aboutsummaryrefslogtreecommitdiffstats
path: root/alc/hrtf.cpp
diff options
context:
space:
mode:
authorChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
committerChris Robinson <[email protected]>2019-07-28 18:56:04 -0700
commitcb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch)
tree23520551bddb2a80354e44da47f54201fdc084f0 /alc/hrtf.cpp
parent93e60919c8f387c36c267ca9faa1ac653254aea6 (diff)
Rename Alc to alc
Diffstat (limited to 'alc/hrtf.cpp')
-rw-r--r--alc/hrtf.cpp1400
1 files changed, 1400 insertions, 0 deletions
diff --git a/alc/hrtf.cpp b/alc/hrtf.cpp
new file mode 100644
index 00000000..786c4c5d
--- /dev/null
+++ b/alc/hrtf.cpp
@@ -0,0 +1,1400 @@
+/**
+ * OpenAL cross platform audio library
+ * Copyright (C) 2011 by Chris Robinson
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include "hrtf.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cctype>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <functional>
+#include <fstream>
+#include <iterator>
+#include <memory>
+#include <mutex>
+#include <new>
+#include <numeric>
+#include <utility>
+
+#include "AL/al.h"
+
+#include "alcmain.h"
+#include "alconfig.h"
+#include "almalloc.h"
+#include "alnumeric.h"
+#include "aloptional.h"
+#include "alspan.h"
+#include "compat.h"
+#include "filters/splitter.h"
+#include "logging.h"
+#include "math_defs.h"
+#include "opthelpers.h"
+
+
+struct HrtfHandle {
+ std::unique_ptr<HrtfEntry> entry;
+ al::FlexArray<char> filename;
+
+ HrtfHandle(size_t fname_len) : filename{fname_len} { }
+ HrtfHandle(const HrtfHandle&) = delete;
+ HrtfHandle& operator=(const HrtfHandle&) = delete;
+
+ static std::unique_ptr<HrtfHandle> Create(size_t fname_len);
+ static constexpr size_t Sizeof(size_t length) noexcept
+ {
+ return maxz(sizeof(HrtfHandle),
+ al::FlexArray<char>::Sizeof(length, offsetof(HrtfHandle, filename)));
+ }
+
+ DEF_PLACE_NEWDEL()
+};
+
+std::unique_ptr<HrtfHandle> HrtfHandle::Create(size_t fname_len)
+{
+ void *ptr{al_calloc(alignof(HrtfHandle), HrtfHandle::Sizeof(fname_len))};
+ return std::unique_ptr<HrtfHandle>{new (ptr) HrtfHandle{fname_len}};
+}
+
+namespace {
+
+using namespace std::placeholders;
+
+using HrtfHandlePtr = std::unique_ptr<HrtfHandle>;
+
+/* Data set limits must be the same as or more flexible than those defined in
+ * the makemhr utility.
+ */
+#define MIN_IR_SIZE (8)
+#define MAX_IR_SIZE (512)
+#define MOD_IR_SIZE (2)
+
+#define MIN_FD_COUNT (1)
+#define MAX_FD_COUNT (16)
+
+#define MIN_FD_DISTANCE (0.05f)
+#define MAX_FD_DISTANCE (2.5f)
+
+#define MIN_EV_COUNT (5)
+#define MAX_EV_COUNT (128)
+
+#define MIN_AZ_COUNT (1)
+#define MAX_AZ_COUNT (128)
+
+#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
+
+constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'};
+constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'};
+constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'};
+
+/* First value for pass-through coefficients (remaining are 0), used for omni-
+ * directional sounds. */
+constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
+
+std::mutex LoadedHrtfLock;
+al::vector<HrtfHandlePtr> LoadedHrtfs;
+
+
+class databuf final : public std::streambuf {
+ int_type underflow() override
+ { return traits_type::eof(); }
+
+ pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
+ {
+ if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
+ return traits_type::eof();
+
+ char_type *cur;
+ switch(whence)
+ {
+ case std::ios_base::beg:
+ if(offset < 0 || offset > egptr()-eback())
+ return traits_type::eof();
+ cur = eback() + offset;
+ break;
+
+ case std::ios_base::cur:
+ if((offset >= 0 && offset > egptr()-gptr()) ||
+ (offset < 0 && -offset > gptr()-eback()))
+ return traits_type::eof();
+ cur = gptr() + offset;
+ break;
+
+ case std::ios_base::end:
+ if(offset > 0 || -offset > egptr()-eback())
+ return traits_type::eof();
+ cur = egptr() + offset;
+ break;
+
+ default:
+ return traits_type::eof();
+ }
+
+ setg(eback(), cur, egptr());
+ return cur - eback();
+ }
+
+ pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
+ {
+ // Simplified version of seekoff
+ if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
+ return traits_type::eof();
+
+ if(pos < 0 || pos > egptr()-eback())
+ return traits_type::eof();
+
+ setg(eback(), eback() + static_cast<size_t>(pos), egptr());
+ return pos;
+ }
+
+public:
+ databuf(const char_type *start, const char_type *end) noexcept
+ {
+ setg(const_cast<char_type*>(start), const_cast<char_type*>(start),
+ const_cast<char_type*>(end));
+ }
+};
+
+class idstream final : public std::istream {
+ databuf mStreamBuf;
+
+public:
+ idstream(const char *start, const char *end)
+ : std::istream{nullptr}, mStreamBuf{start, end}
+ { init(&mStreamBuf); }
+};
+
+
+struct IdxBlend { ALsizei idx; ALfloat blend; };
+/* Calculate the elevation index given the polar elevation in radians. This
+ * will return an index between 0 and (evcount - 1).
+ */
+IdxBlend CalcEvIndex(ALsizei evcount, ALfloat ev)
+{
+ ev = (al::MathDefs<float>::Pi()*0.5f + ev) * (evcount-1) / al::MathDefs<float>::Pi();
+ ALsizei idx{float2int(ev)};
+
+ return IdxBlend{mini(idx, evcount-1), ev-idx};
+}
+
+/* Calculate the azimuth index given the polar azimuth in radians. This will
+ * return an index between 0 and (azcount - 1).
