle > props->InnerAngle)) + { + ConeVolume = 1.0f; + ConeHF = 1.0f; + } + else if(Angle < props->OuterAngle) + { + ALfloat scale = ( Angle-props->InnerAngle) / + (props->OuterAngle-props->InnerAngle); + ConeVolume = lerp(1.0f, props->OuterGain, scale); + ConeHF = lerp(1.0f, props->OuterGainHF, scale); + } + else + { + ConeVolume = props->OuterGain; + ConeHF = props->OuterGainHF; + } + + DryGain *= ConeVolume; + if(props->DryGainHFAuto) + DryGainHF *= ConeHF; + if(props->WetGainAuto) + std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain), + [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; } + ); + if(props->WetGainHFAuto) + std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends, + std::begin(WetGainHF), + [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; } + ); + } + + /* Apply gain and frequency filters */ + DryGain = clampf(DryGain, props->MinGain, props->MaxGain); + DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX); + DryGainHF *= props->Direct.GainHF; + DryGainLF *= props->Direct.GainLF; + for(ALuint i{0};i < NumSends;i++) + { + WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain); + WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX); + WetGainHF[i] *= props->Send[i].GainHF; + WetGainLF[i] *= props->Send[i].GainLF; + } + + /* Distance-based air absorption and initial send decay. */ + if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f) + { + ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor * + Listener.Params.MetersPerUnit}; + if(props->AirAbsorptionFactor > 0.0f) + { + ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)}; + DryGainHF *= hfattn; + std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends, + std::begin(WetGainHF), + [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; } + ); + } + + if(props->WetGainAuto) + { + /* Apply a decay-time transformation to the wet path, based on the + * source distance in meters. The initial decay of the reverb + * effect is calculated and applied to the wet path. + */ + for(ALuint i{0};i < NumSends;i++) + { + if(!(DecayDistance[i] > 0.0f)) + continue; + + const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])}; + WetGain[i] *= gain; + /* Yes, the wet path's air absorption is applied with + * WetGainAuto on, rather than WetGainHFAuto. + */ + if(gain > 0.0f) + { + ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])}; + WetGainHF[i] *= minf(gainhf / gain, 1.0f); + ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])}; + WetGainLF[i] *= minf(gainlf / gain, 1.0f); + } + } + } + } + + + /* Initial source pitch */ + ALfloat Pitch{props->Pitch}; + + /* Calculate velocity-based doppler effect */ + ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor}; + if(DopplerFactor > 0.0f) + { + const alu::Vector &lvelocity = Listener.Params.Velocity; + ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor}; + ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor}; + + const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound}; + if(!(vls < SpeedOfSound)) + { + /* Listener moving away from the source at the speed of sound. + * Sound waves can't catch it. + */ + Pitch = 0.0f; + } + else if(!(vss < SpeedOfSound)) + { + /* Source moving toward the listener at the speed of sound. Sound + * waves bunch up to extreme frequencies. + */ + Pitch = std::numeric_limits<float>::infinity(); + } + else + { + /* Source and listener movement is nominal. Calculate the proper + * doppler shift. + */ + Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss); + } + } + + /* Adjust pitch based on the buffer and output frequencies, and calculate + * fixed-point stepping value. + */ + Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency); + if(Pitch > float{MAX_PITCH}) + voice->mStep = MAX_PITCH<<FRACTIONBITS; + else + voice->mStep = maxu(fastf2u(Pitch * FRACTIONONE), 1); + voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState); + + ALfloat spread{0.0f}; + if(props->Radius > Distance) + spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi(); + else if(Distance > 0.0f) + spread = std::asin(props->Radius/Distance) * 2.0f; + + CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale, + Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain, + WetGainLF, WetGainHF, SendSlots, props, Listener, Device); +} + +void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force) +{ + ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)}; + if(!props && !force) return; + + if(props) + { + voice->mProps = *props; + + AtomicReplaceHead(context->mFreeVoiceProps, props); + } + + if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) || + voice->mProps.mSpatializeMode == SpatializeOn) + CalcAttnSourceParams(voice, &voice->mProps, context); + else + CalcNonAttnSourceParams(voice, &voice->mProps, context); +} + + +void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray &slots, + const al::span<ALvoice> voices) +{ + IncrementRef(ctx->mUpdateCount); + if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire)) + { + bool force{CalcContextParams(ctx)}; + force |= CalcListenerParams(ctx); + force = std::accumulate(slots.begin(), slots.end(), force, + [ctx](const bool f, ALeffectslot *slot) -> bool + { return CalcEffectSlotParams(slot, ctx) | f; } + ); + + auto calc_params = [ctx,force](ALvoice &voice) -> void + { + if(voice.mSourceID.load(std::memory_order_acquire) != 0) + CalcSourceParams(&voice, ctx, force); + }; + std::for_each(voices.begin(), voices.end(), calc_params); + } + IncrementRef(ctx->mUpdateCount); +} + +void ProcessContext(ALCcontext *ctx, const ALuint SamplesToDo) +{ + ASSUME(SamplesToDo > 0); + + const ALeffectslotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire); + const al::span<ALvoice> voices{ctx->mVoices.data(), ctx->mVoices.size()}; + + /* Process pending propery updates for objects on the context. */ + ProcessParamUpdates(ctx, auxslots, voices); + + /* Clear auxiliary effect slot mixing buffers. */ + std::for_each(auxslots.begin(), auxslots.end(), + [SamplesToDo](ALeffectslot *slot) -> void + { + for(auto &buffer : slot->MixBuffer) + std::fill_n(buffer.begin(), SamplesToDo, 0.0f); + } + ); + + /* Process voices that have a playing source. */ + std::for_each(voices.begin(), voices.end(), + [SamplesToDo,ctx](ALvoice &voice) -> void + { + const ALvoice::State vstate{voice.mPlayState.load(std::memory_order_acquire)}; + if(vstate != ALvoice::Stopped) voice.mix(vstate, ctx, SamplesToDo); + } + ); + + /* Process effects. */ + if(auxslots.empty()) return; + auto slots = auxslots.data(); + auto slots_end = slots + auxslots.size(); + + /* First sort the slots into scratch storage, so that effects come before + * their effect target (or their targets' target). + */ + auto sorted_slots = const_cast<ALeffectslot**>(slots_end); + auto sorted_slots_end = sorted_slots; + auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool + { + while((slot1=slot1->Params.Target) != nullptr) { + if(slot1 == slot2) return true; + } + return false; + }; + + *sorted_slots_end = *slots; + ++sorted_slots_end; + while(++slots != slots_end) + { + /* If this effect slot targets an effect slot already in the list (i.e. + * slots outputs to something in sorted_slots), directly or indirectly, + * insert it prior to that element. + */ + auto checker = sorted_slots; + do { + if(in_chain(*slots, *checker)) break; + } while(++checker != sorted_slots_end); + + checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1); + *--checker = *slots; + ++sorted_slots_end; + } + + std::for_each(sorted_slots, sorted_slots_end, + [SamplesToDo](const ALeffectslot *slot) -> void + { + EffectState *state{slot->Params.mEffectState}; + state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget); + } + ); +} + + +void ApplyStablizer(FrontStablizer *Stablizer, const al::span<FloatBufferLine> Buffer, + const ALuint lidx, const ALuint ridx, const ALuint cidx, const ALuint SamplesToDo) +{ + ASSUME(SamplesToDo > 0); + + /* Apply a delay to all channels, except the front-left and front-right, so + * they maintain correct timing. + */ + const size_t NumChannels{Buffer.size()}; + for(size_t i{0u};i < NumChannels;i++) + { + if(i == lidx || i == ridx) + continue; + + auto &DelayBuf = Stablizer->DelayBuf[i]; + auto buffer_end = Buffer[i].begin() + SamplesToDo; + if LIKELY(SamplesToDo >= ALuint{FrontStablizer::DelayLength}) + { + auto delay_end = std::rotate(Buffer[i].begin(), + buffer_end - FrontStablizer::DelayLength, buffer_end); + std::swap_ranges(Buffer[i].begin(), delay_end, std::begin(DelayBuf)); + } + else + { + auto delay_start = std::swap_ranges(Buffer[i].begin(), buffer_end, + std::begin(DelayBuf)); + std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf)); + } + } + + ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit; + ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit; + auto &tmpbuf = Stablizer->TempBuf; + + /* This applies the band-splitter, preserving phase at the cost of some + * delay. The shorter the delay, the more error seeps into the result. + */ + auto apply_splitter = [&tmpbuf,SamplesToDo](const FloatBufferLine &InBuf, + ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter, + ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void + { + /* Combine the delayed samples and the input samples into the temp + * buffer, in reverse. Then copy the final samples back into the delay + * buffer for next time. Note that the delay buffer's samples are + * stored backwards here. + */ + auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo; + std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end); + std::reverse_copy(InBuf.begin(), InBuf.begin()+SamplesToDo, std::begin(tmpbuf)); + std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf)); + + /* Apply an all-pass on the reversed signal, then reverse the samples + * to get the forward signal with