aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/pshifter.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
committerChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
commitcb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch)
tree23520551bddb2a80354e44da47f54201fdc084f0 /alc/effects/pshifter.cpp
parent93e60919c8f387c36c267ca9faa1ac653254aea6 (diff)
Rename Alc to alc
Diffstat (limited to 'alc/effects/pshifter.cpp')
-rw-r--r--alc/effects/pshifter.cpp405
1 files changed, 405 insertions, 0 deletions
diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp
new file mode 100644
index 00000000..39d3cf1a
--- /dev/null
+++ b/alc/effects/pshifter.cpp
@@ -0,0 +1,405 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 2018 by Raul Herraiz.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#ifdef HAVE_SSE_INTRINSICS
+#include <emmintrin.h>
+#endif
+
+#include <cmath>
+#include <cstdlib>
+#include <array>
+#include <complex>
+#include <algorithm>
+
+#include "alcmain.h"
+#include "alcontext.h"
+#include "alAuxEffectSlot.h"
+#include "alError.h"
+#include "alu.h"
+
+#include "alcomplex.h"
+
+
+namespace {
+
+using complex_d = std::complex<double>;
+
+#define STFT_SIZE 1024
+#define STFT_HALF_SIZE (STFT_SIZE>>1)
+#define OVERSAMP (1<<2)
+
+#define STFT_STEP (STFT_SIZE / OVERSAMP)
+#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
+
+inline int double2int(double d)
+{
+#if defined(HAVE_SSE_INTRINSICS)
+ return _mm_cvttsd_si32(_mm_set_sd(d));
+
+#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
+ !defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
+
+ int sign, shift;
+ int64_t mant;
+ union {
+ double d;
+ int64_t i64;
+ } conv;
+
+ conv.d = d;
+ sign = (conv.i64>>63) | 1;
+ shift = ((conv.i64>>52)&0x7ff) - (1023+52);
+
+ /* Over/underflow */
+ if(UNLIKELY(shift >= 63 || shift < -52))
+ return 0;
+
+ mant = (conv.i64&0xfffffffffffff_i64) | 0x10000000000000_i64;
+ if(LIKELY(shift < 0))
+ return (int)(mant >> -shift) * sign;
+ return (int)(mant << shift) * sign;
+
+#else
+
+ return static_cast<int>(d);
+#endif
+}
+
+/* Define a Hann window, used to filter the STFT input and output. */
+/* Making this constexpr seems to require C++14. */
+std::array<ALdouble,STFT_SIZE> InitHannWindow()
+{
+ std::array<ALdouble,STFT_SIZE> ret;
+ /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
+ for(ALsizei i{0};i < STFT_SIZE>>1;i++)
+ {
+ ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{STFT_SIZE-1});
+ ret[i] = ret[STFT_SIZE-1-i] = val * val;
+ }
+ return ret;
+}
+alignas(16) const std::array<ALdouble,STFT_SIZE> HannWindow = InitHannWindow();
+
+
+struct ALphasor {
+ ALdouble Amplitude;
+ ALdouble Phase;
+};
+
+struct ALfrequencyDomain {
+ ALdouble Amplitude;
+ ALdouble Frequency;
+};
+
+
+/* Converts complex to ALphasor */
+inline ALphasor rect2polar(const complex_d &number)
+{
+ ALphasor polar;
+ polar.Amplitude = std::abs(number);
+ polar.Phase = std::arg(number);
+ return polar;
+}
+
+/* Converts ALphasor to complex */
+inline complex_d polar2rect(const ALphasor &number)
+{ return std::polar<double>(number.Amplitude, number.Phase); }
+
+
+struct PshifterState final : public EffectState {
+ /* Effect parameters */
+ ALsizei mCount;
+ ALsizei mPitchShiftI;
+ ALfloat mPitchShift;
+ ALfloat mFreqPerBin;
+
+ /* Effects buffers */
+ ALfloat mInFIFO[STFT_SIZE];
+ ALfloat mOutFIFO[STFT_STEP];
+ ALdouble mLastPhase[STFT_HALF_SIZE+1];
+ ALdouble mSumPhase[STFT_HALF_SIZE+1];
+ ALdouble mOutputAccum[STFT_SIZE];
+
+ complex_d mFFTbuffer[STFT_SIZE];
+
+ ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
+ ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
+