+ */
+IdxBlend CalcAzIndex(ALsizei azcount, ALfloat az)
+{
+ az = (al::MathDefs<float>::Tau()+az) * azcount / al::MathDefs<float>::Tau();
+ ALsizei idx{float2int(az)};
+
+ return IdxBlend{idx%azcount, az-idx};
+}
+
+} // namespace
+
+
+/* Calculates static HRIR coefficients and delays for the given polar elevation
+ * and azimuth in radians. The coefficients are normalized.
+ */
+void GetHrtfCoeffs(const HrtfEntry *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat distance,
+ ALfloat spread, HrirArray<ALfloat> &coeffs, ALsizei (&delays)[2])
+{
+ const ALfloat dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
+
+ const auto *field = Hrtf->field;
+ const auto *field_end = field + Hrtf->fdCount-1;
+ ALsizei ebase{0};
+ while(distance < field->distance && field != field_end)
+ {
+ ebase += field->evCount;
+ ++field;
+ }
+
+ /* Claculate the elevation indinces. */
+ const auto elev0 = CalcEvIndex(field->evCount, elevation);
+ const ALsizei elev1_idx{mini(elev0.idx+1, field->evCount-1)};
+ const ALsizei ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
+ const ALsizei ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
+
+ /* Calculate azimuth indices. */
+ const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
+ const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
+
+ /* Calculate the HRIR indices to blend. */
+ ALsizei idx[4]{
+ ir0offset + az0.idx,
+ ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
+ ir1offset + az1.idx,
+ ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
+ };
+
+ /* Calculate bilinear blending weights, attenuated according to the
+ * directional panning factor.
+ */
+ const ALfloat blend[4]{
+ (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
+ (1.0f-elev0.blend) * ( az0.blend) * dirfact,
+ ( elev0.blend) * (1.0f-az1.blend) * dirfact,
+ ( elev0.blend) * ( az1.blend) * dirfact
+ };
+
+ /* Calculate the blended HRIR delays. */
+ delays[0] = fastf2i(
+ Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
+ Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]
+ );
+ delays[1] = fastf2i(
+ Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
+ Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]
+ );
+
+ const ALsizei irSize{Hrtf->irSize};
+ ASSUME(irSize >= MIN_IR_SIZE);
+
+ /* Calculate the sample offsets for the HRIR indices. */
+ idx[0] *= irSize;
+ idx[1] *= irSize;
+ idx[2] *= irSize;
+ idx[3] *= irSize;
+
+ /* Calculate the blended HRIR coefficients. */
+ ALfloat *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
+ coeffout[0] = PassthruCoeff * (1.0f-dirfact);
+ coeffout[1] = PassthruCoeff * (1.0f-dirfact);
+ std::fill(coeffout+2, coeffout + irSize*2, 0.0f);
+ for(ALsizei c{0};c < 4;c++)
+ {
+ const ALfloat *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]])};
+ const ALfloat mult{blend[c]};
+ auto blend_coeffs = [mult](const ALfloat src, const ALfloat coeff) noexcept -> ALfloat
+ { return src*mult + coeff; };
+ std::transform(srccoeffs, srccoeffs + irSize*2, coeffout, coeffout, blend_coeffs);
+ }
+}
+
+
+std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
+{
+ void *ptr{al_calloc(16, DirectHrtfState::Sizeof(num_chans))};
+ return std::unique_ptr<DirectHrtfState>{new (ptr) DirectHrtfState{num_chans}};
+}
+
+void BuildBFormatHrtf(const HrtfEntry *Hrtf, DirectHrtfState *state, const ALuint NumChannels,
+ const AngularPoint *AmbiPoints, const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_CHANNELS],
+ const size_t AmbiCount, const ALfloat *RESTRICT AmbiOrderHFGain)
+{
+ static constexpr int OrderFromChan[MAX_AMBI_CHANNELS]{
+ 0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3,
+ };
+ /* Set this to true for dual-band HRTF processing. May require better
+ * calculation of the new IR length to deal with the head and tail
+ * generated by the HF scaling.
+ */
+ static constexpr bool DualBand{true};
+
+ ASSUME(NumChannels > 0);
+ ASSUME(AmbiCount > 0);
+
+ auto &field = Hrtf->field[0];
+ ALsizei min_delay{HRTF_HISTORY_LENGTH};
+ ALsizei max_delay{0};
+ auto idx = al::vector<ALsizei>(AmbiCount);
+ auto calc_idxs = [Hrtf,&field,&max_delay,&min_delay](const AngularPoint &pt) noexcept -> ALsizei
+ {
+ /* Calculate elevation index. */
+ const auto evidx = clampi(
+ static_cast<ALsizei>((90.0f+pt.Elev)*(field.evCount-1)/180.0f + 0.5f),
+ 0, field.evCount-1);
+
+ const ALsizei azcount{Hrtf->elev[evidx].azCount};
+ const ALsizei iroffset{Hrtf->elev[evidx].irOffset};
+
+ /* Calculate azimuth index for this elevation. */
+ const auto azidx = static_cast<ALsizei>((360.0f+pt.Azim)*azcount/360.0f + 0.5f) % azcount;
+
+ /* Calculate the index for the impulse response. */
+ ALsizei idx{iroffset + azidx};
+
+ min_delay = mini(min_delay, mini(Hrtf->delays[idx][0], Hrtf->delays[idx][1]));
+ max_delay = maxi(max_delay, maxi(Hrtf->delays[idx][0], Hrtf->delays[idx][1]));
+
+ return idx;
+ };
+ std::transform(AmbiPoints, AmbiPoints+AmbiCount, idx.begin(), calc_idxs);
+
+ /* For dual-band processing, add a 16-sample delay to compensate for the HF
+ * scale on the minimum-phase response.
