diff options
author | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2019-07-28 18:56:04 -0700 |
commit | cb3e96e75640730b9391f0d2d922eecd9ee2ce79 (patch) | |
tree | 23520551bddb2a80354e44da47f54201fdc084f0 /alc/mixer | |
parent | 93e60919c8f387c36c267ca9faa1ac653254aea6 (diff) |
Rename Alc to alc
Diffstat (limited to 'alc/mixer')
-rw-r--r-- | alc/mixer/defs.h | 59 | ||||
-rw-r--r-- | alc/mixer/hrtfbase.h | 138 | ||||
-rw-r--r-- | alc/mixer/mixer_c.cpp | 208 | ||||
-rw-r--r-- | alc/mixer/mixer_neon.cpp | 307 | ||||
-rw-r--r-- | alc/mixer/mixer_sse.cpp | 262 | ||||
-rw-r--r-- | alc/mixer/mixer_sse2.cpp | 84 | ||||
-rw-r--r-- | alc/mixer/mixer_sse3.cpp | 0 | ||||
-rw-r--r-- | alc/mixer/mixer_sse41.cpp | 85 |
8 files changed, 1143 insertions, 0 deletions
diff --git a/alc/mixer/defs.h b/alc/mixer/defs.h new file mode 100644 index 00000000..3e5d1125 --- /dev/null +++ b/alc/mixer/defs.h @@ -0,0 +1,59 @@ +#ifndef MIXER_DEFS_H +#define MIXER_DEFS_H + +#include "AL/alc.h" +#include "AL/al.h" + +#include "alcmain.h" +#include "alu.h" +#include "alspan.h" + + +struct MixGains; +struct MixHrtfFilter; +struct HrtfState; +struct DirectHrtfState; + + +struct CTag { }; +struct SSETag { }; +struct SSE2Tag { }; +struct SSE3Tag { }; +struct SSE4Tag { }; +struct NEONTag { }; + +struct CopyTag { }; +struct PointTag { }; +struct LerpTag { }; +struct CubicTag { }; +struct BSincTag { }; + +template<typename TypeTag, typename InstTag> +const ALfloat *Resample_(const InterpState *state, const ALfloat *RESTRICT src, ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen); + +template<typename InstTag> +void Mix_(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize); +template<typename InstTag> +void MixRow_(FloatBufferLine &OutBuffer, const ALfloat *Gains, const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize); + +template<typename InstTag> +void MixHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, MixHrtfFilter *hrtfparams, const ALsizei BufferSize); +template<typename InstTag> +void MixHrtfBlend_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize); +template<typename InstTag> +void MixDirectHrtf_(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, const ALsizei BufferSize); + +/* Vectorized resampler helpers */ +inline void InitiatePositionArrays(ALsizei frac, ALint increment, ALsizei *RESTRICT frac_arr, ALsizei *RESTRICT pos_arr, ALsizei size) +{ + pos_arr[0] = 0; + frac_arr[0] = frac; + for(ALsizei i{1};i < size;i++) + { + ALint frac_tmp = frac_arr[i-1] + increment; + pos_arr[i] = pos_arr[i-1] + (frac_tmp>>FRACTIONBITS); + frac_arr[i] = frac_tmp&FRACTIONMASK; + } +} + +#endif /* MIXER_DEFS_H */ diff --git a/alc/mixer/hrtfbase.h b/alc/mixer/hrtfbase.h new file mode 100644 index 00000000..a76bd62e --- /dev/null +++ b/alc/mixer/hrtfbase.h @@ -0,0 +1,138 @@ +#ifndef MIXER_HRTFBASE_H +#define MIXER_HRTFBASE_H + +#include <algorithm> + +#include "alu.h" +#include "../hrtf.h" +#include "opthelpers.h" + + +using ApplyCoeffsT = void(ALsizei Offset, float2 *RESTRICT Values, const ALsizei irSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right); + +template<ApplyCoeffsT &ApplyCoeffs> +inline void MixHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *RESTRICT AccumSamples, const ALsizei OutPos, + const ALsizei IrSize, MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + ASSUME(OutPos >= 0); + ASSUME(IrSize >= 4); + ASSUME(BufferSize > 0); + + const auto &Coeffs = *hrtfparams->Coeffs; + const ALfloat gainstep{hrtfparams->GainStep}; + const ALfloat gain{hrtfparams->Gain}; + + ALsizei Delay[2]{ + HRTF_HISTORY_LENGTH - hrtfparams->Delay[0], + HRTF_HISTORY_LENGTH - hrtfparams->Delay[1] }; + ASSUME(Delay[0] >= 0 && Delay[1] >= 0); + ALfloat stepcount{0.0f}; + for(ALsizei i{0};i < BufferSize;++i) + { + const ALfloat g{gain + gainstep*stepcount}; + const ALfloat left{InSamples[Delay[0]++] * g}; + const