+ alignas(16) ALfloat mBufferOut[BUFFERSIZE];
+
+ /* Effect gains for each output channel */
+ ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
+ ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
+
+
+ ALboolean deviceUpdate(const ALCdevice *device) override;
+ void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
+ void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override;
+
+ DEF_NEWDEL(PshifterState)
+};
+
+ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
+{
+ /* (Re-)initializing parameters and clear the buffers. */
+ mCount = FIFO_LATENCY;
+ mPitchShiftI = FRACTIONONE;
+ mPitchShift = 1.0f;
+ mFreqPerBin = device->Frequency / static_cast<ALfloat>(STFT_SIZE);
+
+ std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
+ std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0f);
+ std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
+ std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
+ std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
+ std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
+ std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
+ std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
+
+ std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
+ std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
+
+ return AL_TRUE;
+}
+
+void PshifterState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
+{
+ const float pitch{std::pow(2.0f,
+ static_cast<ALfloat>(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
+ )};
+ mPitchShiftI = fastf2i(pitch*FRACTIONONE);
+ mPitchShift = mPitchShiftI * (1.0f/FRACTIONONE);
+
+ ALfloat coeffs[MAX_AMBI_CHANNELS];
+ CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
+
+ mOutTarget = target.Main->Buffer;
+ ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
+}
+
+void PshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut)
+{
+ /* Pitch shifter engine based on the work of Stephan Bernsee.
+ * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
+ */
+
+ static constexpr ALdouble expected{al::MathDefs<double>::Tau() / OVERSAMP};
+ const ALdouble freq_per_bin{mFreqPerBin};
+ ALfloat *RESTRICT bufferOut{mBufferOut};
+ ALsizei count{mCount};
+
+ for(ALsizei i{0};i < samplesToDo;)
+ {
+ do {
+ /* Fill FIFO buffer with samples data */
+ mInFIFO[count] = samplesIn[0][i];
+ bufferOut[i] = mOutFIFO[count - FIFO_LATENCY];
+
+ count++;
+ } while(++i < samplesToDo && count < STFT_SIZE);
+
+ /* Check whether FIFO buffer is filled */
+ if(count < STFT_SIZE) break;
+ count = FIFO_LATENCY;
+
+ /* Real signal windowing and store in FFTbuffer */
+ for(ALsizei k{0};k < STFT_SIZE;k++)
+ {
+ mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
+ mFFTbuffer[k].imag(0.0);
+ }
+
+ /* ANALYSIS */
+ /* Apply FFT to FFTbuffer data */
+ complex_fft(mFFTbuffer, -1.0);
+
+ /* Analyze the obtained data. Since the real FFT is symmetric, only
+ * STFT_HALF_SIZE+1 samples are needed.
+ */
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
+ {
+ /* Compute amplitude and phase */
+ ALphasor component{rect2polar(mFFTbuffer[k])};
+
+ /* Compute phase difference and subtract expected phase difference */
+ double tmp{(component.Phase - mLastPhase[k]) - k*expected};
+
+ /* Map delta phase into +/- Pi interval */
+ int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
+ tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2));
+
+ /* Get deviation from bin frequency from the +/- Pi interval */
+ tmp /= expected;
+
+ /* Compute the k-th partials' true frequency, twice the amplitude
+ * for maintain the gain (because half of bins are used) and store
+ * amplitude and true frequency in analysis buffer.