+ */
+ static constexpr ALsizei base_delay{DualBand ? 16 : 0};
+ const ALdouble xover_norm{400.0 / Hrtf->sampleRate};
+ BandSplitterR<double> splitter{xover_norm};
+
+ auto tmpres = al::vector<HrirArray<ALdouble>>(NumChannels);
+ auto tmpfilt = al::vector<std::array<ALdouble,HRIR_LENGTH*4>>(3);
+ for(size_t c{0u};c < AmbiCount;++c)
+ {
+ const ALfloat (*fir)[2]{&Hrtf->coeffs[idx[c] * Hrtf->irSize]};
+ const ALsizei ldelay{Hrtf->delays[idx[c]][0] - min_delay + base_delay};
+ const ALsizei rdelay{Hrtf->delays[idx[c]][1] - min_delay + base_delay};
+
+ if(!DualBand)
+ {
+ /* For single-band decoding, apply the HF scale to the response. */
+ for(ALuint i{0u};i < NumChannels;++i)
+ {
+ const ALdouble mult{ALdouble{AmbiOrderHFGain[OrderFromChan[i]]} *
+ AmbiMatrix[c][i]};
+ const ALsizei numirs{mini(Hrtf->irSize, HRIR_LENGTH-maxi(ldelay, rdelay))};
+ ALsizei lidx{ldelay}, ridx{rdelay};
+ for(ALsizei j{0};j < numirs;++j)
+ {
+ tmpres[i][lidx++][0] += fir[j][0] * mult;
+ tmpres[i][ridx++][1] += fir[j][1] * mult;
+ }
+ }
+ continue;
+ }
+
+ /* For dual-band processing, the HRIR needs to be split into low and
+ * high frequency responses. The band-splitter alone creates frequency-
+ * dependent phase-shifts, which is not ideal. To counteract it,
+ * combine it with a backwards phase-shift.
+ */
+
+ /* Load the (left) HRIR backwards, into a temp buffer with padding. */
+ std::fill(tmpfilt[2].begin(), tmpfilt[2].end(), 0.0);
+ std::transform(fir, fir+Hrtf->irSize, tmpfilt[2].rbegin() + HRIR_LENGTH*3,
+ [](const ALfloat (&ir)[2]) noexcept -> ALdouble { return ir[0]; });
+
+ /* Apply the all-pass on the reversed signal and reverse the resulting
+ * sample array. This produces the forward response with a backwards
+ * phase-shift (+n degrees becomes -n degrees).
+ */
+ splitter.applyAllpass(tmpfilt[2].data(), static_cast<int>(tmpfilt[2].size()));
+ std::reverse(tmpfilt[2].begin(), tmpfilt[2].end());
+
+ /* Now apply the band-splitter. This applies the normal phase-shift,
+ * which cancels out with the backwards phase-shift to get the original
+ * phase on the split signal.
+ */
+ splitter.clear();
+ splitter.process(tmpfilt[0].data(), tmpfilt[1].data(), tmpfilt[2].data(),
+ static_cast<int>(tmpfilt[2].size()));
+
+ /* Apply left ear response with delay and HF scale. */
+ for(ALuint i{0u};i < NumChannels;++i)
+ {
+ const ALdouble mult{AmbiMatrix[c][i]};
+ const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]};
+ ALsizei j{HRIR_LENGTH*3 - ldelay};
+ for(ALsizei lidx{0};lidx < HRIR_LENGTH;++lidx,++j)
+ tmpres[i][lidx][0] += (tmpfilt[0][j]*hfgain + tmpfilt[1][j]) * mult;
+ }
+
+ /* Now run the same process on the right HRIR. */
+ std::fill(tmpfilt[2].begin(), tmpfilt[2].end(), 0.0);
+ std::transform(fir, fir+Hrtf->irSize, tmpfilt[2].rbegin() + HRIR_LENGTH*3,
+ [](const ALfloat (&ir)[2]) noexcept -> ALdouble { return ir[1]; });
+
+ splitter.applyAllpass(tmpfilt[2].data(), static_cast<int>(tmpfilt[2].size()));
+ std::reverse(tmpfilt[2].begin(), tmpfilt[2].end());
+
+ splitter.clear();
+ splitter.process(tmpfilt[0].data(), tmpfilt[1].data(), tmpfilt[2].data(),
+ static_cast<int>(tmpfilt[2].size()));
+
+ for(ALuint i{0u};i < NumChannels;++i)
+ {
+ const ALdouble mult{AmbiMatrix[c][i]};
+ const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]};
+ ALsizei j{HRIR_LENGTH*3 - rdelay};
+ for(ALsizei ridx{0};ridx < HRIR_LENGTH;++ridx,++j)
+ tmpres[i][ridx][1] += (tmpfilt[0][j]*hfgain + tmpfilt[1][j]) * mult;
+ }
+ }
+ tmpfilt.clear();
+ idx.clear();
+
+ for(ALuint i{0u};i < NumChannels;++i)
+ {
+ auto copy_arr = [](const std::array<double,2> &in) noexcept -> std::array<float,2>
+ { return std::array<float,2>{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
+ std::transform(tmpres[i].begin(), tmpres[i].end(), state->Chan[i].Coeffs.begin(),
+ copy_arr);
+ }
+ tmpres.clear();
+
+ ALsizei max_length{HRIR_LENGTH};
+ /* Increase the IR size by double the base delay with dual-band processing
+ * to account for the head and tail from the HF response scale.
