diff options
author | Chris Robinson <[email protected]> | 2020-08-31 06:43:42 -0700 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2020-08-31 06:43:42 -0700 |
commit | af97a929522e031d326f382bd7104cf8b5651d95 (patch) | |
tree | af1a4c828d6209b0ca2b635e123c1dd3422293d0 /alc | |
parent | 88425becb2a68653466b43ac9f43b899a594998c (diff) |
Move more processing to the ConvolutionFilter struct
Diffstat (limited to 'alc')
-rw-r--r-- | alc/effects/convolution.cpp | 235 |
1 files changed, 127 insertions, 108 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp index 42c180d8..1ce3bae2 100644 --- a/alc/effects/convolution.cpp +++ b/alc/effects/convolution.cpp @@ -97,15 +97,16 @@ using complex_d = std::complex<double>; constexpr size_t ConvolveUpdateSize{1024}; constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2}; -#define MAX_FILTER_CHANNELS 4 - - struct ConvolutionFilter final : public EffectBufferBase { FmtChannels mChannels{}; AmbiLayout mAmbiLayout{}; AmbiScaling mAmbiScaling{}; ALuint mAmbiOrder{}; + size_t mFifoPos{0}; + al::vector<std::array<double,ConvolveUpdateSamples*2>,16> mOutput; + alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{}; + size_t mCurrentSegment{0}; size_t mNumConvolveSegs{0}; @@ -123,74 +124,32 @@ struct ConvolutionFilter final : public EffectBufferBase { ConvolutionFilter(size_t numChannels) : mChans{ChannelDataArray::Create(numChannels)} { } - DEF_NEWDEL(ConvolutionFilter) -}; - -struct ConvolutionState final : public EffectState { - ConvolutionFilter *mFilter{}; - - size_t mFifoPos{0}; - alignas(16) std::array<double,ConvolveUpdateSamples*2> mOutput[MAX_FILTER_CHANNELS]{}; - alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{}; - - ConvolutionState() = default; - ~ConvolutionState() override = default; + bool init(const ALCdevice *device, const BufferStorage &buffer); void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo); void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo); - void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t) - {&ConvolutionState::NormalMix}; + void (ConvolutionFilter::*mMix)(const al::span<FloatBufferLine>,const size_t) + {&ConvolutionFilter::NormalMix}; - void deviceUpdate(const ALCdevice *device) override; - EffectBufferBase *createBuffer(const ALCdevice *device, const BufferStorage &buffer) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; + void update(al::span<FloatBufferLine> &outTarget, const ALCcontext *context, + const ALeffectslot *slot, const EffectProps *props, const EffectTarget target); + void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, + const al::span<FloatBufferLine> samplesOut); - DEF_NEWDEL(ConvolutionState) + DEF_NEWDEL(ConvolutionFilter) }; -void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut, - const size_t samplesToDo) -{ - auto &chans = *mFilter->mChans; - for(size_t c{0};c < chans.size();++c) - MixSamples({chans[c].mBuffer.data(), samplesToDo}, samplesOut, chans[c].Current, - chans[c].Target, samplesToDo, 0); -} - -void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut, - const size_t samplesToDo) -{ - auto &chans = *mFilter->mChans; - for(size_t c{0};c < chans.size();++c) - { - const al::span<float> src{chans[c].mBuffer.data(), samplesToDo}; - chans[c].mFilter.processHfScale(src, chans[c].mHfScale); - MixSamples(src, samplesOut, chans[c].Current, chans[c].Target, samplesToDo, 0); - } -} - -void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/) +bool ConvolutionFilter::init(const ALCdevice *device, const BufferStorage &buffer) { - mFifoPos = 0; - for(auto &buffer : mOutput) - buffer.fill(0.0f); - mFftBuffer.fill(complex_d{}); -} - -EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, - const BufferStorage &buffer) -{ - /* An empty buffer doesn't need a convolution filter. */ - if(buffer.mSampleLen < 1) return nullptr; + constexpr size_t m{ConvolveUpdateSize/2 + 1}; /* FIXME: Support anything. */ if(buffer.mChannels != FmtMono && buffer.mChannels != FmtStereo && buffer.mChannels != FmtBFormat2D && buffer.mChannels != FmtBFormat3D) - return nullptr; + return false; if((buffer.mChannels == FmtBFormat2D || buffer.mChannels == FmtBFormat3D) && buffer.mAmbiOrder > 1) - return nullptr; + return false; /* The impulse response needs to have the same sample rate as the input and * output. The bsinc24 resampler is decent, but there is high-frequency @@ -206,33 +165,31 @@ EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, auto bytesPerSample = BytesFromFmt(buffer.mType); auto realChannels = ChannelsFromFmt(buffer.mChannels, buffer.mAmbiOrder); - auto numChannels = ChannelsFromFmt(buffer.mChannels, - minu(buffer.mAmbiOrder, device->mAmbiOrder)); - constexpr size_t m{ConvolveUpdateSize/2 + 1}; + auto numChannels = mChans->size(); const BandSplitter splitter{400.0f / static_cast<float>(device->Frequency)}; - al::intrusive_ptr<ConvolutionFilter> filter{new ConvolutionFilter{numChannels}}; - for(auto &e : *filter->mChans) + for(auto &e : *mChans) e.mFilter = splitter; + mOutput.resize(numChannels, {}); + /* Calculate the number of segments needed to hold the impulse response and * the input history (rounded up), and allocate them. */ - filter->mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / - ConvolveUpdateSamples; + mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples; - const size_t complex_length{filter->mNumConvolveSegs * m * (numChannels+1)}; - filter->mComplexData = std::make_unique<complex_d[]>(complex_length); - std::fill_n(filter->mComplexData.get(), complex_length, complex_d{}); + const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)}; + mComplexData = std::make_unique<complex_d[]>(complex_length); + std::fill_n(mComplexData.get(), complex_length, complex_d{}); - filter->mChannels = buffer.mChannels; - filter->mAmbiLayout = buffer.mAmbiLayout; - filter->mAmbiScaling = buffer.mAmbiScaling; - filter->mAmbiOrder = buffer.mAmbiOrder; + mChannels = buffer.mChannels; + mAmbiLayout = buffer.mAmbiLayout; + mAmbiScaling = buffer.mAmbiScaling; + mAmbiOrder = buffer.mAmbiOrder; auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>(); auto srcsamples = std::make_unique<double[]>(maxz(buffer.mSampleLen, resampledCount)); - complex_d *filteriter = filter->mComplexData.get() + filter->mNumConvolveSegs*m; + complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m; for(size_t c{0};c < numChannels;++c) { /* Load the samples from the buffer, and resample to match the device. */ @@ -243,7 +200,7 @@ EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, srcsamples.get()); size_t done{0}; - for(size_t s{0};s < filter->mNumConvolveSegs;++s) + for(size_t s{0};s < mNumConvolveSegs;++s) { const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)}; @@ -255,42 +212,56 @@ EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter); } } + return true; +} - return filter.release(); +void ConvolutionFilter::NormalMix(const al::span<FloatBufferLine> samplesOut, + const size_t samplesToDo) +{ + for(auto &chan : *mChans) + MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target, + samplesToDo, 0); } -void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slot, - const EffectProps* /*props*/, const EffectTarget target) +void ConvolutionFilter::UpsampleMix(const al::span<FloatBufferLine> samplesOut, + const size_t samplesToDo) { - mFilter = static_cast<ConvolutionFilter*>(slot->Params.mEffectBuffer); - if(!mFilter) return; + for(auto &chan : *mChans) + { + const al::span<float> src{chan.mBuffer.data(), samplesToDo}; + chan.mFilter.processHfScale(src, chan.mHfScale); + MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0); + } +} +void ConvolutionFilter::update(al::span<FloatBufferLine> &outTarget, const ALCcontext *context, + const ALeffectslot *slot, const EffectProps* /*props*/, const EffectTarget target) +{ ALCdevice *device{context->mDevice.get()}; - mMix = &ConvolutionState::NormalMix; + mMix = &ConvolutionFilter::NormalMix; /* The iFFT'd response is scaled up by the number of bins, so apply the * inverse to the output mixing gain. */ constexpr size_t m{ConvolveUpdateSize/2 + 1}; const float gain{slot->Params.Gain * (1.0f/m)}; - auto &chans = *mFilter->mChans; - if(mFilter->mChannels == FmtBFormat3D || mFilter->mChannels == FmtBFormat2D) + auto &chans = *mChans; + if(mChannels == FmtBFormat3D || mChannels == FmtBFormat2D) { - if(device->mAmbiOrder > mFilter->mAmbiOrder) + if(device->mAmbiOrder > mAmbiOrder) { - mMix = &ConvolutionState::UpsampleMix; - const auto scales = BFormatDec::GetHFOrderScales(mFilter->mAmbiOrder, - device->mAmbiOrder); + mMix = &ConvolutionFilter::UpsampleMix; + const auto scales = BFormatDec::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder); chans[0].mHfScale = scales[0]; for(size_t i{1};i < chans.size();++i) chans[i].mHfScale = scales[1]; } - mOutTarget = target.Main->Buffer; + outTarget = target.Main->Buffer; - const auto &scales = GetAmbiScales(mFilter->mAmbiScaling); - const uint8_t *index_map{(mFilter->mChannels == FmtBFormat2D) ? - GetAmbi2DLayout(mFilter->mAmbiLayout).data() : - GetAmbiLayout(mFilter->mAmbiLayout).data()}; + const auto &scales = GetAmbiScales(mAmbiScaling); + const uint8_t *index_map{(mChannels == FmtBFormat2D) ? + GetAmbi2DLayout(mAmbiLayout).data() : + GetAmbiLayout(mAmbiLayout).data()}; std::array<float,MAX_AMBI_CHANNELS> coeffs{}; for(size_t c{0u};c < chans.size();++c) @@ -301,7 +272,7 @@ void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slo