aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2020-08-25 02:39:11 -0700
committerChris Robinson <[email protected]>2020-08-25 04:21:10 -0700
commit801c7a92260dd524403f620d6003762899ca5df1 (patch)
treeb3a66dd4ea31a2647c16b39667ed00f3fbf1e7d2 /alc/effects
parente98a0585951e150df81179e47a55f34f6d1206b7 (diff)
Initial implementation of the convolution effect
Currently limited to mono and stereo impulse responses, and stereo IRs try to use direct/real output rather than panning.
Diffstat (limited to 'alc/effects')
-rw-r--r--alc/effects/convolution.cpp409
1 files changed, 400 insertions, 9 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index 56a09e5d..91e6f856 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -6,15 +6,223 @@
#include "al/auxeffectslot.h"
#include "alcmain.h"
+#include "alcomplex.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alspan.h"
#include "effects/base.h"
+#include "logging.h"
+#include "polyphase_resampler.h"
namespace {
+/* Convolution reverb is implemented using a segmented overlap-add method. The
+ * impulse response is broken up into multiple segments of 512 samples, and
+ * each segment has an FFT applied with a 1024-sample buffer (the latter half
+ * left silent) to get its frequency-domain response. The resulting response
+ * has its positive/non-mirrored frequencies saved (513 bins) in each segment.
+ *
+ * Input samples are similarly broken up into 512-sample segments, with an FFT
+ * applied to each new incoming segment to get its 513 bins. A history of FFT'd
+ * input segments is maintained, equal to the length of the impulse response.
+ *
+ * To apply the reverberation, each impulse response segment is convolved with
+ * its paired input segment (using complex multiplies, far cheaper than FIRs),
+ * accumulating into a 1024-bin FFT buffer. The input history is then shifted
+ * to align with later impulse response segments for next time.
+ *
+ * An inverse FFT is then applied to the accumulated FFT buffer to get a 1024-
+ * sample time-domain response for output, which is split in two halves. The
+ * first half is the 512-sample output, and the second half is a 512-sample
+ * (really, 511) delayed extension, which gets added to the output next time.
+ * Convolving two time-domain responses of lengths N and M results in a time-
+ * domain signal of length N+M-1, and this holds true regardless of the
+ * convolution being applied in the frequency domain, so these "overflow"
+ * samples need to be accounted for.
+ *
+ * Limitations:
+ * There is currently a 512-sample delay on the output, as a result of needing
+ * to collect that many input samples to do an FFT with. This can be fixed by
+ * excluding the first impulse response segment from being FFT'd, and applying
+ * it directly in the time domain. This will have higher CPU consumption, but
+ * it won't have to wait before generating output.
+ */
+
+
+/* TODO: De-duplicate this load stuff (also in voice.cpp). */
+
+constexpr int16_t muLawDecompressionTable[256] = {
+ -32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956,
+ -23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764,
+ -15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412,
+ -11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316,
+ -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140,
+ -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092,
+ -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004,
+ -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980,
+ -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436,
+ -1372, -1308, -1244, -1180, -1116, -1052, -988, -924,
+ -876, -844, -812, -780, -748, -716, -684, -652,
+ -620, -588, -556, -524, -492, -460, -428, -396,
+ -372, -356, -340, -324, -308, -292, -276, -260,
+ -244, -228, -212, -196, -180, -164, -148, -132,
+ -120, -112, -104, -96, -88, -80, -72, -64,
+ -56, -48, -40, -32, -24, -16, -8, 0,
+ 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956,
+ 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764,
+ 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412,
+ 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316,
+ 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140,
+ 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092,
+ 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004,
+ 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980,
+ 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436,
