diff options
author | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
commit | cb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch) | |
tree | 23520551bddb2a80354e44da47f54201fdc084f0 /alc/hrtf.cpp | |
parent | 93e60919c8f387c36c267ca9faa1ac653254aea6 (diff) |
Rename Alc to alc
Diffstat (limited to 'alc/hrtf.cpp')
-rw-r--r-- | alc/hrtf.cpp | 1400 |
1 files changed, 1400 insertions, 0 deletions
diff --git a/alc/hrtf.cpp b/alc/hrtf.cpp new file mode 100644 index 00000000..786c4c5d --- /dev/null +++ b/alc/hrtf.cpp @@ -0,0 +1,1400 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2011 by Chris Robinson + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include "hrtf.h" + +#include <algorithm> +#include <array> +#include <cassert> +#include <cctype> +#include <cstdint> +#include <cstdio> +#include <cstring> +#include <functional> +#include <fstream> +#include <iterator> +#include <memory> +#include <mutex> +#include <new> +#include <numeric> +#include <utility> + +#include "AL/al.h" + +#include "alcmain.h" +#include "alconfig.h" +#include "almalloc.h" +#include "alnumeric.h" +#include "aloptional.h" +#include "alspan.h" +#include "compat.h" +#include "filters/splitter.h" +#include "logging.h" +#include "math_defs.h" +#include "opthelpers.h" + + +struct HrtfHandle { + std::unique_ptr<HrtfEntry> entry; + al::FlexArray<char> filename; + + HrtfHandle(size_t fname_len) : filename{fname_len} { } + HrtfHandle(const HrtfHandle&) = delete; + HrtfHandle& operator=(const HrtfHandle&) = delete; + + static std::unique_ptr<HrtfHandle> Create(size_t fname_len); + static constexpr size_t Sizeof(size_t length) noexcept + { + return maxz(sizeof(HrtfHandle), + al::FlexArray<char>::Sizeof(length, offsetof(HrtfHandle, filename))); + } + + DEF_PLACE_NEWDEL() +}; + +std::unique_ptr<HrtfHandle> HrtfHandle::Create(size_t fname_len) +{ + void *ptr{al_calloc(alignof(HrtfHandle), HrtfHandle::Sizeof(fname_len))}; + return std::unique_ptr<HrtfHandle>{new (ptr) HrtfHandle{fname_len}}; +} + +namespace { + +using namespace std::placeholders; + +using HrtfHandlePtr = std::unique_ptr<HrtfHandle>; + +/* Data set limits must be the same as or more flexible than those defined in + * the makemhr utility. + */ +#define MIN_IR_SIZE (8) +#define MAX_IR_SIZE (512) +#define MOD_IR_SIZE (2) + +#define MIN_FD_COUNT (1) +#define MAX_FD_COUNT (16) + +#define MIN_FD_DISTANCE (0.05f) +#define MAX_FD_DISTANCE (2.5f) + +#define MIN_EV_COUNT (5) +#define MAX_EV_COUNT (128) + +#define MIN_AZ_COUNT (1) +#define MAX_AZ_COUNT (128) + +#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1) + +constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'}; +constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'}; +constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'}; + +/* First value for pass-through coefficients (remaining are 0), used for omni- + * directional sounds. */ +constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/}; + +std::mutex LoadedHrtfLock; +al::vector<HrtfHandlePtr> LoadedHrtfs; + + +class databuf final : public std::streambuf { + int_type underflow() override + { return traits_type::eof(); } + + pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override + { + if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) + return traits_type::eof(); + + char_type *cur; + switch(whence) + { + case std::ios_base::beg: + if(offset < 0 || offset > egptr()-eback()) + return traits_type::eof(); + cur = eback() + offset; + break; + + case std::ios_base::cur: + if((offset >= 0 && offset > egptr()-gptr()) || + (offset < 0 && -offset > gptr()-eback())) + return traits_type::eof(); + cur = gptr() + offset; + break; + + case std::ios_base::end: + if(offset > 0 || -offset > egptr()-eback()) + return traits_type::eof(); + cur = egptr() + offset; + break; + + default: + return traits_type::eof(); + } + + setg(eback(), cur, egptr()); + return cur - eback(); + } + + pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override + { + // Simplified version of seekoff + if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) + return traits_type::eof(); + + if(pos < 0 || pos > egptr()-eback()) + return traits_type::eof(); + + setg(eback(), eback() + static_cast<size_t>(pos), egptr()); + return pos; + } + +public: + databuf(const char_type *start, const char_type *end) noexcept + { + setg(const_cast<char_type*>(start), const_cast<char_type*>(start), + const_cast<char_type*>(end)); + } +}; + +class idstream final : public std::istream { + databuf mStreamBuf; + +public: + idstream(const char *start, const char *end) + : std::istream{nullptr}, mStreamBuf{start, end} + { init(&mStreamBuf); } +}; + + +struct IdxBlend { ALsizei idx; ALfloat blend; }; +/* Calculate the elevation index given the polar elevation in radians. This + * will return an index between 0 and (evcount - 1). + */ +IdxBlend CalcEvIndex(ALsizei evcount, ALfloat ev) +{ + ev = (al::MathDefs<float>::Pi()*0.5f + ev) * (evcount-1) / al::MathDefs<float>::Pi(); + ALsizei idx{float2int(ev)}; + + return IdxBlend{mini(idx, evcount-1), ev-idx}; +} + +/* Calculate the azimuth index given the polar azimuth in radians. This will + * return an index between 0 and (azcount - 1). + */ +IdxBlend CalcAzIndex(ALsizei azcount, ALfloat az) +{ + az = (al::MathDefs<float>::Tau()+az) * azcount / al::MathDefs<float>::Tau(); + ALsizei idx{float2int(az)}; + + return IdxBlend{idx%azcount, az-idx}; +} + +} // namespace + + +/* Calculates static HRIR coefficients and delays for the given polar elevation + * and azimuth in radians. The coefficients are normalized. + */ +void GetHrtfCoeffs(const HrtfEntry *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat distance, + ALfloat spread, HrirArray<ALfloat> &coeffs, ALsizei (&delays)[2]) +{ + const ALfloat dirfact{1.0f - (spread / al::MathDefs<float>::Tau())}; + + const auto *field = Hrtf->field; + const auto *field_end = field + Hrtf->fdCount-1; + ALsizei ebase{0}; + while(distance < field->distance && field != field_end) + { + ebase += field->evCount; + ++field; + } + + /* Claculate the elevation indinces. */ + const auto elev0 = CalcEvIndex(field->evCount, elevation); + const ALsizei elev1_idx{mini(elev0.idx+1, field->evCount-1)}; + const ALsizei ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset}; + const ALsizei ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset}; + + /* Calculate azimuth indices. */ + const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth); + const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth); + + /* Calculate the HRIR indices to blend. */ + ALsizei idx[4]{ + ir0offset + az0.idx, + ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount), + ir1offset + az1.idx, + ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount) + }; + + /* Calculate bilinear blending weights, attenuated according to the + * directional panning factor. + */ + const ALfloat blend[4]{ + (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact, + (1.0f-elev0.blend) * ( az0.blend) * dirfact, + ( elev0.blend) * (1.0f-az1.blend) * dirfact, + ( elev0.blend) * ( az1.blend) * dirfact + }; + + /* Calculate the blended HRIR delays. */ + delays[0] = fastf2i( + Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3] + ); + delays[1] = fastf2i( + Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3] + ); + + const ALsizei irSize{Hrtf->irSize}; + ASSUME(irSize >= MIN_IR_SIZE); + + /* Calculate the sample offsets for the HRIR indices. */ + idx[0] *= irSize; + idx[1] *= irSize; + idx[2] *= irSize; + idx[3] *= irSize; + + /* Calculate the blended HRIR coefficients. */ + ALfloat *coeffout{al::assume_aligned<16>(&coeffs[0][0])}; + coeffout[0] = PassthruCoeff * (1.0f-dirfact); + coeffout[1] = PassthruCoeff * (1.0f-dirfact); + std::fill(coeffout+2, coeffout + irSize*2, 0.0f); + for(ALsizei c{0};c < 4;c++) + { + const ALfloat *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]])}; + const ALfloat mult{blend[c]}; + auto blend_coeffs = [mult](const ALfloat src, const ALfloat coeff) noexcept -> ALfloat + { return src*mult + coeff; }; + std::transform(srccoeffs, srccoeffs + irSize*2, coeffout, coeffout, blend_coeffs); + } +} + + +std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans) +{ + void *ptr{al_calloc(16, DirectHrtfState::Sizeof(num_chans))}; + return std::unique_ptr<DirectHrtfState>{new (ptr) DirectHrtfState{num_chans}}; +} + +void BuildBFormatHrtf(const HrtfEntry *Hrtf, DirectHrtfState *state, const ALuint NumChannels, + const AngularPoint *AmbiPoints, const ALfloat (*RESTRICT AmbiMatrix)[MAX_AMBI_CHANNELS], + const size_t AmbiCount, const ALfloat *RESTRICT AmbiOrderHFGain) +{ + static constexpr int OrderFromChan[MAX_AMBI_CHANNELS]{ + 0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3, + }; + /* Set this to true for dual-band HRTF processing. May require better + * calculation of the new IR length to deal with the head and tail + * generated by the HF scaling. + */ + static constexpr bool DualBand{true}; + + ASSUME(NumChannels > 0); + ASSUME(AmbiCount > 0); + + auto &field = Hrtf->field[0]; + ALsizei min_delay{HRTF_HISTORY_LENGTH}; + ALsizei max_delay{0}; + auto idx = al::vector<ALsizei>(AmbiCount); + auto calc_idxs = [Hrtf,&field,&max_delay,&min_delay](const AngularPoint &pt) noexcept -> ALsizei + { + /* Calculate elevation index. */ + const auto evidx = clampi( + static_cast<ALsizei>((90.0f+pt.Elev)*(field.evCount-1)/180.0f + 0.5f), + 0, field.evCount-1); + + const ALsizei azcount{Hrtf->elev[evidx].azCount}; + const ALsizei iroffset{Hrtf->elev[evidx].irOffset}; + + /* Calculate azimuth index for this elevation. */ + const auto azidx = static_cast<ALsizei>((360.0f+pt.Azim)*azcount/360.0f + 0.5f) % azcount; + + /* Calculate the index for the impulse response. */ + ALsizei idx{iroffset + azidx}; + + min_delay = mini(min_delay, mini(Hrtf->delays[idx][0], Hrtf->delays[idx][1])); + max_delay = maxi(max_delay, maxi(Hrtf->delays[idx][0], Hrtf->delays[idx][1])); + + return idx; + }; + std::transform(AmbiPoints, AmbiPoints+AmbiCount, idx.begin(), calc_idxs); + + /* For dual-band processing, add a 16-sample delay to compensate for the HF + * scale on the minimum-phase response. + */ + static constexpr ALsizei base_delay{DualBand ? 