diff options
author | Sven Gothel <[email protected]> | 2023-05-03 16:17:49 +0200 |
---|---|---|
committer | Sven Gothel <[email protected]> | 2023-05-03 16:17:49 +0200 |
commit | ec167fd05661a5b02dd406c87081f84a0f8dd77d (patch) | |
tree | 9c4669e471c9969bda59265381b18d2d416db060 /alc/effects/fshifter.cpp | |
parent | 0d14d30808cfe7b9e3413353e3eef8a0f201399a (diff) | |
parent | d3875f333fb6abe2f39d82caca329414871ae53b (diff) |
Merge branch 'v1.23.1'
Resolved Conflicts:
CMakeLists.txt
Diffstat (limited to 'alc/effects/fshifter.cpp')
-rw-r--r-- | alc/effects/fshifter.cpp | 321 |
1 files changed, 122 insertions, 199 deletions
diff --git a/alc/effects/fshifter.cpp b/alc/effects/fshifter.cpp index 1b935047..3e6a7385 100644 --- a/alc/effects/fshifter.cpp +++ b/alc/effects/fshifter.cpp @@ -20,207 +20,219 @@ #include "config.h" -#include <cmath> -#include <cstdlib> +#include <algorithm> #include <array> +#include <cmath> #include <complex> -#include <algorithm> - -#include "al/auxeffectslot.h" -#include "alcmain.h" -#include "alcontext.h" -#include "alu.h" +#include <cstdlib> +#include <iterator> +#include "alc/effects/base.h" #include "alcomplex.h" +#include "almalloc.h" +#include "alnumbers.h" +#include "alnumeric.h" +#include "alspan.h" +#include "core/bufferline.h" +#include "core/context.h" +#include "core/devformat.h" +#include "core/device.h" +#include "core/effectslot.h" +#include "core/mixer.h" +#include "core/mixer/defs.h" +#include "intrusive_ptr.h" + namespace { +using uint = unsigned int; using complex_d = std::complex<double>; -#define HIL_SIZE 1024 -#define OVERSAMP (1<<2) +constexpr size_t HilSize{1024}; +constexpr size_t HilHalfSize{HilSize >> 1}; +constexpr size_t OversampleFactor{4}; -#define HIL_STEP (HIL_SIZE / OVERSAMP) -#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1)) +static_assert(HilSize%OversampleFactor == 0, "Factor must be a clean divisor of the size"); +constexpr size_t HilStep{HilSize / OversampleFactor}; /* Define a Hann window, used to filter the HIL input and output. */ -/* Making this constexpr seems to require C++14. */ -std::array<ALdouble,HIL_SIZE> InitHannWindow() -{ - std::array<ALdouble,HIL_SIZE> ret; - /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ - for(size_t i{0};i < HIL_SIZE>>1;i++) +struct Windower { + alignas(16) std::array<double,HilSize> mData; + + Windower() { - constexpr double scale{al::MathDefs<double>::Pi() / double{HIL_SIZE-1}}; - const double val{std::sin(static_cast<double>(i) * scale)}; - ret[i] = ret[HIL_SIZE-1-i] = val * val; + /* Create lookup table of the Hann window for the desired size. */ + for(size_t i{0};i < HilHalfSize;i++) + { + constexpr double scale{al::numbers::pi / double{HilSize}}; + const double val{std::sin((static_cast<double>(i)+0.5) * scale)}; + mData[i] = mData[HilSize-1-i] = val * val; + } } - return ret; -} -alignas(16) const std::array<ALdouble,HIL_SIZE> HannWindow = InitHannWindow(); +}; +const Windower gWindow{}; struct FshifterState final : public EffectState { /* Effect parameters */ - size_t mCount{}; - ALsizei mPhaseStep[2]{}; - ALsizei mPhase[2]{}; - ALdouble mSign[2]{}; - + size_t mCount{}; + size_t mPos{}; + std::array<uint,2> mPhaseStep{}; + std::array<uint,2> mPhase{}; + std::array<double,2> mSign{}; - /*Effects buffers*/ - ALfloat mInFIFO[HIL_SIZE]{}; - complex_d mOutFIFO[HIL_SIZE]{}; - complex_d mOutputAccum[HIL_SIZE]{}; - complex_d mAnalytic[HIL_SIZE]{}; - complex_d mOutdata[BUFFERSIZE]{}; + /* Effects buffers */ + std::array<double,HilSize> mInFIFO{}; + std::array<complex_d,HilStep> mOutFIFO{}; + std::array<complex_d,HilSize> mOutputAccum{}; + std::array<complex_d,HilSize> mAnalytic{}; + std::array<complex_d,BufferLineSize> mOutdata{}; - alignas(16) ALfloat mBufferOut[BUFFERSIZE]{}; + alignas(16) FloatBufferLine mBufferOut{}; /* Effect gains for each output channel */ struct { - ALfloat Current[MAX_OUTPUT_CHANNELS]{}; - ALfloat Target[MAX_OUTPUT_CHANNELS]{}; + float Current[MaxAmbiChannels]{}; + float Target[MaxAmbiChannels]{}; } mGains[2]; - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; + void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; + void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, + const EffectTarget target) override; + void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, + const al::span<FloatBufferLine> samplesOut) override; DEF_NEWDEL(FshifterState) }; -ALboolean FshifterState::deviceUpdate(const ALCdevice*) +void FshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*) { /* (Re-)initializing parameters and clear the buffers. */ - mCount = FIFO_LATENCY; + mCount = 0; + mPos = HilSize - HilStep; - std::fill(std::begin(mPhaseStep), std::end(mPhaseStep), 0); - std::fill(std::begin(mPhase), std::end(mPhase), 0); - std::fill(std::begin(mSign), std::end(mSign), 1.0); - std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f); - std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{}); - std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{}); - std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{}); + mPhaseStep.fill(0u); + mPhase.fill(0u); + mSign.fill(1.0); + mInFIFO.fill(0.0); + mOutFIFO.fill(complex_d{}); + mOutputAccum.fill(complex_d{}); + mAnalytic.fill(complex_d{}); for(auto &gain : mGains) { std::fill(std::begin(gain.Current), std::end(gain.Current), 0.0f); std::fill(std::begin(gain.Target), std::end(gain.Target), 0.0f); } - - return AL_TRUE; } -void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) +void FshifterState::update(const ContextBase *context, const EffectSlot *slot, + const EffectProps *props, const EffectTarget target) { - const ALCdevice *device{context->mDevice.get()}; + const DeviceBase *device{context->mDevice}; - ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)}; - mPhaseStep[0] = mPhaseStep[1] = fastf2i(minf(step, 0.5f) * FRACTIONONE); + const float step{props->Fshifter.Frequency / static_cast<float>(device->Frequency)}; + mPhaseStep[0] = mPhaseStep[1] = fastf2u(minf(step, 1.0f) * MixerFracOne); switch(props->Fshifter.LeftDirection) { - case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: + case FShifterDirection::Down: mSign[0] = -1.0; break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_UP: + case FShifterDirection::Up: mSign[0] = 1.0; break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: + case FShifterDirection::Off: mPhase[0] = 0; mPhaseStep[0] = 0; break; } - switch (props->Fshifter.RightDirection) + switch(props->Fshifter.RightDirection) { - case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: + case FShifterDirection::Down: mSign[1] = -1.0; break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_UP: + case FShifterDirection::Up: mSign[1] = 1.0; break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: + case FShifterDirection::Off: mPhase[1] = 0; mPhaseStep[1] = 0; break; } - ALfloat coeffs[2][MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({-1.0f, 0.0f, -1.0f}, 0.0f, coeffs[0]); - CalcDirectionCoeffs({ 1.0f, 0.0f, -1.0f}, 0.0f, coeffs[1]); + static constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2); + static constexpr auto lcoeffs_pw = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}); + static constexpr auto rcoeffs_pw = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}); + static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs({-inv_sqrt2, 0.0f, inv_sqrt2}); + static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs({ inv_sqrt2, 0.0f, inv_sqrt2}); + auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw; + auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw; mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs[0], slot->Params.Gain, mGains[0].Target); - ComputePanGains(target.Main, coeffs[1], slot->Params.Gain, mGains[1].Target); + ComputePanGains(target.Main, lcoeffs.data(), slot->Gain, mGains[0].Target); + ComputePanGains(target.Main, rcoeffs.data(), slot->Gain, mGains[1].Target); } void FshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) { - static constexpr complex_d complex_zero{0.0, 0.0}; - ALfloat *RESTRICT BufferOut = mBufferOut; - size_t j, k; - for(size_t base{0u};base < samplesToDo;) { - const size_t todo{minz(HIL_SIZE-mCount, samplesToDo-base)}; - - ASSUME(todo > 0); + size_t todo{minz(HilStep-mCount, samplesToDo-base)}; /* Fill FIFO buffer with samples data */ - k = mCount; - for(j = 0;j < todo;j++,k++) - { - mInFIFO[k] = samplesIn[0][base+j]; - mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY]; - } - mCount += todo; - base += todo; + const size_t pos{mPos}; + size_t count{mCount}; + do { + mInFIFO[pos+count] = samplesIn[0][base]; + mOutdata[base] = mOutFIFO[count]; + ++base; ++count; + } while(--todo); + mCount = count; /* Check whether FIFO buffer is filled */ - if(mCount < HIL_SIZE) continue; - mCount = FIFO_LATENCY; + if(mCount < HilStep) break; + mCount = 0; + mPos = (mPos+HilStep) & (HilSize-1); /* Real signal windowing and store in Analytic buffer */ - for(k = 0;k < HIL_SIZE;k++) - { - mAnalytic[k].real(mInFIFO[k] * HannWindow[k]); - mAnalytic[k].imag(0.0); - } + for(size_t src{mPos}, k{0u};src < HilSize;++src,++k) + mAnalytic[k] = mInFIFO[src]*gWindow.mData[k]; + for(size_t src{0u}, k{HilSize-mPos};src < mPos;++src,++k) + mAnalytic[k] = mInFIFO[src]*gWindow.mData[k]; /* Processing signal by Discrete Hilbert Transform (analytical signal). */ complex_hilbert(mAnalytic); /* Windowing and add to output accumulator */ - for(k = 0;k < HIL_SIZE;k++) - mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k]; - - /* Shift accumulator, input & output FIFO */ - for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k]; - for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k]; - for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero; - for(k = 0;k < FIFO_LATENCY;k++) - mInFIFO[k] = mInFIFO[k+HIL_STEP]; + for(size_t dst{mPos}, k{0u};dst < HilSize;++dst,++k) + mOutputAccum[dst] += 2.0/OversampleFactor*gWindow.mData[k]*mAnalytic[k]; + for(size_t dst{0u}, k{HilSize-mPos};dst < mPos;++dst,++k) + mOutputAccum[dst] += 2.0/OversampleFactor*gWindow.mData[k]*mAnalytic[k]; + + /* Copy out the accumulated result, then clear for the next iteration. */ + std::copy_n(mOutputAccum.cbegin() + mPos, HilStep, mOutFIFO.begin()); + std::fill_n(mOutputAccum.begin() + mPos, HilStep, complex_d{}); } /* Process frequency shifter using the analytic signal obtained. */ - for(ALsizei c{0};c < 2;++c) + float *RESTRICT BufferOut{al::assume_aligned<16>(mBufferOut.data())}; + for(size_t c{0};c < 2;++c) { - for(k = 0;k < samplesToDo;++k) + const uint phase_step{mPhaseStep[c]}; + uint phase_idx{mPhase[c]}; + for(size_t k{0};k < samplesToDo;++k) { - double phase = mPhase[c] * ((1.0 / FRACTIONONE) * al::MathDefs<double>::Tau()); + const double phase{phase_idx * (al::numbers::pi*2.0 / MixerFracOne)}; BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) + mOutdata[k].imag()*std::sin(phase)*mSign[c]); - mPhase[c] += mPhaseStep[c]; - mPhase[c] &= FRACTIONMASK; + phase_idx += phase_step; + phase_idx &= MixerFracMask; } + mPhase[c] = phase_idx; /* Now, mix the processed sound data to the output. */ MixSamples({BufferOut, samplesToDo}, samplesOut, mGains[c].Current, mGains[c].Target, @@ -229,100 +241,11 @@ void FshifterState::process(const size_t samplesToDo, const al::span<const Float } -void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range"); - props->Fshifter.Frequency = val; - break; - - default: - context->setError(AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", - param); - } -} -void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Fshifter_setParamf(props, context, param, vals[0]); } - -void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range"); - props->Fshifter.LeftDirection = val; - break; - - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range"); - props->Fshifter.RightDirection = val; - break; - - default: - context->setError(AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", - param); - } -} -void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Fshifter_setParami(props, context, param, vals[0]); } - -void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - *val = props->Fshifter.LeftDirection; - break; - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - *val = props->Fshifter.RightDirection; - break; - default: - context->setError(AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", - param); - } -} -void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Fshifter_getParami(props, context, param, vals); } - -void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - *val = props->Fshifter.Frequency; - break; - - default: - context->setError(AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", - param); - } -} -void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Fshifter_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Fshifter); - - struct FshifterStateFactory final : public EffectStateFactory { - EffectState *create() override { return new FshifterState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; } + al::intrusive_ptr<EffectState> create() override + { return al::intrusive_ptr<EffectState>{new FshifterState{}}; } }; -EffectProps FshifterStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY; - props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION; - props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION; - return props; -} - } // namespace EffectStateFactory *FshifterStateFactory_getFactory() |