+ 1372, 1308, 1244, 1180, 1116, 1052, 988, 924,
+ 876, 844, 812, 780, 748, 716, 684, 652,
+ 620, 588, 556, 524, 492, 460, 428, 396,
+ 372, 356, 340, 324, 308, 292, 276, 260,
+ 244, 228, 212, 196, 180, 164, 148, 132,
+ 120, 112, 104, 96, 88, 80, 72, 64,
+ 56, 48, 40, 32, 24, 16, 8, 0
+};
+
+constexpr int16_t aLawDecompressionTable[256] = {
+ -5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736,
+ -7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784,
+ -2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368,
+ -3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392,
+ -22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944,
+ -30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136,
+ -11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472,
+ -15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568,
+ -344, -328, -376, -360, -280, -264, -312, -296,
+ -472, -456, -504, -488, -408, -392, -440, -424,
+ -88, -72, -120, -104, -24, -8, -56, -40,
+ -216, -200, -248, -232, -152, -136, -184, -168,
+ -1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184,
+ -1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696,
+ -688, -656, -752, -720, -560, -528, -624, -592,
+ -944, -912, -1008, -976, -816, -784, -880, -848,
+ 5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736,
+ 7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784,
+ 2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368,
+ 3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392,
+ 22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944,
+ 30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136,
+ 11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472,
+ 15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568,
+ 344, 328, 376, 360, 280, 264, 312, 296,
+ 472, 456, 504, 488, 408, 392, 440, 424,
+ 88, 72, 120, 104, 24, 8, 56, 40,
+ 216, 200, 248, 232, 152, 136, 184, 168,
+ 1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184,
+ 1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696,
+ 688, 656, 752, 720, 560, 528, 624, 592,
+ 944, 912, 1008, 976, 816, 784, 880, 848
+};
+
+template<FmtType T>
+struct FmtTypeTraits { };
+
+template<>
+struct FmtTypeTraits<FmtUByte> {
+ using Type = uint8_t;
+ static constexpr inline double to_double(const Type val) noexcept
+ { return val*(1.0/128.0) - 1.0; }
+};
+template<>
+struct FmtTypeTraits<FmtShort> {
+ using Type = int16_t;
+ static constexpr inline double to_double(const Type val) noexcept { return val*(1.0/32768.0); }
+};
+template<>
+struct FmtTypeTraits<FmtFloat> {
+ using Type = float;
+ static constexpr inline double to_double(const Type val) noexcept { return val; }
+};
+template<>
+struct FmtTypeTraits<FmtDouble> {
+ using Type = double;
+ static constexpr inline double to_double(const Type val) noexcept { return val; }
+};
+template<>
+struct FmtTypeTraits<FmtMulaw> {
+ using Type = uint8_t;
+ static constexpr inline double to_double(const Type val) noexcept
+ { return muLawDecompressionTable[val] * (1.0/32768.0); }
+};
+template<>
+struct FmtTypeTraits<FmtAlaw> {
+ using Type = uint8_t;
+ static constexpr inline double to_double(const Type val) noexcept
+ { return aLawDecompressionTable[val] * (1.0/32768.0); }
+};
+
+
+template<FmtType T>
+inline void LoadSampleArray(double *RESTRICT dst, const al::byte *src, const size_t srcstep,
+ const size_t samples) noexcept
+{
+ using SampleType = typename FmtTypeTraits<T>::Type;
+
+ const SampleType *RESTRICT ssrc{reinterpret_cast<const SampleType*>(src)};
+ for(size_t i{0u};i < samples;i++)
+ dst[i] = FmtTypeTraits<T>::to_double(ssrc[i*srcstep]);
+}
+
+void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
+ const size_t samples) noexcept
+{
+#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
+ switch(srctype)
+ {
+ HANDLE_FMT(FmtUByte);
+ HANDLE_FMT(FmtShort);
+ HANDLE_FMT(FmtFloat);
+ HANDLE_FMT(FmtDouble);
+ HANDLE_FMT(FmtMulaw);
+ HANDLE_FMT(FmtAlaw);
+ }
+#undef HANDLE_FMT
+}
+
+
+using complex_d = std::complex<double>;
+
+constexpr size_t ConvolveUpdateSize{1024};
+constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
+
+#define MAX_FILTER_CHANNELS 2
+
+
+struct ConvolutionFilter final : public EffectBufferBase {
+ size_t mNumConvolveSegs{0};
+ complex_d *mInputHistory{};
+ complex_d *mConvolveFilter[MAX_FILTER_CHANNELS]{};
+
+ FmtChannels mChannels;
+
+ std::unique_ptr<complex_d[]> mComplexData;
+
+ DEF_NEWDEL(ConvolutionFilter)
+};
+
struct ConvolutionState final : public EffectState {