16 : 0}; + const ALdouble xover_norm{400.0 / Hrtf->sampleRate}; + BandSplitterR<double> splitter{xover_norm}; + + auto tmpres = al::vector<HrirArray<ALdouble>>(NumChannels); + auto tmpfilt = al::vector<std::array<ALdouble,HRIR_LENGTH*4>>(3); + for(size_t c{0u};c < AmbiCount;++c) + { + const ALfloat (*fir)[2]{&Hrtf->coeffs[idx[c] * Hrtf->irSize]}; + const ALsizei ldelay{Hrtf->delays[idx[c]][0] - min_delay + base_delay}; + const ALsizei rdelay{Hrtf->delays[idx[c]][1] - min_delay + base_delay}; + + if(!DualBand) + { + /* For single-band decoding, apply the HF scale to the response. */ + for(ALuint i{0u};i < NumChannels;++i) + { + const ALdouble mult{ALdouble{AmbiOrderHFGain[OrderFromChan[i]]} * + AmbiMatrix[c][i]}; + const ALsizei numirs{mini(Hrtf->irSize, HRIR_LENGTH-maxi(ldelay, rdelay))}; + ALsizei lidx{ldelay}, ridx{rdelay}; + for(ALsizei j{0};j < numirs;++j) + { + tmpres[i][lidx++][0] += fir[j][0] * mult; + tmpres[i][ridx++][1] += fir[j][1] * mult; + } + } + continue; + } + + /* For dual-band processing, the HRIR needs to be split into low and + * high frequency responses. The band-splitter alone creates frequency- + * dependent phase-shifts, which is not ideal. To counteract it, + * combine it with a backwards phase-shift. + */ + + /* Load the (left) HRIR backwards, into a temp buffer with padding. */ + std::fill(tmpfilt[2].begin(), tmpfilt[2].end(), 0.0); + std::transform(fir, fir+Hrtf->irSize, tmpfilt[2].rbegin() + HRIR_LENGTH*3, + [](const ALfloat (&ir)[2]) noexcept -> ALdouble { return ir[0]; }); + + /* Apply the all-pass on the reversed signal and reverse the resulting + * sample array. This produces the forward response with a backwards + * phase-shift (+n degrees becomes -n degrees). + */ + splitter.applyAllpass(tmpfilt[2].data(), static_cast<int>(tmpfilt[2].size())); + std::reverse(tmpfilt[2].begin(), tmpfilt[2].end()); + + /* Now apply the band-splitter. This applies the normal phase-shift, + * which cancels out with the backwards phase-shift to get the original + * phase on the split signal. + */ + splitter.clear(); + splitter.process(tmpfilt[0].data(), tmpfilt[1].data(), tmpfilt[2].data(), + static_cast<int>(tmpfilt[2].size())); + + /* Apply left ear response with delay and HF scale. */ + for(ALuint i{0u};i < NumChannels;++i) + { + const ALdouble mult{AmbiMatrix[c][i]}; + const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]}; + ALsizei j{HRIR_LENGTH*3 - ldelay}; + for(ALsizei lidx{0};lidx < HRIR_LENGTH;++lidx,++j) + tmpres[i][lidx][0] += (tmpfilt[0][j]*hfgain + tmpfilt[1][j]) * mult; + } + + /* Now run the same process on the right HRIR. */ + std::fill(tmpfilt[2].begin(), tmpfilt[2].end(), 0.0); + std::transform(fir, fir+Hrtf->irSize, tmpfilt[2].rbegin() + HRIR_LENGTH*3, + [](const ALfloat (&ir)[2]) noexcept -> ALdouble { return ir[1]; }); + + splitter.applyAllpass(tmpfilt[2].data(), static_cast<int>(tmpfilt[2].size())); + std::reverse(tmpfilt[2].begin(), tmpfilt[2].end()); + + splitter.clear(); + splitter.process(tmpfilt[0].data(), tmpfilt[1].data(), tmpfilt[2].data(), + static_cast<int>(tmpfilt[2].size())); + + for(ALuint i{0u};i < NumChannels;++i) + { + const ALdouble mult{AmbiMatrix[c][i]}; + const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]}; + ALsizei j{HRIR_LENGTH*3 - rdelay}; + for(ALsizei ridx{0};ridx < HRIR_LENGTH;++ridx,++j) + tmpres[i][ridx][1] += (tmpfilt[0][j]*hfgain + tmpfilt[1][j]) * mult; + } + } + tmpfilt.clear(); + idx.clear(); + + for(ALuint i{0u};i < NumChannels;++i) + { + auto copy_arr = [](const std::array<double,2> &in) noexcept -> std::array<float,2> + { return std::array<float,2>{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; }; + std::transform(tmpres[i].begin(), tmpres[i].end(), state->Chan[i].Coeffs.begin(), + copy_arr); + } + tmpres.clear(); + + ALsizei max_length{HRIR_LENGTH}; + /* Increase the IR size by double the base delay with dual-band processing + * to account for the head and tail from the HF response scale. + */ + const ALsizei irsize{mini(Hrtf->irSize + base_delay*2, max_length)}; + max_length = mini(max_delay-min_delay + irsize, max_length); + + /* Round up to the next IR size multiple. */ + max_length += MOD_IR_SIZE-1; + max_length -= max_length%MOD_IR_SIZE; + + TRACE("Skipped delay: %d, max delay: %d, new FIR length: %d\n", + min_delay, max_delay-min_delay, max_length); + state->IrSize = max_length; +} + + +namespace { + +std::unique_ptr<HrtfEntry> CreateHrtfStore(ALuint rate, ALsizei irSize, const ALsizei fdCount, + const ALubyte *evCount, const ALfloat *distance, const ALushort *azCount, + const ALushort *irOffset, ALsizei irCount, const ALfloat (*coeffs)[2], + const ALubyte (*delays)[2], const char *filename) +{ + std::unique_ptr<HrtfEntry> Hrtf; + + ALsizei evTotal{std::accumulate(evCount, evCount+fdCount, 0)}; + size_t total{sizeof(HrtfEntry)}; + total = RoundUp(total, alignof(HrtfEntry::Field)); /* Align for field infos */ + total += sizeof(HrtfEntry::Field)*fdCount; + total = RoundUp(total, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */ + total += sizeof(Hrtf->elev[0])*evTotal; + total = RoundUp(total, 16); /* Align for coefficients using SIMD */ + total += sizeof(Hrtf->coeffs[0])*irSize*irCount; + total += sizeof(Hrtf->delays[0])*irCount; + + Hrtf.reset(new (al_calloc(16, total)) HrtfEntry{}); + if(!Hrtf) + ERR("Out of memory allocating storage for %s.\n", filename); + else + { + InitRef(&Hrtf->ref, 1u); + Hrtf->sampleRate = rate; + Hrtf->irSize = irSize; + Hrtf->fdCount = fdCount; + + /* Set up pointers to storage following the main HRTF struct. */ + char *base = reinterpret_cast<char*>(Hrtf.get()); + uintptr_t offset = sizeof(HrtfEntry); + + offset = RoundUp(offset, alignof(HrtfEntry::Field)); /* Align for field infos */ + auto field_ = reinterpret_cast<HrtfEntry::Field*>(base + offset); + offset += sizeof(field_[0])*fdCount; + + offset = RoundUp(offset, alignof(HrtfEntry::Elevation)); /* Align for elevation infos */ + auto elev_ = reinterpret_cast<HrtfEntry::Elevation*>(base + offset); + offset += sizeof(elev_[0])*evTotal; + + offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */ + auto coeffs_ = reinterpret_cast<ALfloat(*)[2]>(base + offset); + offset += sizeof(coeffs_[0])*irSize*irCount; + + auto delays_ = reinterpret_cast<ALubyte(*)[2]>(base + offset); + offset += sizeof(delays_[0])*irCount; + + assert(offset == total); + + /* Copy input data to storage. */ + for(ALsizei i{0};i < fdCount;i++) + { + field_[i].distance = distance[i]; + field_[i].evCount = evCount[i]; + } + for(ALsizei i{0};i < evTotal;i++) + { + elev_[i].azCount = azCount[i]; + elev_[i].irOffset = irOffset[i]; + } + for(ALsizei i{0};i < irSize*irCount;i++) + { + coeffs_[i][0] = coeffs[i][0]; + coeffs_[i][1] = coeffs[i][1]; + } + for(ALsizei i{0};i < irCount;i++) + { + delays_[i][0] = delays[i][0]; + delays_[i][1] = delays[i][1]; + } + + /* Finally, assign the storage pointers. */ + Hrtf->field = field_; + Hrtf->elev = elev_; + Hrtf->coeffs = coeffs_; + Hrtf->delays = delays_; + } + + return Hrtf; +} + +ALubyte GetLE_ALubyte(std::istream &data) +{ + return static_cast<ALubyte>(data.get()); +} + +ALshort GetLE_ALshort(std::istream &data) +{ + int ret = data.get(); + ret |= data.get() << 8; + return static_cast<ALshort>((ret^32768) - 32768); +} + +ALushort GetLE_ALushort(std::istream &data) +{ + int ret = data.get(); + ret |= data.get() << 8; + return static_cast<ALushort>(ret); +} + +ALint GetLE_ALint24(std::istream &data) +{ + int ret = data.get(); + ret |= data.get() << 8; + ret |= data.get() << 16; + return (ret^8388608) - 8388608; +} + +ALuint GetLE_ALuint(std::istream &data) +{ + int ret = data.get(); + ret |= data.get() << 8; + ret |= data.get() << 16; + ret |= data.get() << 24; + return ret; +} + +std::unique_ptr<HrtfEntry> LoadHrtf00(std::istream &data, const char *filename) +{ + ALuint rate{GetLE_ALuint(data)}; + ALushort irCount{GetLE_ALushort(data)}; + ALushort irSize{GetLE_ALushort(data)}; + ALubyte evCount{GetLE_ALubyte(data)}; + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + ALboolean failed{AL_FALSE}; + if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) + { + ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", + irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); + failed = AL_TRUE; + } + if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) + { + ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", + evCount, MIN_EV_COUNT, MAX_EV_COUNT); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + al::vector<ALushort> evOffset(evCount); + for(auto &val : evOffset) + val = GetLE_ALushort(data); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + for(ALsizei i{1};i < evCount;i++) + { + if(evOffset[i] <= evOffset[i-1]) + { + ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n", + i, evOffset[i], evOffset[i-1]); + failed = AL_TRUE; + } + } + if(irCount <= evOffset.back()) + { + ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n", + evOffset.size()-1, evOffset.back(), irCount); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + al::vector<ALushort> azCount(evCount); + for(ALsizei i{1};i < evCount;i++) + { + azCount[i-1] = evOffset[i] - evOffset[i-1]; + if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) + { + ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", + i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); + failed = AL_TRUE; + } + } + azCount.back() = irCount - evOffset.back(); + if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT) + { + ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n", + azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount); + al::vector<std::array<ALubyte,2>> delays(irCount); + for(auto &val : coeffs) + val[0] = GetLE_ALshort(data) / 32768.0f; + for(auto &val : delays) + val[0] = GetLE_ALubyte(data); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + for(ALsizei i{0};i < irCount;i++) + { + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + if(failed) + return nullptr; + + /* Mirror the left ear responses to the right ear. */ + for(ALsizei i{0};i < evCount;i++) + { + const ALushort evoffset{evOffset[i]}; + const ALushort azcount{azCount[i]}; + for(ALsizei j{0};j < azcount;j++) + { + const ALsizei lidx{evoffset + j}; + const ALsizei ridx{evoffset + ((azcount-j) % azcount)}; + + for(ALsizei k{0};k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } + } + + static constexpr ALfloat distance{0.0f}; + return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(), + irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]), + &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename); +} + +std::unique_ptr<HrtfEntry> LoadHrtf01(std::istream &data, const char *filename) +{ + ALuint rate{GetLE_ALuint(data)}; + ALushort irSize{GetLE_ALubyte(data)}; + ALubyte evCount{GetLE_ALubyte(data)}; + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + ALboolean failed{AL_FALSE}; + if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) + { + ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", + irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); + failed = AL_TRUE; + } + if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) + { + ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", + evCount, MIN_EV_COUNT, MAX_EV_COUNT); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + al::vector<ALushort> azCount(evCount); + std::generate(azCount.begin(), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data))); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + for(ALsizei i{0};i < evCount;++i) + { + if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) + { + ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n", + i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); + failed = AL_TRUE; + } + } + if(failed) + return nullptr; + + al::vector<ALushort> evOffset(evCount); + evOffset[0] = 0; + ALushort irCount{azCount[0]}; + for(ALsizei i{1};i < evCount;i++) + { + evOffset[i] = evOffset[i-1] + azCount[i-1]; + irCount += azCount[i]; + } + + al::vector<std::array<ALfloat,2>> coeffs(irSize*irCount); + al::vector<std::array<ALubyte,2>> delays(irCount); + for(auto &val : coeffs) + val[0] = GetLE_ALshort(data) / 32768.0f; + for(auto &val : delays) + val[0] = GetLE_ALubyte(data); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + for(ALsizei i{0};i < irCount;i++) + { + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + if(failed) + return nullptr; + + /* Mirror the left ear responses to the right ear. */ + for(ALsizei i{0};i < evCount;i++) + { + const ALushort evoffset{evOffset[i]}; + const ALushort azcount{azCount[i]}; + for(ALsizei j{0};j < azcount;j++) + { + const ALsizei lidx{evoffset + j}; + const ALsizei ridx{evoffset + ((azcount-j) % azcount)}; + + for(ALsizei k{0};k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } + } + + static constexpr ALfloat distance{0.0f}; + return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(), + irCount, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]), + &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename); +} + +#define SAMPLETYPE_S16 0 +#define SAMPLETYPE_S24 1 + +#define CHANTYPE_LEFTONLY 0 +#define CHANTYPE_LEFTRIGHT 1 + +std::unique_ptr<HrtfEntry> LoadHrtf02(std::istream &data, const char *filename) +{ + ALuint rate{GetLE_ALuint(data)}; + ALubyte sampleType{GetLE_ALubyte(data)}; + ALubyte channelType{GetLE_ALubyte(data)}; + ALushort irSize{GetLE_ALubyte(data)}; + ALubyte fdCount{GetLE_ALubyte(data)}; + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + ALboolean failed{AL_FALSE}; + if(sampleType > SAMPLETYPE_S24) + { + ERR("Unsupported sample type: %d\n", sampleType); + failed = AL_TRUE; + } + if(channelType > CHANTYPE_LEFTRIGHT) + { + ERR("Unsupported channel type: %d\n", channelType); + failed = AL_TRUE; + } + + if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE)) + { + ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n", + irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE); + failed = AL_TRUE; + } + if(fdCount < 1 || fdCount > MAX_FD_COUNT) + { + ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n", + fdCount, MIN_FD_COUNT, MAX_FD_COUNT); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + al::vector<ALfloat> distance(fdCount); + al::vector<ALubyte> evCount(fdCount); + al::vector<ALushort> azCount; + for(ALsizei f{0};f < fdCount;f++) + { + distance[f] = GetLE_ALushort(data) / 1000.0f; + evCount[f] = GetLE_ALubyte(data); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + if(distance[f] < MIN_FD_DISTANCE || distance[f] > MAX_FD_DISTANCE) + { + ERR("Unsupported field distance[%d]=%f (%f to %f meters)\n", f, + distance[f], MIN_FD_DISTANCE, MAX_FD_DISTANCE); + failed = AL_TRUE; + } + if(f > 0 && distance[f] <= distance[f-1]) + { + ERR("Field distance[%d] is not after previous (%f > %f)\n", f, distance[f], + distance[f-1]); + failed = AL_TRUE; + } + if(evCount[f] < MIN_EV_COUNT || evCount[f] > MAX_EV_COUNT) + { + ERR("Unsupported elevation count: evCount[%d]=%d (%d to %d)\n", f, + evCount[f], MIN_EV_COUNT, MAX_EV_COUNT); + failed = AL_TRUE; + } + if(failed) + return nullptr; + + size_t ebase{azCount.size()}; + azCount.resize(ebase + evCount[f]); + std::generate(azCount.begin()+ebase, azCount.end(), + std::bind(GetLE_ALubyte, std::ref(data))); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + for(ALsizei e{0};e < evCount[f];e++) + { + if(azCount[ebase+e] < MIN_AZ_COUNT || azCount[ebase+e] > MAX_AZ_COUNT) + { + ERR("Unsupported azimuth count: azCount[%d][%d]=%d (%d to %d)\n", f, e, + azCount[ebase+e], MIN_AZ_COUNT, MAX_AZ_COUNT); + failed = AL_TRUE; + } + } + if(failed) + return nullptr; + } + + al::vector<ALushort> evOffset(azCount.size()); + evOffset[0] = 0; + std::partial_sum(azCount.cbegin(), azCount.cend()-1, evOffset.begin()+1); + const ALsizei irTotal{evOffset.back() + azCount.back()}; + + al::vector<std::array<ALfloat,2>> coeffs(irSize*irTotal); + al::vector<std::array<ALubyte,2>> delays(irTotal); + if(channelType == CHANTYPE_LEFTONLY) + { + if(sampleType == SAMPLETYPE_S16) + { + for(auto &val : coeffs) + val[0] = GetLE_ALshort(data) / 32768.0f; + } + else if(sampleType == SAMPLETYPE_S24) + { + for(auto &val : coeffs) + val[0] = GetLE_ALint24(data) / 8388608.0f; + } + for(auto &val : delays) + val[0] = GetLE_ALubyte(data); + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + for(ALsizei i{0};i < irTotal;++i) + { + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + } + else if(channelType == CHANTYPE_LEFTRIGHT) + { + if(sampleType == SAMPLETYPE_S16) + { + for(auto &val : coeffs) + { + val[0] = GetLE_ALshort(data) / 32768.0f; + val[1] = GetLE_ALshort(data) / 32768.0f; + } + } + else if(sampleType == SAMPLETYPE_S24) + { + for(auto &val : coeffs) + { + val[0] = GetLE_ALint24(data) / 8388608.0f; + val[1] = GetLE_ALint24(data) / 8388608.0f; + } + } + for(auto &val : delays) + { + val[0] = GetLE_ALubyte(data); + val[1] = GetLE_ALubyte(data); + } + if(!data || data.eof()) + { + ERR("Failed reading %s\n", filename); + return nullptr; + } + + for(ALsizei i{0};i < irTotal;++i) + { + if(delays[i][0] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + if(delays[i][1] > MAX_HRIR_DELAY) + { + ERR("Invalid delays[%d][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY); + failed = AL_TRUE; + } + } + } + if(failed) + return nullptr; + + if(channelType == CHANTYPE_LEFTONLY) + { + /* Mirror the left ear responses to the right ear. */ + ALsizei ebase{0}; + for(ALsizei f{0};f < fdCount;f++) + { + for(ALsizei e{0};e < evCount[f];e++) + { + const ALushort evoffset{evOffset[ebase+e]}; + const ALushort azcount{azCount[ebase+e]}; + for(ALsizei a{0};a < azcount;a++) + { + const ALsizei lidx{evoffset + a}; + const ALsizei ridx{evoffset + ((azcount-a) % azcount)}; + + for(ALsizei k{0};k < irSize;k++) + coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; + delays[ridx][1] = delays[lidx][0]; + } + } + ebase += evCount[f]; + } + } + + if(fdCount > 1) + { + auto distance_ = al::vector<ALfloat>(distance.size()); + auto evCount_ = al::vector<ALubyte>(evCount.size()); + auto azCount_ = al::vector<ALushort>(azCount.size()); + auto evOffset_ = al::vector<ALushort>(evOffset.size()); + auto coeffs_ = al::vector<float2>(coeffs.size()); + auto delays_ = al::vector<std::array<ALubyte,2>>(delays.size()); + + /* Simple reverse for the per-field elements. */ + std::reverse_copy(distance.cbegin(), distance.cend(), distance_.begin()); + std::reverse_copy(evCount.cbegin(), evCount.cend(), evCount_.begin()); + + /* Each field has a group of elevations, which each have an azimuth + * count. Reverse the order of the groups, keeping the relative order + * of per-group azimuth counts. + */ + auto azcnt_end = azCount_.end(); + auto copy_azs = [&azCount,&azcnt_end](const size_t ebase, const ALubyte num_evs) -> size_t + { + auto azcnt_src = azCount.begin()+ebase; + azcnt_end = std::copy_backward(azcnt_src, azcnt_src+num_evs, azcnt_end); + return ebase + num_evs; + }; + std::accumulate(evCount.cbegin(), evCount.cend(), size_t{0u}, copy_azs); + assert(azCount_.begin() == azcnt_end); + + /* Reestablish the IR offset for each elevation index, given the new + * ordering of elevations. + */ + evOffset_[0] = 0; + std::partial_sum(azCount_.cbegin(), azCount_.cend()-1, evOffset_.begin()+1); + + /* Reverse the order of each field's group of IRs. */ + auto coeffs_end = coeffs_.end(); + auto delays_end = delays_.end(); + auto copy_irs = [irSize,&azCount,&coeffs,&delays,&coeffs_end,&delays_end](const size_t ebase, const ALubyte num_evs) -> size_t + { + const ALsizei abase{std::accumulate(azCount.cbegin(), azCount.cbegin()+ebase, 0)}; + const ALsizei num_azs{std::accumulate(azCount.cbegin()+ebase, + azCount.cbegin() + (ebase+num_evs), 0)}; + + coeffs_end = std::copy_backward(coeffs.cbegin() + abase*irSize, + coeffs.cbegin() + (abase+num_azs)*irSize, coeffs_end); + delays_end = std::copy_backward(delays.cbegin() + abase, + delays.cbegin() + (abase+num_azs), delays_end); + + return ebase + num_evs; + }; + std::accumulate(evCount.cbegin(), evCount.cend(), size_t{0u}, copy_irs); + assert(coeffs_.begin() == coeffs_end); + assert(delays_.begin() == delays_end); + + distance = std::move(distance_); + evCount = std::move(evCount_); + azCount = std::move(azCount_); + evOffset = std::move(evOffset_); + coeffs = std::move(coeffs_); + delays = std::move(delays_); + } + + return CreateHrtfStore(rate, irSize, fdCount, evCount.data(), distance.data(), azCount.data(), + evOffset.data(), irTotal, &reinterpret_cast<ALfloat(&)[2]>(coeffs[0]), + &reinterpret_cast<ALubyte(&)[2]>(delays[0]), filename); +} + + +bool checkName(al::vector<EnumeratedHrtf> &list, const std::string &name) +{ + return std::find_if(list.cbegin(), list.cend(), + [&name](const EnumeratedHrtf &entry) + { return name == entry.name; } + ) != list.cend(); +} + +void AddFileEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename) +{ + /* Check if this file has already been loaded globally. */ + auto loaded_entry = LoadedHrtfs.begin(); + for(;loaded_entry != LoadedHrtfs.end();++loaded_entry) + { + if(filename != (*loaded_entry)->filename.data()) + continue; + + /* Check if this entry has already been added to the list. */ + auto iter = std::find_if(list.cbegin(), list.cend(), + [loaded_entry](const EnumeratedHrtf &entry) -> bool + { return loaded_entry->get() == entry.hrtf; } + ); + if(iter != list.cend()) + { + TRACE("Skipping duplicate file entry %s\n", filename.c_str()); + return; + } + + break; + } + + if(loaded_entry == LoadedHrtfs.end()) + { + TRACE("Got new file \"%s\"\n", filename.c_str()); + + LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+1)); + loaded_entry = LoadedHrtfs.end()-1; + std::copy(filename.begin(), filename.end(), (*loaded_entry)->filename.begin()); + (*loaded_entry)->filename.back() = '\0'; + } + + /* TODO: Get a human-readable name from the HRTF data (possibly coming in a + * format update). */ + size_t namepos = filename.find_last_of('/')+1; + if(!namepos) namepos = filename.find_last_of('\\')+1; + + size_t extpos{filename.find_last_of('.')}; + if(extpos <= namepos) extpos = std::string::npos; + + const std::string basename{(extpos == std::string::npos) ? + filename.substr(namepos) : filename.substr(namepos, extpos-namepos)}; + std::string newname{basename}; + int count{1}; + while(checkName(list, newname)) + { + newname = basename; + newname += " #"; + newname += std::to_string(++count); + } + list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()}); + const EnumeratedHrtf &entry = list.back(); + + TRACE("Adding file entry \"%s\"\n", entry.name.c_str()); +} + +/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer + * for input instead of opening the given filename. + */ +void AddBuiltInEntry(al::vector<EnumeratedHrtf> &list, const std::string &filename, ALuint residx) +{ + auto loaded_entry = LoadedHrtfs.begin(); + for(;loaded_entry != LoadedHrtfs.end();++loaded_entry) + { + if(filename != (*loaded_entry)->filename.data()) + continue; + + /* Check if this entry has already been added to the list. */ + auto iter = std::find_if(list.cbegin(), list.cend(), + [loaded_entry](const EnumeratedHrtf &entry) -> bool + { return loaded_entry->get() == entry.hrtf; } + ); + if(iter != list.cend()) + { + TRACE("Skipping duplicate file entry %s\n", filename.c_str()); + return; + } + + break; + } + + if(loaded_entry == LoadedHrtfs.end()) + { + TRACE("Got new file \"%s\"\n", filename.c_str()); + + LoadedHrtfs.emplace_back(HrtfHandle::Create(filename.length()+32)); + loaded_entry = LoadedHrtfs.end()-1; + snprintf((*loaded_entry)->filename.data(), (*loaded_entry)->filename.size(), "!