ALfloat right{InSamples[Delay[1]++] * g}; + ApplyCoeffs(i, AccumSamples+i, IrSize, Coeffs, left, right); + + stepcount += 1.0f; + } + + for(ALsizei i{0};i < BufferSize;++i) + LeftOut[OutPos+i] += AccumSamples[i][0]; + for(ALsizei i{0};i < BufferSize;++i) + RightOut[OutPos+i] += AccumSamples[i][1]; + + hrtfparams->Gain = gain + gainstep*stepcount; +} + +template<ApplyCoeffsT &ApplyCoeffs> +inline void MixHrtfBlendBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *RESTRICT AccumSamples, const ALsizei OutPos, + const ALsizei IrSize, const HrtfFilter *oldparams, MixHrtfFilter *newparams, + const ALsizei BufferSize) +{ + const auto &OldCoeffs = oldparams->Coeffs; + const ALfloat oldGain{oldparams->Gain}; + const ALfloat oldGainStep{-oldGain / static_cast<ALfloat>(BufferSize)}; + const auto &NewCoeffs = *newparams->Coeffs; + const ALfloat newGainStep{newparams->GainStep}; + + ASSUME(OutPos >= 0); + ASSUME(IrSize >= 4); + ASSUME(BufferSize > 0); + + ALsizei Delay[2]{ + HRTF_HISTORY_LENGTH - oldparams->Delay[0], + HRTF_HISTORY_LENGTH - oldparams->Delay[1] }; + ASSUME(Delay[0] >= 0 && Delay[1] >= 0); + ALfloat stepcount{0.0f}; + for(ALsizei i{0};i < BufferSize;++i) + { + const ALfloat g{oldGain + oldGainStep*stepcount}; + const ALfloat left{InSamples[Delay[0]++] * g}; + const ALfloat right{InSamples[Delay[1]++] * g}; + ApplyCoeffs(i, AccumSamples+i, IrSize, OldCoeffs, left, right); + + stepcount += 1.0f; + } + + Delay[0] = HRTF_HISTORY_LENGTH - newparams->Delay[0]; + Delay[1] = HRTF_HISTORY_LENGTH - newparams->Delay[1]; + ASSUME(Delay[0] >= 0 && Delay[1] >= 0); + stepcount = 0.0f; + for(ALsizei i{0};i < BufferSize;++i) + { + const ALfloat g{newGainStep*stepcount}; + const ALfloat left{InSamples[Delay[0]++] * g}; + const ALfloat right{InSamples[Delay[1]++] * g}; + ApplyCoeffs(i, AccumSamples+i, IrSize, NewCoeffs, left, right); + + stepcount += 1.0f; + } + + for(ALsizei i{0};i < BufferSize;++i) + LeftOut[OutPos+i] += AccumSamples[i][0]; + for(ALsizei i{0};i < BufferSize;++i) + RightOut[OutPos+i] += AccumSamples[i][1]; + + newparams->Gain = newGainStep*stepcount; +} + +template<ApplyCoeffsT &ApplyCoeffs> +inline void MixDirectHrtfBase(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *RESTRICT AccumSamples, + DirectHrtfState *State, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALsizei IrSize{State->IrSize}; + ASSUME(IrSize >= 4); + + auto chanstate = State->Chan.begin(); + for(const FloatBufferLine &input : InSamples) + { + const auto &Coeffs = chanstate->Coeffs; + + auto accum_iter = std::copy_n(chanstate->Values.begin(), + chanstate->Values.size(), AccumSamples); + std::fill_n(accum_iter, BufferSize, float2{}); + + for(ALsizei i{0};i < BufferSize;++i) + { + const ALfloat insample{input[i]}; + ApplyCoeffs(i, AccumSamples+i, IrSize, Coeffs, insample, insample); + } + for(ALsizei i{0};i < BufferSize;++i) + LeftOut[i] += AccumSamples[i][0]; + for(ALsizei i{0};i < BufferSize;++i) + RightOut[i] += AccumSamples[i][1]; + + std::copy_n(AccumSamples + BufferSize, chanstate->Values.size(), + chanstate->Values.begin()); + ++chanstate; + } +} + +#endif /* MIXER_HRTFBASE_H */ diff --git a/alc/mixer/mixer_c.cpp b/alc/mixer/mixer_c.cpp new file mode 100644 index 00000000..47c4a6f4 --- /dev/null +++ b/alc/mixer/mixer_c.cpp @@ -0,0 +1,208 @@ +#include "config.h" + +#include <cassert> + +#include <limits> + +#include "alcmain.h" +#include "alu.h" +#include "alSource.h" +#include "alAuxEffectSlot.h" +#include "defs.h" +#include "hrtfbase.h" + + +namespace { + +inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) +{ return vals[0]; } +inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) +{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); } +inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) +{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); } +inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) +{ + ASSUME(istate.bsinc.m > 0); + + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; + const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))}; +#undef FRAC_PHASE_BITDIFF + + const ALfloat *fil{istate.bsinc.filter + istate.bsinc.m*pi*4}; + const ALfloat *scd{fil + istate.bsinc.m}; + const ALfloat *phd{scd + istate.bsinc.m}; + const ALfloat *spd{phd + istate.bsinc.m}; + + // Apply the scale and phase interpolated filter. + ALfloat r{0.0f}; + for(ALsizei j_f{0};j_f < istate.bsinc.m;j_f++) + r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f]; + return r; +} + +using SamplerT = ALfloat(const InterpState&, const ALfloat*RESTRICT, const ALsizei); +template<SamplerT &Sampler> +const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei numsamples) +{ + ASSUME(numsamples > 0); + ASSUME(increment > 0); + ASSUME(frac >= 0); + + const InterpState istate{*state}; + auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat + { + const ALfloat ret{Sampler(istate, src, frac)}; + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + + return ret; + }; + std::generate_n(dst, numsamples, proc_sample); + + return dst; +} + +} // namespace + +template<> +const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALsizei, + ALint, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + ASSUME(dstlen > 0); +#if defined(HAVE_SSE) || defined(HAVE_NEON) + /* Avoid copying the source data if it's aligned like the destination. */ + if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst)&15)) + return src; +#endif + std::copy_n(src, dstlen, dst); + return dst; +} + +template<> +const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_point>(state, src, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_lerp>(state, src, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_cubic>(state, src-1, frac, increment, dst, dstlen); } + +template<> +const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, dstlen); } + + +static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right) +{ + ASSUME(IrSize >= 2); + for(ALsizei c{0};c < IrSize;++c) + { + Values[c][0] += Coeffs[c][0] * left; + Values[c][1] += Coeffs[c][1] * right; + } +} + +template<> +void MixHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + hrtfparams, BufferSize); +} + +template<> +void MixHrtfBlend_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + oldparams, newparams, BufferSize); +} + +template<> +void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const ALsizei BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); +} + + +template<> +void Mix_<CTag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, + ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, + const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f}; + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{output.data()+OutPos}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + ALsizei pos{0}; + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + ALsizei minsize{mini(BufferSize, Counter)}; + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + for(;pos < minsize;pos++) + { + dst[pos] += data[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + for(;pos < BufferSize;pos++) + dst[pos] += data[pos]*gain; + } +} + +/* Basically the inverse of the above. Rather than one input going to multiple + * outputs (each with its own gain), it's multiple inputs (each with its own + * gain) going to one output. This applies one row (vs one column) of a matrix + * transform. And as the matrices are more or less static once set up, no + * stepping is necessary. + */ +template<> +void MixRow_<CTag>(FloatBufferLine &OutBuffer, const ALfloat *Gains, + const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + for(const FloatBufferLine &input : InSamples) + { + const ALfloat *RESTRICT src{input.data()+InPos}; + const