a reversed phase shift. + */ + Filter.applyAllpass(tmpbuf, SamplesToDo+FrontStablizer::DelayLength); + std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength); + + /* Now apply the band-splitter, combining its phase shift with the + * reversed phase shift, restoring the original phase on the split + * signal. + */ + Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo); + }; + apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit); + apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit); + + for(ALuint i{0};i < SamplesToDo;i++) + { + ALfloat lfsum{lsplit[0][i] + rsplit[0][i]}; + ALfloat hfsum{lsplit[1][i] + rsplit[1][i]}; + ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]}; + + /* This pans the separate low- and high-frequency sums between being on + * the center channel and the left/right channels. The low-frequency + * sum is 1/3rd toward center (2/3rds on left/right) and the high- + * frequency sum is 1/4th toward center (3/4ths on left/right). These + * values can be tweaked. + */ + ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) + + hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))}; + ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) + + hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))}; + + /* The generated center channel signal adds to the existing signal, + * while the modified left and right channels replace. + */ + Buffer[lidx][i] = (m + s) * 0.5f; + Buffer[ridx][i] = (m - s) * 0.5f; + Buffer[cidx][i] += c * 0.5f; + } +} + +void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const ALuint SamplesToDo, + const DistanceComp::DistData *distcomp) +{ + ASSUME(SamplesToDo > 0); + + for(auto &chanbuffer : Samples) + { + const ALfloat gain{distcomp->Gain}; + const ALuint base{distcomp->Length}; + ALfloat *distbuf{al::assume_aligned<16>(distcomp->Buffer)}; + ++distcomp; + + if(base < 1) + continue; + + ALfloat *inout{al::assume_aligned<16>(chanbuffer.data())}; + auto inout_end = inout + SamplesToDo; + if LIKELY(SamplesToDo >= base) + { + auto delay_end = std::rotate(inout, inout_end - base, inout_end); + std::swap_ranges(inout, delay_end, distbuf); + } + else + { + auto delay_start = std::swap_ranges(inout, inout_end, distbuf); + std::rotate(distbuf, delay_start, distbuf + base); + } + std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain)); + } +} + +void ApplyDither(const al::span<FloatBufferLine> Samples, ALuint *dither_seed, + const ALfloat quant_scale, const ALuint SamplesToDo) +{ + /* Dithering. Generate whitenoise (uniform distribution of random values + * between -1 and +1) and add it to the sample values, after scaling up to + * the desired quantization depth amd before rounding. + */ + const ALfloat invscale{1.0f / quant_scale}; + ALuint seed{*dither_seed}; + auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](FloatBufferLine &input) -> void + { + ASSUME(SamplesToDo > 0); + auto dither_sample = [&seed,invscale,quant_scale](const ALfloat sample) noexcept -> ALfloat + { + ALfloat val{sample * quant_scale}; + ALuint rng0{dither_rng(&seed)}; + ALuint rng1{dither_rng(&seed)}; + val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX)); + return fast_roundf(val) * invscale; + }; + std::transform(input.begin(), input.begin()+SamplesToDo, input.begin(), dither_sample); + }; + std::for_each(Samples.begin(), Samples.end(), dither_channel); + *dither_seed = seed; +} + + +/* Base template left undefined. Should be marked =delete, but Clang 3.8.1 + * chokes on that given the inline specializations. + */ +template<typename T> +inline T SampleConv(float) noexcept; + +template<> inline float SampleConv(float val) noexcept +{ return val; } +template<> inline int32_t SampleConv(float val) noexcept +{ + /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit. + * This means a normalized float has at most 25 bits of signed precision. + * When scaling and clamping for a signed 32-bit integer, these following + * values are the best a float can give. + */ + return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f)); +} +template<> inline int16_t SampleConv(float val) noexcept +{ return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); } +template<> inline int8_t SampleConv(float val) noexcept +{ return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); } + +/* Define unsigned output variations. */ +template<> inline uint32_t SampleConv(float val) noexcept +{ return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; } +template<> inline uint16_t SampleConv(float val) noexcept +{ return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); } +template<> inline uint8_t SampleConv(float val) noexcept +{ return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); } + +template<DevFmtType T> +void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset, + const ALuint SamplesToDo) +{ + using SampleType = typename DevFmtTypeTraits<T>::Type; + + const size_t