+ */
+ const ALsizei irsize{mini(Hrtf->irSize + base_delay*2, max_length)};
+ max_length = mini(max_delay-min_delay + irsize, max_length);
+
+ /* Round up to the next IR size multiple. */
+ max_length += MOD_IR_SIZE-1;
+ max_length -= max_length%MOD_IR_SIZE;
+
+ TRACE("Skipped delay: %d, max delay: %d, new FIR length: %d\n",
+ min_delay, max_delay-min_delay, max_length);
+ state->IrSize = max_length;
+}
+
+
+namespace {
+
+std::unique_ptr<HrtfEntry> CreateHrtfStore(ALuint rate, ALsizei irSize, const ALsizei fdCount,
+ const ALubyte *evCount, const ALfloat *distance, const ALushort *azCount,
+ const ALushort *irOffset, ALsizei irCount, const ALfloat (*coeffs)[2],
+ const ALubyte (*delays)[2], const char *filename)
+{
+ std::unique_ptr<HrtfEntry> Hrtf;
+
+ ALsizei evTotal{std::accumulate(evCount, evCount+fdCount, 0)};
+ size_t total{sizeof(HrtfEntry)};
+ total = RoundUp(total, alignof(HrtfEntry::Field)); /* Align for field infos */
+ total += sizeof(HrtfEntry::Field)*fdCount;
+ total = RoundUp(total, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */
+ total += sizeof(Hrtf->elev[0])*evTotal;
+ total = RoundUp(total, 16); /* Align for coefficients using SIMD */
+ total += sizeof(Hrtf->coeffs[0])*irSize*irCount;
+ total += sizeof(Hrtf->delays[0])*irCount;
+
+ Hrtf.reset(new (al_calloc(16, total)) HrtfEntry{});
+ if(!Hrtf)
+ ERR("Out of memory allocating storage for %s.\n", filename);
+ else
+ {
+ InitRef(&Hrtf->ref, 1u);
+ Hrtf->sampleRate = rate;
+ Hrtf->irSize = irSize;
+ Hrtf->fdCount = fdCount;
+
+ /* Set up pointers to storage following the main HRTF struct. */
+ char *base = reinterpret_cast<char*>(Hrtf.get());
+ uintptr_t offset = sizeof(HrtfEntry);
+
+ offset = RoundUp(offset, alignof(HrtfEntry::Field)); /* Align for field infos */
+ auto field_ = reinterpret_cast<HrtfEntry::Field*>(base + offset);
+ offset += sizeof(field_[0])*fdCount;
+
+ offset = RoundUp(offset, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */
+ auto elev_ = reinterpret_cast<HrtfEntry::Elevation*>(base + offset);
+ offset += sizeof(elev_[0])*evTotal;
+
+ offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
+ auto coeffs_ = reinterpret_cast<ALfloat(*)[2]>(base + offset);
+ offset += sizeof(coeffs_[0])*irSize*irCount;
+
+ auto delays_ = reinterpret_cast<ALubyte(*)[2]>(base + offset);
+ offset += sizeof(delays_[0])*irCount;
+
+ assert(offset == total);
+
+ /* Copy input data to storage. */
+ for(ALsizei i{0};i < fdCount;i++)
+ {
+ field_[i].distance = distance[i];
+ field_[i].evCount = evCount[i];
+ }
+ for(ALsizei i{0};i < evTotal;i++)
+ {
+ elev_[i].azCount = azCount[i];
+ elev_[i].irOffset = irOffset[i];
+ }
+ for(ALsizei i{0};i < irSize*irCount;i++)
+ {
+ coeffs_[i][0] = coeffs[i][0];
+ coeffs_[i][1] = coeffs[i][1];
+ }
+ for(ALsizei i{0};i < irCount;i++)
+ {
+ delays_[i][0] = delays[i][0];
+ delays_[i][1] = delays[i][1];
+ }
+
+ /* Finally, assign the storage pointers. */
+ Hrtf->field = field_;
+ Hrtf->elev = elev_;
+ Hrtf->coeffs = coeffs_;
+ Hrtf->delays = delays_;
+ }
+
+ return Hrtf;
+}
+
+ALubyte GetLE_ALubyte(std::istream &data)
+{
+ return static_cast<ALubyte>(data.get());
+}
+
+ALshort GetLE_ALshort(std::istream &data)
+{
+ int ret = data.get();
+ ret |= data.get() << 8;
+ return static_cast<ALshort>((ret^32768) - 32768);
+}
+
+ALushort GetLE_ALushort(std::istream &data)
+{
+ int ret = data.get();
+ ret |= data.get() << 8;
+ return static_cast<ALushort>(ret);
+}
+
+ALint GetLE_ALint24(std::istream &data)
+{
+ int ret = data.get();
+ ret |= data.get() << 8;
+ ret |= data.get() << 16;
+ return (ret^8388608) - 8388608;
+}
+
+ALuint GetLE_ALuint(std::istream &data)
+{
+ int ret = data.get();
+ ret |= data.get() << 8;
+ ret |= data.get() << 16;
+ ret |= data.get() << 24;
+ return ret;
+}
+
+std::unique_ptr<HrtfEntry> LoadHrtf00(std::istream &data, const char *filename)
+{
+ ALuint rate{GetLE_ALuint(data)};
+ ALushort irCount{GetLE_ALushort(data)};
+ ALushort irSize{GetLE_ALushort(data)};
+ ALubyte evCount{GetLE_ALubyte(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ ALboolean failed{AL_FALSE};
+ if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
+ {
+ ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
+ irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
+ failed = AL_TRUE;
+ }
+ if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
+ {
+ ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
+ evCount, MIN_EV_COUNT, MAX_EV_COUNT);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<ALushort> evOffset(evCount);
+ for(auto &val : evOffset)
+ val = GetLE_ALushort(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(ALsizei i{1};i < evCount;i++)
+ {
+ if(evOffset[i] <= evOffset[i-1])
+ {
+ ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
+ i, evOffset[i], evOffset[i-1]);
+ failed = AL_TRUE;
+ }
+ }
+ if(irCount <= evOffset.back())
+ {
+ ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
+ evOffset.size()-1, evOffset.back(), irCount);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<ALushort> azCount(evCount);
+ for(ALsizei i{1};i < evCount;i++)
+ {
+ azCount[i-1] = evOffset[i] - evOffset[i-1];