+ ConvolutionFilter *mFilter{};
+
+ size_t mFifoPos{0};
+ alignas(16) std::array<double,ConvolveUpdateSamples*2> mOutput[MAX_FILTER_CHANNELS]{};
+ alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
+
+ ALuint mNumChannels;
+ alignas(16) FloatBufferLine mTempBuffer[MAX_FILTER_CHANNELS]{};
+
+ struct {
+ float Current[MAX_OUTPUT_CHANNELS]{};
+ float Target[MAX_OUTPUT_CHANNELS]{};
+ } mGains[MAX_FILTER_CHANNELS];
+
ConvolutionState() = default;
~ConvolutionState() override = default;
@@ -29,24 +237,207 @@ struct ConvolutionState final : public EffectState {
void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/)
{
+ mFifoPos = 0;
+ for(auto &buffer : mOutput)
+ buffer.fill(0.0f);
+ mFftBuffer.fill(complex_d{});
+
+ for(auto &buffer : mTempBuffer)
+ buffer.fill(0.0);
+
+ for(auto &e : mGains)
+ {
+ std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
+ std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
+ }
}
-EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice */*device*/,
- const al::byte */*samplesData*/, ALuint /*sampleRate*/, FmtType /*sampleType*/,
- FmtChannels /*channelType*/, ALuint /*numSamples*/)
+EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device,
+ const al::byte *sampleData, ALuint sampleRate, FmtType sampleType,
+ FmtChannels channelType, ALuint numSamples)
{
- return nullptr;
+ /* FIXME: Support anything. */
+ if(channelType != FmtMono && channelType != FmtStereo)
+ return nullptr;
+
+ /* The impulse response needs to have the same sample rate as the input and
+ * output. The bsinc24 resampler is decent, but there is high-frequency
+ * attenation that some people may be able to pick up on. Since this is
+ * very infrequent called, go ahead and use the polyphase resampler.
+ */
+ PPhaseResampler resampler;
+ if(device->Frequency != sampleRate)
+ resampler.init(sampleRate, device->Frequency);
+ const auto resampledCount = static_cast<ALuint>(
+ (uint64_t{numSamples}*device->Frequency + (sampleRate-1)) / sampleRate);
+
+ al::intrusive_ptr<ConvolutionFilter> filter{new ConvolutionFilter{}};
+
+ auto bytesPerSample = BytesFromFmt(sampleType);
+ auto numChannels = ChannelsFromFmt(channelType, 1);
+ constexpr size_t m{ConvolveUpdateSize/2 + 1};
+
+ /* Calculate the number of segments needed to hold the impulse response and
+ * the input history (rounded up), and allocate them.
+ */
+ filter->mNumConvolveSegs = (numSamples+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
+
+ const size_t complex_length{filter->mNumConvolveSegs * m * (numChannels+1)};
+ filter->mComplexData = std::make_unique<complex_d[]>(complex_length);
+ std::fill_n(filter->mComplexData.get(), complex_length, complex_d{});
+
+ filter->mInputHistory = filter->mComplexData.get();
+ filter->mConvolveFilter[0] = filter->mInputHistory + filter->mNumConvolveSegs*m;
+ for(size_t c{1};c < numChannels;++c)
+ filter->mConvolveFilter[c] = filter->mConvolveFilter[c-1] + filter->mNumConvolveSegs*m;
+
+ filter->mChannels = channelType;
+
+ auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>();
+ auto srcsamples = std::make_unique<double[]>(maxz(numSamples, resampledCount));
+ for(size_t c{0};c < numChannels;++c)
+ {
+ /* Load the samples from the buffer, and resample to match the device. */
+ LoadSamples(srcsamples.get(), sampleData + bytesPerSample*c, numChannels, sampleType,
+ numSamples);
+ if(device->Frequency != sampleRate)
+ resampler.process(numSamples, srcsamples.get(), resampledCount, srcsamples.get());
+
+ size_t done{0};
+ complex_d *filteriter = filter->mConvolveFilter[c];
+ for(size_t s{0};s < filter->mNumConvolveSegs;++s)
+ {
+ const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
+
+ auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin());
+ done += todo;
+ std::fill(iter, fftbuffer->end(), complex_d{});
+
+ complex_fft(*fftbuffer, -1.0);
+ filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter);
+ }
+ }
+
+ return filter.release();
}
-void ConvolutionState::update(const ALCcontext* /*context*/, const ALeffectslot* /*slot*/,
- const EffectProps* /*props*/, const EffectTarget /*target*/)
+void ConvolutionState::update(const ALCcontext* /*context*/, const ALeffectslot *slot,
+ const EffectProps* /*props*/, const EffectTarget target)
{
+ mFilter = static_cast<ConvolutionFilter*>(slot->Params.mEffectBuffer);
+ mNumChannels = ChannelsFromFmt(mFilter->mChannels, 1);
+
+ /* The iFFT'd response is scaled up by the number of bins, so apply the
+ * inverse to the output mixing gain.