+ */
+ mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
+ mAnalysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
+
+ /* Store actual phase[k] for the calculations in the next frame*/
+ mLastPhase[k] = component.Phase;
+ }
+
+ /* PROCESSING */
+ /* pitch shifting */
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
+ {
+ mSyntesis_buffer[k].Amplitude = 0.0;
+ mSyntesis_buffer[k].Frequency = 0.0;
+ }
+
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
+ {
+ ALsizei j{(k*mPitchShiftI) >> FRACTIONBITS};
+ if(j >= STFT_HALF_SIZE+1) break;
+
+ mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
+ mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
+ }
+
+ /* SYNTHESIS */
+ /* Synthesis the processing data */
+ for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
+ {
+ ALphasor component;
+ ALdouble tmp;
+
+ /* Compute bin deviation from scaled freq */
+ tmp = mSyntesis_buffer[k].Frequency/freq_per_bin - k;
+
+ /* Calculate actual delta phase and accumulate it to get bin phase */
+ mSumPhase[k] += (k + tmp) * expected;
+
+ component.Amplitude = mSyntesis_buffer[k].Amplitude;
+ component.Phase = mSumPhase[k];
+
+ /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
+ mFFTbuffer[k] = polar2rect(component);
+ }
+ /* zero negative frequencies for recontruct a real signal */
+ for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
+ mFFTbuffer[k] = complex_d{};
+
+ /* Apply iFFT to buffer data */
+ complex_fft(mFFTbuffer, 1.0);
+
+ /* Windowing and add to output */
+ for(ALsizei k{0};k < STFT_SIZE;k++)
+ mOutputAccum[k] += HannWindow[k] * mFFTbuffer[k].real() /
+ (0.5 * STFT_HALF_SIZE * OVERSAMP);
+
+ /* Shift accumulator, input & output FIFO */
+ ALsizei j, k;
+ for(k = 0;k < STFT_STEP;k++) mOutFIFO[k] = static_cast<ALfloat>(mOutputAccum[k]);
+ for(j = 0;k < STFT_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k];
+ for(;j < STFT_SIZE;j++) mOutputAccum[j] = 0.0;
+ for(k = 0;k < FIFO_LATENCY;k++)
+ mInFIFO[k] = mInFIFO[k+STFT_STEP];
+ }
+ mCount = count;
+
+ /* Now, mix the processed sound data to the output. */
+ MixSamples(bufferOut, samplesOut, mCurrentGains, mTargetGains, maxi(samplesToDo, 512), 0,
+ samplesToDo);
+}
+
+
+void Pshifter_setParamf(EffectProps*, ALCcontext *context, ALenum param, ALfloat)
+{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
+void Pshifter_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const ALfloat*)
+{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param); }
+
+void Pshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
+{
+ switch(param)
+ {
+ case AL_PITCH_SHIFTER_COARSE_TUNE:
+ if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
+ props->Pshifter.CoarseTune = val;
+ break;
+
+ case AL_PITCH_SHIFTER_FINE_TUNE:
+ if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
+ props->Pshifter.FineTune = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
+ }
+}
+void Pshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
+{ Pshifter_setParami(props, context, param, vals[0]); }
+
+void Pshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
+{
+ switch(param)
+ {
+ case AL_PITCH_SHIFTER_COARSE_TUNE:
+ *val = props->Pshifter.CoarseTune;
+ break;
+ case AL_PITCH_SHIFTER_FINE_TUNE:
+ *val = props->Pshifter.FineTune;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
+ }
+}
+void Pshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
+{ Pshifter_getParami(props, context, param, vals); }
+
+void Pshifter_getParamf(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
+{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
+void Pshifter_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
+{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); }
+
+DEFINE_ALEFFECT_VTABLE(Pshifter);
+
+
+struct PshifterStateFactory final : public EffectStateFactory {
+ EffectState *create() override;
+ EffectProps getDefaultProps() const noexcept override;
+ const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; }
+};
+
+EffectState *PshifterStateFactory::create()
+{ return new PshifterState{}; }
+
+EffectProps PshifterStateFactory::getDefaultProps() const noexcept
+{
+ EffectProps props{};
+ props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE;
+ props.Pshifter.FineTune = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE;
+ return props;
+}
+
+} // namespace
+
+EffectStateFactory *PshifterStateFactory_getFactory()
+{
+ static PshifterStateFactory PshifterFactory{};
+ return &PshifterFactory;
+}