+ if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
+ {
+ ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
+ i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
+ failed = AL_TRUE;
+ }
+ }
+ azCount.back() = irCount - evOffset.back();
+ if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT)
+ {
+ ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
+ azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount);
+ al::vector<std::array<ALubyte,2>> delays(irCount);
+ for(auto &val : coeffs)
+ val[0] = GetLE_ALshort(data) / 32768.0f;
+ for(auto &val : delays)
+ val[0] = GetLE_ALubyte(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(ALsizei i{0};i < irCount;i++)
+ {
+ if(delays[i][0] > MAX_HRIR_DELAY)
+ {
+ ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
+ failed = AL_TRUE;
+ }
+ }
+ if(failed)
+ return nullptr;
+
+ /* Mirror the left ear responses to the right ear. */
+ for(ALsizei i{0};i < evCount;i++)
+ {
+ const ALushort evoffset{evOffset[i]};
+ const ALushort azcount{azCount[i]};
+ for(ALsizei j{0};j < azcount;j++)
+ {
+ const ALsizei lidx{evoffset + j};
+ const ALsizei ridx{evoffset + ((azcount-j) % azcount)};
+
+ for(ALsizei k{0};k < irSize;k++)
+ coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
+ delays[ridx][1] = delays[lidx][0];
+ }
+ }
+
+ static constexpr ALfloat distance{0.0f};
+ return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
+ irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
+ &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
+}
+
+std::unique_ptr<HrtfEntry> LoadHrtf01(std::istream &data, const char *filename)
+{
+ ALuint rate{GetLE_ALuint(data)};
+ ALushort irSize{GetLE_ALubyte(data)};
+ ALubyte evCount{GetLE_ALubyte(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ ALboolean failed{AL_FALSE};
+ if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
+ {
+ ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
+ irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
+ failed = AL_TRUE;
+ }
+ if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
+ {
+ ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
+ evCount, MIN_EV_COUNT, MAX_EV_COUNT);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<ALushort> azCount(evCount);
+ std::generate(azCount.begin(), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data)));
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(ALsizei i{0};i < evCount;++i)
+ {
+ if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
+ {
+ ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
+ i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
+ failed = AL_TRUE;
+ }
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<ALushort> evOffset(evCount);
+ evOffset[0] = 0;
+ ALushort irCount{azCount[0]};
+ for(ALsizei i{1};i < evCount;i++)
+ {
+ evOffset[i] = evOffset[i-1] + azCount[i-1];
+ irCount += azCount[i];
+ }
+
+ al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount);
+ al::vector<std::array<ALubyte,2>> delays(irCount);
+ for(auto &val : coeffs)
+ val[0] = GetLE_ALshort(data) / 32768.0f;
+ for(auto &val : delays)
+ val[0] = GetLE_ALubyte(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(ALsizei i{0};i < irCount;i++)
+ {
+ if(delays[i][0] > MAX_HRIR_DELAY)
+ {
+ ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
+ failed = AL_TRUE;
+ }
+ }
+ if(failed)
+ return nullptr;
+
+ /* Mirror the left ear responses to the right ear. */
+ for(ALsizei i{0};i < evCount;i++)
+ {
+ const ALushort evoffset{evOffset[i]};
+ const ALushort azcount{azCount[i]};
+ for(ALsizei j{0};j < azcount;j++)
+ {
+ const ALsizei lidx{evoffset + j};
+ const ALsizei ridx{evoffset + ((azcount-j) % azcount)};
+
+ for(ALsizei k{0};k < irSize;k++)
+ coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
+ delays[ridx][1] = delays[lidx][0];
+ }
+ }
+
+ static constexpr ALfloat distance{0.0f};
+ return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(),
+ irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
+ &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
+}
+
+#define SAMPLETYPE_S16 0
+#define SAMPLETYPE_S24 1
+
+#define CHANTYPE_LEFTONLY 0
+#define CHANTYPE_LEFTRIGHT 1
+
+std::unique_ptr<HrtfEntry> LoadHrtf02(std::istream &data, const char *filename)
+{
+ ALuint rate{GetLE_ALuint(data)};
+ ALubyte sampleType{GetLE_ALubyte(data)};
+ ALubyte channelType{GetLE_ALubyte(data)};
+ ALushort irSize{GetLE_ALubyte(data)};
+ ALubyte fdCount{GetLE_ALubyte(data)};
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ ALboolean failed{AL_FALSE};
+ if(sampleType > SAMPLETYPE_S24)
+ {
+ ERR("Unsupported sample type: %d\n", sampleType);
+ failed = AL_TRUE;
+ }
+ if(channelType > CHANTYPE_LEFTRIGHT)
+ {
+ ERR("Unsupported channel type: %d\n", channelType);
+ failed = AL_TRUE;
+ }
+
+ if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
+ {
+ ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
+ irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
+ failed = AL_TRUE;
+ }
+ if(fdCount < 1 || fdCount > MAX_FD_COUNT)
+ {
+ ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n",