%u_%s", + residx, filename.c_str()); + } + + /* TODO: Get a human-readable name from the HRTF data (possibly coming in a + * format update). */ + + std::string newname{filename}; + int count{1}; + while(checkName(list, newname)) + { + newname = filename; + newname += " #"; + newname += std::to_string(++count); + } + list.emplace_back(EnumeratedHrtf{newname, loaded_entry->get()}); + const EnumeratedHrtf &entry = list.back(); + + TRACE("Adding built-in entry \"%s\"\n", entry.name.c_str()); +} + + +#define IDR_DEFAULT_44100_MHR 1 +#define IDR_DEFAULT_48000_MHR 2 + +using ResData = al::span<const char>; +#ifndef ALSOFT_EMBED_HRTF_DATA + +ResData GetResource(int /*name*/) +{ return ResData{}; } + +#else + +#include "default-44100.mhr.h" +#include "default-48000.mhr.h" + +ResData GetResource(int name) +{ + if(name == IDR_DEFAULT_44100_MHR) + return {reinterpret_cast<const char*>(hrtf_default_44100), sizeof(hrtf_default_44100)}; + if(name == IDR_DEFAULT_48000_MHR) + return {reinterpret_cast<const char*>(hrtf_default_48000), sizeof(hrtf_default_48000)}; + return ResData{}; +} +#endif + +} // namespace + + +al::vector<EnumeratedHrtf> EnumerateHrtf(const char *devname) +{ + al::vector<EnumeratedHrtf> list; + + bool usedefaults{true}; + if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths")) + { + const char *pathlist{pathopt->c_str()}; + while(pathlist && *pathlist) + { + const char *next, *end; + + while(isspace(*pathlist) || *pathlist == ',') + pathlist++; + if(*pathlist == '\0') + continue; + + next = strchr(pathlist, ','); + if(next) + end = next++; + else + { + end = pathlist + strlen(pathlist); + usedefaults = false; + } + + while(end != pathlist && isspace(*(end-1))) + --end; + if(end != pathlist) + { + const std::string pname{pathlist, end}; + for(const auto &fname : SearchDataFiles(".mhr", pname.c_str())) + AddFileEntry(list, fname); + } + + pathlist = next; + } + } + else if(ConfigValueExists(devname, nullptr, "hrtf_tables")) + ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n"); + + if(usedefaults) + { + for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf")) + AddFileEntry(list, fname); + + if(!GetResource(IDR_DEFAULT_44100_MHR).empty()) + AddBuiltInEntry(list, "Built-In 44100hz", IDR_DEFAULT_44100_MHR); + + if(!GetResource(IDR_DEFAULT_48000_MHR).empty()) + AddBuiltInEntry(list, "Built-In 48000hz", IDR_DEFAULT_48000_MHR); + } + + if(!list.empty()) + { + if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf")) + { + auto iter = std::find_if(list.begin(), list.end(), + [&defhrtfopt](const EnumeratedHrtf &entry) -> bool + { return entry.name == *defhrtfopt; } + ); + if(iter == list.end()) + WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str()); + else if(iter != list.begin()) + { + EnumeratedHrtf entry{std::move(*iter)}; + list.erase(iter); + list.insert(list.begin(), std::move(entry)); + } + } + } + + return list; +} + +HrtfEntry *GetLoadedHrtf(HrtfHandle *handle) +{ + std::lock_guard<std::mutex> _{LoadedHrtfLock}; + + if(handle->entry) + { + HrtfEntry *hrtf{handle->entry.get()}; + hrtf->IncRef(); + return hrtf; + } + + std::unique_ptr<std::istream> stream; + const char *name{""}; + ALuint residx{}; + char ch{}; + if(sscanf(handle->filename.data(), "!%u%c", &residx, &ch) == 2 && ch == '_') + { + name = strchr(handle->filename.data(), ch)+1; + + TRACE("Loading %s...\n", name); + ResData res{GetResource(residx)}; + if(res.empty()) + { + ERR("Could not get resource %u, %s\n", residx, name); + return nullptr; + } + stream = al::make_unique<idstream>(res.begin(), res.end()); + } + else + { + name = handle->filename.data(); + + TRACE("Loading %s...\n", handle->filename.data()); + auto fstr = al::make_unique<al::ifstream>(handle->filename.data(), std::ios::binary); + if(!fstr->is_open()) + { + ERR("Could not open %s\n", handle->filename.data()); + return nullptr; + } + stream = std::move(fstr); + } + + std::unique_ptr<HrtfEntry> hrtf; + char magic[sizeof(magicMarker02)]; + stream->read(magic, sizeof(magic)); + if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker02))) + ERR("%s data is too short (%zu bytes)\n", name, stream->gcount()); + else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0) + { + TRACE("Detected data set format v2\n"); + hrtf = LoadHrtf02(*stream, name); + } + else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) + { + TRACE("Detected data set format v1\n"); + hrtf = LoadHrtf01(*stream, name); + } + else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) + { + TRACE("Detected data set format v0\n"); + hrtf = LoadHrtf00(*stream, name); + } + else + ERR("Invalid header in %s: \"%.8s\"\n", name, magic); + stream.reset(); + + if(!hrtf) + { + ERR("Failed to load %s\n", name); + return nullptr; + } + + TRACE("Loaded HRTF support for format: %s %uhz\n", + DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate); + handle->entry = std::move(hrtf); + + return handle->entry.get(); +} + + +void HrtfEntry::IncRef() +{ + auto ref = IncrementRef(&this->ref); + TRACEREF("HrtfEntry %p increasing refcount to %u\n", this, ref); +} + +void HrtfEntry::DecRef() +{ + auto ref = DecrementRef(&this->ref); + TRACEREF("HrtfEntry %p decreasing refcount to %u\n", this, ref); + if(ref == 0) + { + std::lock_guard<std::mutex> _{LoadedHrtfLock}; + + /* Go through and clear all unused HRTFs. */ + auto delete_unused = [](HrtfHandlePtr &handle) -> void + { + HrtfEntry *entry{handle->entry.get()}; + if(entry && ReadRef(&entry->ref) == 0) + { + TRACE("Unloading unused HRTF %s\n", handle->filename.data()); + handle->entry = nullptr; + } + }; + std::for_each(LoadedHrtfs.begin(), LoadedHrtfs.end(), delete_unused); + } +} |