coeffs[acn] = 0.0f; } } - else if(mFilter->mChannels == FmtStereo) + else if(mChannels == FmtStereo) { /* TODO: Add a "direct channels" setting for this effect? */ const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX : @@ -310,7 +281,7 @@ void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slo GetChannelIdxByName(*target.RealOut, FrontRight)}; if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX) { - mOutTarget = target.RealOut->Buffer; + outTarget = target.RealOut->Buffer; chans[0].Target[lidx] = gain; chans[1].Target[ridx] = gain; } @@ -319,29 +290,26 @@ void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slo const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f); const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f); - mOutTarget = target.Main->Buffer; + outTarget = target.Main->Buffer; ComputePanGains(target.Main, lcoeffs.data(), gain, chans[0].Target); ComputePanGains(target.Main, rcoeffs.data(), gain, chans[1].Target); } } - else if(mFilter->mChannels == FmtMono) + else if(mChannels == FmtMono) { const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f); - mOutTarget = target.Main->Buffer; + outTarget = target.Main->Buffer; ComputePanGains(target.Main, coeffs.data(), gain, chans[0].Target); } } -void ConvolutionState::process(const size_t samplesToDo, +void ConvolutionFilter::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) { - /* No filter, no response. */ - if(!mFilter) return; - constexpr size_t m{ConvolveUpdateSize/2 + 1}; - size_t curseg{mFilter->mCurrentSegment}; - auto &chans = *mFilter->mChans; + size_t curseg{mCurrentSegment}; + auto &chans = *mChans; for(size_t base{0u};base < samplesToDo;) { @@ -370,22 +338,22 @@ void ConvolutionState::process(const size_t samplesToDo, */ complex_fft(mFftBuffer, -1.0); - std::copy_n(mFftBuffer.begin(), m, &mFilter->mComplexData[curseg*m]); + std::copy_n(mFftBuffer.begin(), m, &mComplexData[curseg*m]); mFftBuffer.fill(complex_d{}); - const complex_d *RESTRICT filter{mFilter->mComplexData.get() + mFilter->mNumConvolveSegs*m}; + const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m}; for(size_t c{0};c < chans.size();++c) { /* Convolve each input segment with its IR filter counterpart * (aligned in time). */ - const complex_d *RESTRICT input{&mFilter->mComplexData[curseg*m]}; - for(size_t s{curseg};s < mFilter->mNumConvolveSegs;++s) + const complex_d *RESTRICT input{&mComplexData[curseg*m]}; + for(size_t s{curseg};s < mNumConvolveSegs;++s) { for(size_t i{0};i < m;++i,++input,++filter) mFftBuffer[i] += *input * *filter; } - input = mFilter->mComplexData.get(); + input = mComplexData.get(); for(size_t s{0};s < curseg;++s) { for(size_t i{0};i < m;++i,++input,++filter) @@ -407,15 +375,66 @@ void ConvolutionState::process(const size_t samplesToDo, } /* Shift the input history. */ - curseg = curseg ? (curseg-1) : (mFilter->mNumConvolveSegs-1); + curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1); } - mFilter->mCurrentSegment = curseg; + mCurrentSegment = curseg; /* Finally, mix to the output. */ (this->*mMix)(samplesOut, samplesToDo); } +struct ConvolutionState final : public EffectState { + ConvolutionFilter *mFilter{}; + + ConvolutionState() = default; + ~ConvolutionState() override = default; + + void deviceUpdate(const ALCdevice *device) override; + EffectBufferBase *createBuffer(const ALCdevice *device, const BufferStorage &buffer) override; + void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; + void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override; + + DEF_NEWDEL(ConvolutionState) +}; + +void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/) +{ +} + +EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device, + const BufferStorage &buffer) +{ + /* An empty buffer doesn't need a convolution filter. */ + if(buffer.mSampleLen < 1) return nullptr; + + auto numChannels = ChannelsFromFmt(buffer.mChannels, + minu(buffer.mAmbiOrder, device->mAmbiOrder)); + + al::intrusive_ptr<ConvolutionFilter> filter{new ConvolutionFilter{numChannels}}; + if LIKELY(filter->init(device, buffer)) + return filter.release(); + return nullptr; +} + + +void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slot, + const EffectProps *props, const EffectTarget target) +{ + mFilter = static_cast<ConvolutionFilter*>(slot->Params.mEffectBuffer); + if(!mFilter) return; + + mFilter->update(mOutTarget, context, slot, props, target); +} + +void ConvolutionState::process(const size_t samplesToDo, + const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) +{ + if(mFilter) + mFilter->process(samplesToDo, samplesIn, samplesOut); +} + + void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/) { switch(param) |