+ fdCount, MIN_FD_COUNT, MAX_FD_COUNT);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ al::vector<ALfloat> distance(fdCount);
+ al::vector<ALubyte> evCount(fdCount);
+ al::vector<ALushort> azCount;
+ for(ALsizei f{0};f < fdCount;f++)
+ {
+ distance[f] = GetLE_ALushort(data) / 1000.0f;
+ evCount[f] = GetLE_ALubyte(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ if(distance[f] < MIN_FD_DISTANCE || distance[f] > MAX_FD_DISTANCE)
+ {
+ ERR("Unsupported field distance[%d]=%f (%f to %f meters)\n", f,
+ distance[f], MIN_FD_DISTANCE, MAX_FD_DISTANCE);
+ failed = AL_TRUE;
+ }
+ if(f > 0 && distance[f] <= distance[f-1])
+ {
+ ERR("Field distance[%d] is not after previous (%f > %f)\n", f, distance[f],
+ distance[f-1]);
+ failed = AL_TRUE;
+ }
+ if(evCount[f] < MIN_EV_COUNT || evCount[f] > MAX_EV_COUNT)
+ {
+ ERR("Unsupported elevation count: evCount[%d]=%d (%d to %d)\n", f,
+ evCount[f], MIN_EV_COUNT, MAX_EV_COUNT);
+ failed = AL_TRUE;
+ }
+ if(failed)
+ return nullptr;
+
+ size_t ebase{azCount.size()};
+ azCount.resize(ebase + evCount[f]);
+ std::generate(azCount.begin()+ebase, azCount.end(),
+ std::bind(GetLE_ALubyte, std::ref(data)));
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(ALsizei e{0};e < evCount[f];e++)
+ {
+ if(azCount[ebase+e] < MIN_AZ_COUNT || azCount[ebase+e] > MAX_AZ_COUNT)
+ {
+ ERR("Unsupported azimuth count: azCount[%d][%d]=%d (%d to %d)\n", f, e,
+ azCount[ebase+e], MIN_AZ_COUNT, MAX_AZ_COUNT);
+ failed = AL_TRUE;
+ }
+ }
+ if(failed)
+ return nullptr;
+ }
+
+ al::vector<ALushort> evOffset(azCount.size());
+ evOffset[0] = 0;
+ std::partial_sum(azCount.cbegin(), azCount.cend()-1, evOffset.begin()+1);
+ const ALsizei irTotal{evOffset.back() + azCount.back()};
+
+ al::vector<std::array<ALfloat,2>> coeffs(irSize*irTotal);
+ al::vector<std::array<ALubyte,2>> delays(irTotal);
+ if(channelType == CHANTYPE_LEFTONLY)
+ {
+ if(sampleType == SAMPLETYPE_S16)
+ {
+ for(auto &val : coeffs)
+ val[0] = GetLE_ALshort(data) / 32768.0f;
+ }
+ else if(sampleType == SAMPLETYPE_S24)
+ {
+ for(auto &val : coeffs)
+ val[0] = GetLE_ALint24(data) / 8388608.0f;
+ }
+ for(auto &val : delays)
+ val[0] = GetLE_ALubyte(data);
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+ for(ALsizei i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MAX_HRIR_DELAY)
+ {
+ ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
+ failed = AL_TRUE;
+ }
+ }
+ }
+ else if(channelType == CHANTYPE_LEFTRIGHT)
+ {
+ if(sampleType == SAMPLETYPE_S16)
+ {
+ for(auto &val : coeffs)
+ {
+ val[0] = GetLE_ALshort(data) / 32768.0f;
+ val[1] = GetLE_ALshort(data) / 32768.0f;
+ }
+ }
+ else if(sampleType == SAMPLETYPE_S24)
+ {
+ for(auto &val : coeffs)
+ {
+ val[0] = GetLE_ALint24(data) / 8388608.0f;
+ val[1] = GetLE_ALint24(data) / 8388608.0f;
+ }
+ }
+ for(auto &val : delays)
+ {
+ val[0] = GetLE_ALubyte(data);
+ val[1] = GetLE_ALubyte(data);
+ }
+ if(!data || data.eof())
+ {
+ ERR("Failed reading %s\n", filename);
+ return nullptr;
+ }
+
+ for(ALsizei i{0};i < irTotal;++i)
+ {
+ if(delays[i][0] > MAX_HRIR_DELAY)
+ {
+ ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
+ failed = AL_TRUE;
+ }
+ if(delays[i][1] > MAX_HRIR_DELAY)
+ {
+ ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
+ failed = AL_TRUE;
+ }
+ }
+ }
+ if(failed)
+ return nullptr;
+
+ if(channelType == CHANTYPE_LEFTONLY)
+ {
+ /* Mirror the left ear responses to the right ear. */
+ ALsizei ebase{0};
+ for(ALsizei f{0};f < fdCount;f++)
+ {
+ for(ALsizei e{0};e < evCount[f];e++)
+ {
+ const ALushort evoffset{evOffset[ebase+e]};
+ const ALushort azcount{azCount[ebase+e]};
+ for(ALsizei a{0};a < azcount;a++)
+ {
+ const ALsizei lidx{evoffset + a};
+ const ALsizei ridx{evoffset + ((azcount-a) % azcount)};
+
+ for(ALsizei k{0};k < irSize;k++)
+ coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0];
+ delays[ridx][1] = delays[lidx][0];
+ }
+ }
+ ebase += evCount[f];
+ }
+ }
+
+ if(fdCount > 1)
+ {
+ auto distance_ = al::vector<ALfloat>(distance.size());
+ auto evCount_ = al::vector<ALubyte>(evCount.size());
+ auto azCount_ = al::vector<ALushort>(azCount.size());
+ auto evOffset_ = al::vector<ALushort>(evOffset.size());
+ auto coeffs_ = al::vector<float2>(coeffs.size());
+ auto delays_ = al::vector<std::array<ALubyte,2>>(delays.size());
+
+ /* Simple reverse for the per-field elements. */
+ std::reverse_copy(distance.cbegin(), distance.cend(), distance_.begin());
+ std::reverse_copy(evCount.cbegin(), evCount.cend(), evCount_.begin());
+
+ /* Each field has a group of elevations, which each have an azimuth
+ * count. Reverse the order of the groups, keeping the relative order
+ * of per-group azimuth counts.
+ */
+ auto azcnt_end = azCount_.end();
+ auto copy_azs = [&azCount,&azcnt_end](const size_t ebase, const ALubyte num_evs) -> size_t
+ {
+ auto azcnt_src = azCount.begin()+ebase;
+ azcnt_end = std::copy_backward(azcnt_src, azcnt_src+num_evs, azcnt_end);
+ return ebase + num_evs;
+ };
+ std::accumulate(evCount.cbegin(), evCount.cend(), size_t{0u}, copy_azs);
+ assert(azCount_.begin() == azcnt_end);
+
+ /* Reestablish the IR offset for each elevation index, given the new
+ * ordering of elevations.