ALfloat gain{*(Gains++)}; + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + for(ALsizei i{0};i < BufferSize;i++) + OutBuffer[i] += src[i] * gain; + } +} diff --git a/alc/mixer/mixer_neon.cpp b/alc/mixer/mixer_neon.cpp new file mode 100644 index 00000000..fa487d97 --- /dev/null +++ b/alc/mixer/mixer_neon.cpp @@ -0,0 +1,307 @@ +#include "config.h" + +#include <arm_neon.h> + +#include <limits> + +#include "AL/al.h" +#include "AL/alc.h" +#include "alcmain.h" +#include "alu.h" +#include "hrtf.h" +#include "defs.h" +#include "hrtfbase.h" + + + +template<> +const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState*, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const int32x4_t increment4 = vdupq_n_s32(increment*4); + const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE); + const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK); + alignas(16) ALsizei pos_[4], frac_[4]; + int32x4_t pos4, frac4; + ALsizei todo, pos, i; + + ASSUME(frac >= 0); + ASSUME(increment > 0); + ASSUME(dstlen > 0); + + InitiatePositionArrays(frac, increment, frac_, pos_, 4); + frac4 = vld1q_s32(frac_); + pos4 = vld1q_s32(pos_); + + todo = dstlen & ~3; + for(i = 0;i < todo;i += 4) + { + const int pos0 = vgetq_lane_s32(pos4, 0); + const int pos1 = vgetq_lane_s32(pos4, 1); + const int pos2 = vgetq_lane_s32(pos4, 2); + const int pos3 = vgetq_lane_s32(pos4, 3); + const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]}; + const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]}; + + /* val1 + (val2-val1)*mu */ + const float32x4_t r0 = vsubq_f32(val2, val1); + const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4); + const float32x4_t out = vmlaq_f32(val1, mu, r0); + + vst1q_f32(&dst[i], out); + + frac4 = vaddq_s32(frac4, increment4); + pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS)); + frac4 = vandq_s32(frac4, fracMask4); + } + + /* NOTE: These four elements represent the position *after* the last four + * samples, so the lowest element is the next position to resample. + */ + pos = vgetq_lane_s32(pos4, 0); + frac = vgetq_lane_s32(frac4, 0); + + for(;i < dstlen;++i) + { + dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); + + frac += increment; + pos += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + +template<> +const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const ALfloat *const filter = state->bsinc.filter; + const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf); + const ALsizei m = state->bsinc.m; + const float32x4_t *fil, *scd, *phd, *spd; + ALsizei pi, i, j, offset; + float32x4_t r4; + ALfloat pf; + + ASSUME(m > 0); + ASSUME(dstlen > 0); + ASSUME(increment > 0); + ASSUME(frac >= 0); + + src -= state->bsinc.l; + for(i = 0;i < dstlen;i++) + { + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + pi = frac >> FRAC_PHASE_BITDIFF; + pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF)); +#undef FRAC_PHASE_BITDIFF + + offset = m*pi*4; + fil = (const float32x4_t*)(filter + offset); offset += m; + scd = (const float32x4_t*)(filter + offset); offset += m; + phd = (const float32x4_t*)(filter + offset); offset += m; + spd = (const float32x4_t*)(filter + offset); + + // Apply the scale and phase interpolated filter. + r4 = vdupq_n_f32(0.0f); + { + const ALsizei count = m >> 2; + const float32x4_t pf4 = vdupq_n_f32(pf); + + ASSUME(count > 0); + + for(j = 0;j < count;j++) + { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const float32x4_t f4 = vmlaq_f32( + vmlaq_f32(fil[j], sf4, scd[j]), + pf4, vmlaq_f32(phd[j], sf4, spd[j]) + ); + /* r += f*src */ + r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4])); + } + } + r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)), + vrev64_f32(vget_low_f32(r4)))); + dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + + +static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right) +{ + ASSUME(IrSize >= 2); + + float32x4_t leftright4; + { + float32x2_t leftright2 = vdup_n_f32(0.0); + leftright2 = vset_lane_f32(left, leftright2, 0); + leftright2 = vset_lane_f32(right, leftright2, 1); + leftright4 = vcombine_f32(leftright2, leftright2); + } + + for(ALsizei c{0};c < IrSize;c += 2) + { + float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]), + vld1_f32((float32_t*)&Values[c+1][0])); + float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]); + + vals = vmlaq_f32(vals, coefs, leftright4); + + vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals)); + vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals)); + } +} + +template<> +void MixHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + hrtfparams, BufferSize); +} + +template<> +void MixHrtfBlend_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + oldparams, newparams, BufferSize); +} + +template<> +void MixDirectHrtf_<NEONTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const ALsizei BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); +} + + +template<> +void Mix_<NEONTag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, + ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, + const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f}; + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + ALsizei pos{0}; + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + ALsizei minsize{mini(BufferSize, Counter)}; + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(LIKELY(minsize > 3)) + { + const float32x4_t four4{vdupq_n_f32(4.0f)}; + const float32x4_t step4{vdupq_n_f32(step)}; + const float32x4_t gain4{vdupq_n_f32(gain)}; + float32x4_t step_count4{vsetq_lane_f32(0.0f, + vsetq_lane_f32(1.0f, + vsetq_lane_f32(2.0f, + vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3), + 2), 1), 0 + )}; + ALsizei todo{minsize >> 2}; + + do { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4)); + step_count4 = vaddq_f32(step_count4, four4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = vgetq_lane_f32(step_count4, 0); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(;pos < minsize;pos++) + { + dst[pos] += data[pos]*(gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + + /* Mix until pos is aligned with 4 or the mix is done. */ + minsize = mini(BufferSize, (pos+3)&~3); + for(;pos < minsize;pos++) + dst[pos] += data[pos]*gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + if(LIKELY(BufferSize-pos > 3)) + { + ALsizei todo{(BufferSize-pos) >> 2}; + const float32x4_t gain4 = vdupq_n_f32(gain); + do { + const float32x4_t val4 = vld1q_f32(&data[pos]); + float32x4_t dry4 = vld1q_f32(&dst[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + dst[pos] += data[pos]*gain; + } +} + +template<> +void MixRow_<NEONTag>(FloatBufferLine &OutBuffer, const ALfloat *Gains, + const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + for(const FloatBufferLine &input : InSamples) + { + const ALfloat *RESTRICT src{al::assume_aligned<16>(input.data()+InPos)}; + const ALfloat gain{*(Gains++)}; + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + ALsizei pos{0}; + if(LIKELY(BufferSize > 3)) + { + ALsizei todo{BufferSize >> 2}; + float32x4_t gain4{vdupq_n_f32(gain)}; + do { + const float32x4_t val4 = vld1q_f32(&src[pos]); + float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]); + dry4 = vmlaq_f32(dry4, val4, gain4); + vst1q_f32(&OutBuffer[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + OutBuffer[pos] += src[pos]*gain; + } +} diff --git a/alc/mixer/mixer_sse.cpp b/alc/mixer/mixer_sse.cpp new file mode 100644 index 00000000..b763fdbd --- /dev/null +++ b/alc/mixer/mixer_sse.cpp @@ -0,0 +1,262 @@ +#include "config.h" + +#include <xmmintrin.h> + +#include <limits> + +#include "AL/al.h" +#include "AL/alc.h" +#include "alcmain.h" +#include "alu.h" + +#include "alSource.h" +#include "alAuxEffectSlot.h" +#include "defs.h" +#include "hrtfbase.h" + + +template<> +const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const ALfloat *const filter{state->bsinc.filter}; + const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; + const ALsizei m{state->bsinc.m}; + + ASSUME(m > 0); + ASSUME(dstlen > 0); + ASSUME(increment > 0); + ASSUME(frac >= 0); + + src -= state->bsinc.l; + for(ALsizei i{0};i < dstlen;i++) + { + // Calculate the phase index and factor. +#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS) + const ALsizei pi{frac >> FRAC_PHASE_BITDIFF}; + const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))}; +#undef FRAC_PHASE_BITDIFF + + ALsizei offset{m*pi*4}; + const __m128 *fil{reinterpret_cast<const __m128*>(filter + offset)}; offset += m; + const __m128 *scd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m; + const __m128 *phd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m; + const __m128 *spd{reinterpret_cast<const __m128*>(filter + offset)}; + + // Apply the scale and phase interpolated filter. + __m128 r4{_mm_setzero_ps()}; + { + const ALsizei count{m >> 2}; + const __m128 pf4{_mm_set1_ps(pf)}; + + ASSUME(count > 0); + +#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) + for(ALsizei j{0};j < count;j++) + { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const __m128 f4 = MLA4( + MLA4(fil[j], sf4, scd[j]), + pf4, MLA4(phd[j], sf4, spd[j]) + ); + /* r += f*src */ + r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4])); + } +#undef MLA4 + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + dst[i] = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} + + +static inline void ApplyCoeffs(ALsizei Offset, float2 *RESTRICT Values, const ALsizei IrSize, + const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right) +{ + const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; + + ASSUME(IrSize >= 2); + + if((Offset&1)) + { + __m128 imp0, imp1; + __m128 coeffs{_mm_load_ps(&Coeffs[0][0])}; + __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))}; + imp0 = _mm_mul_ps(lrlr, coeffs); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals); + ALsizei i{1}; + for(;i < IrSize-1;i += 2) + { + coeffs = _mm_load_ps(&Coeffs[i+1][0]); + vals = _mm_load_ps(&Values[i][0]); + imp1 = _mm_mul_ps(lrlr, coeffs); + imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); + vals = _mm_add_ps(imp0, vals); + _mm_store_ps(&Values[i][0], vals); + imp0 = imp1; + } + vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0])); + imp0 = _mm_movehl_ps(imp0, imp0); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals); + } + else + { + for(ALsizei i{0};i < IrSize;i += 2) + { + __m128 coeffs{_mm_load_ps(&Coeffs[i][0])}; + __m128 vals{_mm_load_ps(&Values[i][0])}; + vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs)); + _mm_store_ps(&Values[i][0], vals); + } + } +} + +template<> +void MixHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + MixHrtfFilter *hrtfparams, const ALsizei BufferSize) +{ + MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + hrtfparams, BufferSize); +} + +template<> +void MixHrtfBlend_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const ALfloat *InSamples, float2 *AccumSamples, const ALsizei OutPos, const ALsizei IrSize, + const HrtfFilter *oldparams, MixHrtfFilter *newparams, const ALsizei BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize, + oldparams, newparams, BufferSize); +} + +template<> +void MixDirectHrtf_<SSETag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State, + const ALsizei BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); +} + + +template<> +void Mix_<SSETag>(const ALfloat *data, const al::span<FloatBufferLine> OutBuffer, + ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos, + const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f}; + for(FloatBufferLine &output : OutBuffer) + { + ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)}; + ALfloat gain{*CurrentGains}; + const ALfloat diff{*TargetGains - gain}; + + ALsizei pos{0}; + if(std::fabs(diff) > std::numeric_limits<float>::epsilon()) + { + ALsizei minsize{mini(BufferSize, Counter)}; + const ALfloat step{diff * delta}; + ALfloat step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(LIKELY(minsize > 3)) + { + const __m128 four4{_mm_set1_ps(4.0f)}; + const __m128 step4{_mm_set1_ps(step)}; + const __m128 gain4{_mm_set1_ps(gain)}; + __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; + ALsizei todo{minsize >> 2}; + do { + const __m128 val4{_mm_load_ps(&data[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; +#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) + /* dry += val * (gain + step*step_count) */ + dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); +#undef MLA4 + _mm_store_ps(&dst[pos], dry4); + step_count4 = _mm_add_ps(step_count4, four4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after + * the last four mixed samples, so the lowest element + * represents the next step count to apply. + */ + step_count = _mm_cvtss_f32(step_count4); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(;pos < minsize;pos++) + { + dst[pos] += data[pos]*(gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = *TargetGains; + else + gain += step*step_count; + *CurrentGains = gain; + + /* Mix until pos is aligned with 4 or the mix is done. */ + minsize = mini(BufferSize, (pos+3)&~3); + for(;pos < minsize;pos++) + dst[pos] += data[pos]*gain; + } + ++CurrentGains; + ++TargetGains; + + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + if(LIKELY(BufferSize-pos > 3)) + { + ALsizei todo{(BufferSize-pos) >> 2}; + const __m128 gain4{_mm_set1_ps(gain)}; + do { + const __m128 val4{_mm_load_ps(&data[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; + dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); + _mm_store_ps(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + dst[pos] += data[pos]*gain; + } +} + +template<> +void MixRow_<SSETag>(FloatBufferLine &OutBuffer, const ALfloat *Gains, + const al::span<const FloatBufferLine> InSamples, const ALsizei InPos, const ALsizei BufferSize) +{ + ASSUME(BufferSize > 0); + + for(const FloatBufferLine &input : InSamples) + { + const ALfloat *RESTRICT src{al::assume_aligned<16>(input.data()+InPos)}; + const ALfloat gain{*(Gains++)}; + if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + ALsizei pos{0}; + if(LIKELY(BufferSize > 3)) + { + ALsizei todo{BufferSize >> 2}; + const __m128 gain4 = _mm_set1_ps(gain); + do { + const __m128 val4{_mm_load_ps(&src[pos])}; + __m128 dry4{_mm_load_ps(&OutBuffer[pos])}; + dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); + _mm_store_ps(&OutBuffer[pos], dry4); + pos += 4; + } while(--todo); + } + for(;pos < BufferSize;pos++) + OutBuffer[pos] += src[pos]*gain; + } +} diff --git a/alc/mixer/mixer_sse2.cpp b/alc/mixer/mixer_sse2.cpp new file mode 100644 index 00000000..b5d00106 --- /dev/null +++ b/alc/mixer/mixer_sse2.cpp @@ -0,0 +1,84 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2014 by Timothy Arceri <[email protected]>. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <xmmintrin.h> +#include <emmintrin.h> + +#include "alu.h" +#include "defs.h" + + +template<> +const ALfloat *Resample_<LerpTag,SSE2Tag>(const InterpState*, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const __m128i increment4{_mm_set1_epi32(increment*4)}; + const __m128 fracOne4{_mm_set1_ps(1.0f/FRACTIONONE)}; + const __m128i fracMask4{_mm_set1_epi32(FRACTIONMASK)}; + + ASSUME(frac > 0); + ASSUME(increment > 0); + ASSUME(dstlen >= 0); + + alignas(16) ALsizei pos_[4], frac_[4]; + InitiatePositionArrays(frac, increment, frac_, pos_, 4); + __m128i frac4{_mm_setr_epi32(frac_[0], frac_[1], frac_[2], frac_[3])}; + __m128i