numchans{InBuffer.size()}; + ASSUME(numchans > 0); + + SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans; + auto conv_channel = [&outbase,SamplesToDo,numchans](const FloatBufferLine &inbuf) -> void + { + ASSUME(SamplesToDo > 0); + SampleType *out{outbase++}; + auto conv_sample = [numchans,&out](const float s) noexcept -> void + { + *out = SampleConv<SampleType>(s); + out += numchans; + }; + std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample); + }; + std::for_each(InBuffer.cbegin(), InBuffer.cend(), conv_channel); +} + +} // namespace + +void aluMixData(ALCdevice *device, ALvoid *OutBuffer, const ALuint NumSamples) +{ + FPUCtl mixer_mode{}; + for(ALuint SamplesDone{0u};SamplesDone < NumSamples;) + { + const ALuint SamplesToDo{minu(NumSamples-SamplesDone, BUFFERSIZE)}; + + /* Clear main mixing buffers. */ + std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(), + [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void + { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); } + ); + + /* Increment the mix count at the start (lsb should now be 1). */ + IncrementRef(device->MixCount); + + /* For each context on this device, process and mix its sources and + * effects. + */ + for(ALCcontext *ctx : *device->mContexts.load(std::memory_order_acquire)) + ProcessContext(ctx, SamplesToDo); + + /* Increment the clock time. Every second's worth of samples is + * converted and added to clock base so that large sample counts don't + * overflow during conversion. This also guarantees a stable + * conversion. + */ + device->SamplesDone += SamplesToDo; + device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency}; + device->SamplesDone %= device->Frequency; + + /* Increment the mix count at the end (lsb should now be 0). */ + IncrementRef(device->MixCount); + + /* Apply any needed post-process for finalizing the Dry mix to the + * RealOut (Ambisonic decode, UHJ encode, etc). + */ + device->postProcess(SamplesToDo); + + const al::span<FloatBufferLine> RealOut{device->RealOut.Buffer}; + + /* Apply front image stablization for surround sound, if applicable. */ + if(device->Stablizer) + { + const ALuint lidx{GetChannelIdxByName(device->RealOut, FrontLeft)}; + const ALuint ridx{GetChannelIdxByName(device->RealOut, FrontRight)}; + const ALuint cidx{GetChannelIdxByName(device->RealOut, FrontCenter)}; + + ApplyStablizer(device->Stablizer.get(), RealOut, lidx, ridx, cidx, SamplesToDo); + } + + /* Apply compression, limiting sample amplitude if needed or desired. */ + if(Compressor *comp{device->Limiter.get()}) + comp->process(SamplesToDo, RealOut.data()); + + /* Apply delays and attenuation for mismatched speaker distances. */ + ApplyDistanceComp(RealOut, SamplesToDo, device->ChannelDelay.as_span().cbegin()); + + /* Apply dithering. The compressor should have left enough headroom for + * the dither noise to not saturate. + */ + if(device->DitherDepth > 0.0f) + ApplyDither(RealOut, &device->DitherSeed, device->DitherDepth, SamplesToDo); + + if LIKELY(OutBuffer) + { + /* Finally, interleave and convert samples, writing to the device's + * output buffer. + */ + switch(device->FmtType) + { +#define HANDLE_WRITE(T) case T: \ + Write<T>(RealOut, OutBuffer, SamplesDone, SamplesToDo); break; + HANDLE_WRITE(DevFmtByte) + HANDLE_WRITE(DevFmtUByte) + HANDLE_WRITE(DevFmtShort) + HANDLE_WRITE(DevFmtUShort) + HANDLE_WRITE(DevFmtInt) + HANDLE_WRITE(DevFmtUInt) + HANDLE_WRITE(DevFmtFloat) +#undef HANDLE_WRITE + } + } + + SamplesDone += SamplesToDo; + } +} + + +void aluHandleDisconnect(ALCdevice *device, const char *msg, ...) +{ + if(!device->Connected.exchange(false, std::memory_order_acq_rel)) + return; + + AsyncEvent evt{EventType_Disconnected}; + evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT; + evt.u.user.id = 0; + evt.u.user.param = 0; + + va_list args; + va_start(args, msg); + int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)}; + va_end(args); + + if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg)) + evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0; + + IncrementRef(device->MixCount); + for(ALCcontext *ctx : *device->mContexts.load()) + { + const ALbitfieldSOFT enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)}; + if((enabledevt&EventType_Disconnected)) + { + RingBuffer *ring{ctx->mAsyncEvents.get()}; + auto evt_data = ring->getWriteVector().first; + if(evt_data.len > 0) + { + ::new (evt_data.buf) AsyncEvent{evt}; + ring->writeAdvance(1); + ctx->mEventSem.post(); + } + } + + auto stop_voice = [](ALvoice &voice) -> void + { + voice.mCurrentBuffer.store(nullptr, std::memory_order_relaxed); + voice.mLoopBuffer.store(nullptr, std::memory_order_relaxed); + voice.mSourceID.store(0u, std::memory_order_relaxed); + voice.mPlayState.store(ALvoice::Stopped, std::memory_order_release); + }; + std::for_each(ctx->mVoices.begin(), ctx->mVoices.end(), stop_voice); + } + IncrementRef(device->MixCount); +} |