+ */
+ evOffset_[0] = 0;
+ std::partial_sum(azCount_.cbegin(), azCount_.cend()-1, evOffset_.begin()+1);
+
+ /* Reverse the order of each field's group of IRs. */
+ auto coeffs_end = coeffs_.end();
+ auto delays_end = delays_.end();
+ auto copy_irs = [irSize,&azCount,&coeffs,&delays,&coeffs_end,&delays_end](const size_t ebase, const ALubyte num_evs) -> size_t
+ {
+ const ALsizei abase{std::accumulate(azCount.cbegin(), azCount.cbegin()+ebase, 0)};
+ const ALsizei num_azs{std::accumulate(azCount.cbegin()+ebase,
+ azCount.cbegin() + (ebase+num_evs), 0)};
+
+ coeffs_end = std::copy_backward(coeffs.cbegin() + abase*irSize,
+ coeffs.cbegin() + (abase+num_azs)*irSize, coeffs_end);
+ delays_end = std::copy_backward(delays.cbegin() + abase,
+ delays.cbegin() + (abase+num_azs), delays_end);
+
+ return ebase + num_evs;
+ };
+ std::accumulate(evCount.cbegin(), evCount.cend(), size_t{0u}, copy_irs);
+ assert(coeffs_.begin() == coeffs_end);
+ assert(delays_.begin() == delays_end);
+
+ distance = std::move(distance_);
+ evCount = std::move(evCount_);
+ azCount = std::move(azCount_);
+ evOffset = std::move(evOffset_);
+ coeffs = std::move(coeffs_);
+ delays = std::move(delays_);
+ }
+
+ return CreateHrtfStore(rate, irSize, fdCount, evCount.data(), distance.data(), azCount.data(),
+ evOffset.data(), irTotal, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]),
+ &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename);
+}
+
+
+bool checkName(al::vector<EnumeratedHrtf> &list, const std::string &name)
+{
+ return std::find_if(list.cbegin(), list.cend(),
+ [&name](const EnumeratedHrtf &entry)
+ { return name == entry.name; }
+ ) != list.cend();
+}
+
+void AddFileEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename)
+{
+ /* Check if this file has already been loaded globally. */
+ auto loaded_entry = LoadedHrtfs.begin();
+ for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
+ {
+ if(filename != (*loaded_entry)->filename.data())
+ continue;
+
+ /* Check if this entry has already been added to the list. */
+ auto iter = std::find_if(list.cbegin(), list.cend(),
+ [loaded_entry](const EnumeratedHrtf &entry) -> bool
+ { return loaded_entry->get() == entry.hrtf; }
+ );
+ if(iter != list.cend())
+ {
+ TRACE("Skipping duplicate file entry %s\n", filename.c_str());
+ return;
+ }
+
+ break;
+ }
+
+ if(loaded_entry == LoadedHrtfs.end())
+ {
+ TRACE("Got new file \"%s\"\n", filename.c_str());
+
+ LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+1));
+ loaded_entry = LoadedHrtfs.end()-1;
+ std::copy(filename.begin(), filename.end(), (*loaded_entry)->filename.begin());
+ (*loaded_entry)->filename.back() = '\0';
+ }
+
+ /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
+ * format update). */
+ size_t namepos = filename.find_last_of('/')+1;
+ if(!namepos) namepos = filename.find_last_of('\\')+1;
+
+ size_t extpos{filename.find_last_of('.')};
+ if(extpos <= namepos) extpos = std::string::npos;
+
+ const std::string basename{(extpos == std::string::npos) ?
+ filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
+ std::string newname{basename};
+ int count{1};
+ while(checkName(list, newname))
+ {
+ newname = basename;
+ newname += " #";
+ newname += std::to_string(++count);
+ }
+ list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
+ const EnumeratedHrtf &entry = list.back();
+
+ TRACE("Adding file entry \"%s\"\n", entry.name.c_str());
+}
+
+/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
+ * for input instead of opening the given filename.
+ */
+void AddBuiltInEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename, ALuint residx)
+{
+ auto loaded_entry = LoadedHrtfs.begin();
+ for(;loaded_entry != LoadedHrtfs.end();++loaded_entry)
+ {
+ if(filename != (*loaded_entry)->filename.data())
+ continue;
+
+ /* Check if this entry has already been added to the list. */
+ auto iter = std::find_if(list.cbegin(), list.cend(),
+ [loaded_entry](const EnumeratedHrtf &entry) -> bool
+ { return loaded_entry->get() == entry.hrtf; }
+ );
+ if(iter != list.cend())
+ {
+ TRACE("Skipping duplicate file entry %s\n", filename.c_str());
+ return;
+ }
+
+ break;
+ }
+
+ if(loaded_entry == LoadedHrtfs.end())
+ {
+ TRACE("Got new file \"%s\"\n", filename.c_str());
+
+ LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+32));
+ loaded_entry = LoadedHrtfs.end()-1;
+ snprintf((*loaded_entry)->filename.data(), (*loaded_entry)->filename.size(), "!%u_%s",
+ residx, filename.c_str());
+ }
+
+ /* TODO: Get a human-readable name from the HRTF data (possibly coming in a
+ * format update). */
+
+ std::string newname{filename};
+ int count{1};
+ while(checkName(list, newname))
+ {
+ newname = filename;
+ newname += " #";
+ newname += std::to_string(++count);
+ }
+ list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()});
+ const EnumeratedHrtf &entry = list.back();
+
+ TRACE("Adding built-in entry \"%s\"\n", entry.name.c_str());
+}
+
+
+#define IDR_DEFAULT_44100_MHR 1
+#define IDR_DEFAULT_48000_MHR 2
+
+using ResData = al::span<const char>;