pos4{_mm_setr_epi32(pos_[0], pos_[1], pos_[2], pos_[3])}; + + const ALsizei todo{dstlen & ~3}; + for(ALsizei i{0};i < todo;i += 4) + { + const int pos0{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(0, 0, 0, 0)))}; + const int pos1{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(1, 1, 1, 1)))}; + const int pos2{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(2, 2, 2, 2)))}; + const int pos3{_mm_cvtsi128_si32(_mm_shuffle_epi32(pos4, _MM_SHUFFLE(3, 3, 3, 3)))}; + const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; + const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const __m128 r0{_mm_sub_ps(val2, val1)}; + const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; + const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; + + _mm_store_ps(&dst[i], out); + + frac4 = _mm_add_epi32(frac4, increment4); + pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS)); + frac4 = _mm_and_si128(frac4, fracMask4); + } + + /* NOTE: These four elements represent the position *after* the last four + * samples, so the lowest element is the next position to resample. + */ + ALsizei pos{_mm_cvtsi128_si32(pos4)}; + frac = _mm_cvtsi128_si32(frac4); + + for(ALsizei i{todo};i < dstlen;++i) + { + dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); + + frac += increment; + pos += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} diff --git a/alc/mixer/mixer_sse3.cpp b/alc/mixer/mixer_sse3.cpp new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/alc/mixer/mixer_sse3.cpp diff --git a/alc/mixer/mixer_sse41.cpp b/alc/mixer/mixer_sse41.cpp new file mode 100644 index 00000000..7efbda7b --- /dev/null +++ b/alc/mixer/mixer_sse41.cpp @@ -0,0 +1,85 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2014 by Timothy Arceri <[email protected]>. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <xmmintrin.h> +#include <emmintrin.h> +#include <smmintrin.h> + +#include "alu.h" +#include "defs.h" + + +template<> +const ALfloat *Resample_<LerpTag,SSE4Tag>(const InterpState*, const ALfloat *RESTRICT src, + ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen) +{ + const __m128i increment4{_mm_set1_epi32(increment*4)}; + const __m128 fracOne4{_mm_set1_ps(1.0f/FRACTIONONE)}; + const __m128i fracMask4{_mm_set1_epi32(FRACTIONMASK)}; + + ASSUME(frac > 0); + ASSUME(increment > 0); + ASSUME(dstlen >= 0); + + alignas(16) ALsizei pos_[4], frac_[4]; + InitiatePositionArrays(frac, increment, frac_, pos_, 4); + __m128i frac4{_mm_setr_epi32(frac_[0], frac_[1], frac_[2], frac_[3])}; + __m128i pos4{_mm_setr_epi32(pos_[0], pos_[1], pos_[2], pos_[3])}; + + const ALsizei todo{dstlen & ~3}; + for(ALsizei i{0};i < todo;i += 4) + { + const int pos0{_mm_extract_epi32(pos4, 0)}; + const int pos1{_mm_extract_epi32(pos4, 1)}; + const int pos2{_mm_extract_epi32(pos4, 2)}; + const int pos3{_mm_extract_epi32(pos4, 3)}; + const __m128 val1{_mm_setr_ps(src[pos0 ], src[pos1 ], src[pos2 ], src[pos3 ])}; + const __m128 val2{_mm_setr_ps(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])}; + + /* val1 + (val2-val1)*mu */ + const __m128 r0{_mm_sub_ps(val2, val1)}; + const __m128 mu{_mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4)}; + const __m128 out{_mm_add_ps(val1, _mm_mul_ps(mu, r0))}; + + _mm_store_ps(&dst[i], out); + + frac4 = _mm_add_epi32(frac4, increment4); + pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS)); + frac4 = _mm_and_si128(frac4, fracMask4); + } + + /* NOTE: These four elements represent the position *after* the last four + * samples, so the lowest element is the next position to resample. + */ + ALsizei pos{_mm_cvtsi128_si32(pos4)}; + frac = _mm_cvtsi128_si32(frac4); + + for(ALsizei i{todo};i < dstlen;++i) + { + dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE)); + + frac += increment; + pos += frac>>FRACTIONBITS; + frac &= FRACTIONMASK; + } + return dst; +} |