+ */
+ constexpr size_t m{ConvolveUpdateSize/2 + 1};
+ const float gain{slot->Params.Gain * (1.0f/m)};
+ if(mFilter->mChannels == FmtStereo)
+ {
+ /* TODO: Add a "direct channels" setting for this effect? */
+ const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX :
+ GetChannelIdxByName(*target.RealOut, FrontLeft)};
+ const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX :
+ GetChannelIdxByName(*target.RealOut, FrontRight)};
+ if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX)
+ {
+ mOutTarget = target.RealOut->Buffer;
+ mGains[0].Target[lidx] = gain;
+ mGains[1].Target[ridx] = gain;
+ }
+ else
+ {
+ const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
+ const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
+
+ mOutTarget = target.Main->Buffer;
+ ComputePanGains(target.Main, lcoeffs.data(), gain, mGains[0].Target);
+ ComputePanGains(target.Main, rcoeffs.data(), gain, mGains[1].Target);
+ }
+ }
+ else if(mFilter->mChannels == FmtMono)
+ {
+ const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);
+
+ mOutTarget = target.Main->Buffer;
+ ComputePanGains(target.Main, coeffs.data(), gain, mGains[0].Target);
+ }
}
-void ConvolutionState::process(const size_t/*samplesToDo*/,
- const al::span<const FloatBufferLine> /*samplesIn*/,
- const al::span<FloatBufferLine> /*samplesOut*/)
+void ConvolutionState::process(const size_t samplesToDo,
+ const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
+ /* No filter, no response. */
+ if(!mFilter) return;
+
+ for(size_t base{0u};base < samplesToDo;)
+ {
+ const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
+
+ /* Retrieve the output samples from the FIFO and fill in the new input
+ * samples.
+ */
+ for(size_t c{0};c < mNumChannels;++c)
+ {
+ auto fifo_iter = mOutput[c].begin() + mFifoPos;
+ std::transform(fifo_iter, fifo_iter+todo, mTempBuffer[c].begin()+base,
+ [](double d) noexcept -> float { return static_cast<float>(d); });
+ }
+
+ std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos);
+ mFifoPos += todo;
+ base += todo;
+
+ /* Check whether FIFO buffer is filled with new samples. */
+ if(mFifoPos < ConvolveUpdateSamples) break;
+ mFifoPos = 0;
+
+ /* Calculate the frequency domain response and add the relevant
+ * frequency bins to the input history.
+ */
+ complex_fft(mFftBuffer, -1.0);
+
+ constexpr size_t m{ConvolveUpdateSize/2 + 1};
+ std::copy_n(mFftBuffer.begin(), m, mFilter->mInputHistory);
+ mFftBuffer.fill(complex_d{});
+
+ for(size_t c{0};c < mNumChannels;++c)
+ {
+ /* Convolve each input segment with its IR filter counterpart
+ * (aligned in time).
+ */
+ for(size_t s{0};s < mFilter->mNumConvolveSegs;++s)
+ {
+ const complex_d *RESTRICT input{&mFilter->mInputHistory[s*m]};
+ const complex_d *RESTRICT filter{&mFilter->mConvolveFilter[c][s*m]};
+ for(size_t i{0};i < m;++i)
+ mFftBuffer[i] += input[i] * filter[i];
+ }
+
+ /* Apply iFFT to get the 1024 (really 1023) samples for output. The
+ * 512 output samples are combined with the last output's 511
+ * second-half samples (and this output's second half is
+ * subsequently saved for next time).
+ */
+ complex_fft(mFftBuffer, 1.0);
+
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i];
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
+ mFftBuffer.fill(complex_d{});
+ }
+
+ /* Shift the input history. */
+ std::copy_backward(mFilter->mInputHistory,
+ mFilter->mInputHistory + (mFilter->mNumConvolveSegs-1)*m,
+ mFilter->mInputHistory + mFilter->mNumConvolveSegs*m);
+ }
+
+ /* Finally, mix to the output. */
+ for(size_t c{0};c < mNumChannels;++c)
+ MixSamples({mTempBuffer[c].data(), samplesToDo}, samplesOut, mGains[c].Current,
+ mGains[c].Target, samplesToDo, 0);
}