+#ifndef ALSOFT_EMBED_HRTF_DATA
+
+ResData GetResource(int /*name*/)
+{ return ResData{}; }
+
+#else
+
+#include "default-44100.mhr.h"
+#include "default-48000.mhr.h"
+
+ResData GetResource(int name)
+{
+ if(name == IDR_DEFAULT_44100_MHR)
+ return {reinterpret_cast<const char*>(hrtf_default_44100), sizeof(hrtf_default_44100)};
+ if(name == IDR_DEFAULT_48000_MHR)
+ return {reinterpret_cast<const char*>(hrtf_default_48000), sizeof(hrtf_default_48000)};
+ return ResData{};
+}
+#endif
+
+} // namespace
+
+
+al::vector<EnumeratedHrtf> EnumerateHrtf(const char *devname)
+{
+ al::vector<EnumeratedHrtf> list;
+
+ bool usedefaults{true};
+ if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths"))
+ {
+ const char *pathlist{pathopt->c_str()};
+ while(pathlist && *pathlist)
+ {
+ const char *next, *end;
+
+ while(isspace(*pathlist) || *pathlist == ',')
+ pathlist++;
+ if(*pathlist == '\0')
+ continue;
+
+ next = strchr(pathlist, ',');
+ if(next)
+ end = next++;
+ else
+ {
+ end = pathlist + strlen(pathlist);
+ usedefaults = false;
+ }
+
+ while(end != pathlist && isspace(*(end-1)))
+ --end;
+ if(end != pathlist)
+ {
+ const std::string pname{pathlist, end};
+ for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
+ AddFileEntry(list, fname);
+ }
+
+ pathlist = next;
+ }
+ }
+ else if(ConfigValueExists(devname, nullptr, "hrtf_tables"))
+ ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
+
+ if(usedefaults)
+ {
+ for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
+ AddFileEntry(list, fname);
+
+ if(!GetResource(IDR_DEFAULT_44100_MHR).empty())
+ AddBuiltInEntry(list, "Built-In 44100hz", IDR_DEFAULT_44100_MHR);
+
+ if(!GetResource(IDR_DEFAULT_48000_MHR).empty())
+ AddBuiltInEntry(list, "Built-In 48000hz", IDR_DEFAULT_48000_MHR);
+ }
+
+ if(!list.empty())
+ {
+ if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf"))
+ {
+ auto iter = std::find_if(list.begin(), list.end(),
+ [&defhrtfopt](const EnumeratedHrtf &entry) -> bool
+ { return entry.name == *defhrtfopt; }
+ );
+ if(iter == list.end())
+ WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str());
+ else if(iter != list.begin())
+ {
+ EnumeratedHrtf entry{std::move(*iter)};
+ list.erase(iter);
+ list.insert(list.begin(), std::move(entry));
+ }
+ }
+ }
+
+ return list;
+}
+
+HrtfEntry *GetLoadedHrtf(HrtfHandle *handle)
+{
+ std::lock_guard<std::mutex> _{LoadedHrtfLock};
+
+ if(handle->entry)
+ {
+ HrtfEntry *hrtf{handle->entry.get()};
+ hrtf->IncRef();
+ return hrtf;
+ }
+
+ std::unique_ptr<std::istream> stream;
+ const char *name{""};
+ ALuint residx{};
+ char ch{};
+ if(sscanf(handle->filename.data(), "!%u%c", &residx, &ch) == 2 && ch == '_')
+ {
+ name = strchr(handle->filename.data(), ch)+1;
+
+ TRACE("Loading %s...\n", name);
+ ResData res{GetResource(residx)};
+ if(res.empty())
+ {
+ ERR("Could not get resource %u, %s\n", residx, name);
+ return nullptr;
+ }
+ stream = al::make_unique<idstream>(res.begin(), res.end());
+ }
+ else
+ {
+ name = handle->filename.data();
+
+ TRACE("Loading %s...\n", handle->filename.data());
+ auto fstr = al::make_unique<al::ifstream>(handle->filename.data(), std::ios::binary);
+ if(!fstr->is_open())
+ {
+ ERR("Could not open %s\n", handle->filename.data());
+ return nullptr;
+ }
+ stream = std::move(fstr);
+ }
+
+ std::unique_ptr<HrtfEntry> hrtf;
+ char magic[sizeof(magicMarker02)];
+ stream->read(magic, sizeof(magic));
+ if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker02)))
+ ERR("%s data is too short (%zu bytes)\n", name, stream->gcount());
+ else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
+ {
+ TRACE("Detected data set format v2\n");
+ hrtf = LoadHrtf02(*stream, name);
+ }
+ else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
+ {
+ TRACE("Detected data set format v1\n");
+ hrtf = LoadHrtf01(*stream, name);
+ }
+ else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
+ {
+ TRACE("Detected data set format v0\n");
+ hrtf = LoadHrtf00(*stream, name);
+ }
+ else
+ ERR("Invalid header in %s: \"%.8s\"\n", name, magic);
+ stream.reset();
+
+ if(!hrtf)
+ {
+ ERR("Failed to load %s\n", name);
+ return nullptr;
+ }
+
+ TRACE("Loaded HRTF support for format: %s %uhz\n",
+ DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
+ handle->entry = std::move(hrtf);
+
+ return handle->entry.get();
+}
+
+
+void HrtfEntry::IncRef()
+{
+ auto ref = IncrementRef(&this->ref);
+ TRACEREF("HrtfEntry %p increasing refcount to %u\n", this, ref);
+}
+
+void HrtfEntry::DecRef()
+{
+ auto ref = DecrementRef(&this->ref);
+ TRACEREF("HrtfEntry %p decreasing refcount to %u\n", this, ref);
+ if(ref == 0)
+ {
+ std::lock_guard<std::mutex> _{LoadedHrtfLock};
+
+ /* Go through and clear all unused HRTFs. */
+ auto delete_unused = [](HrtfHandlePtr &handle) -> void
+ {
+ HrtfEntry *entry{handle->entry.get()};
+ if(entry && ReadRef(&entry->ref) == 0)
+ {
+ TRACE("Unloading unused HRTF %s\n", handle->filename.data());
+ handle->entry = nullptr;
+ }
+ };
+ std::for_each(LoadedHrtfs.begin(), LoadedHrtfs.end(), delete_unused);
+ }
+}