aboutsummaryrefslogtreecommitdiffstats
path: root/core/mixer/mixer_sse.cpp
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2023-05-03 16:17:49 +0200
committerSven Gothel <[email protected]>2023-05-03 16:17:49 +0200
commitec167fd05661a5b02dd406c87081f84a0f8dd77d (patch)
tree9c4669e471c9969bda59265381b18d2d416db060 /core/mixer/mixer_sse.cpp
parent0d14d30808cfe7b9e3413353e3eef8a0f201399a (diff)
parentd3875f333fb6abe2f39d82caca329414871ae53b (diff)
Merge branch 'v1.23.1'
Resolved Conflicts: CMakeLists.txt
Diffstat (limited to 'core/mixer/mixer_sse.cpp')
-rw-r--r--core/mixer/mixer_sse.cpp327
1 files changed, 327 insertions, 0 deletions
diff --git a/core/mixer/mixer_sse.cpp b/core/mixer/mixer_sse.cpp
new file mode 100644
index 00000000..0aa5d5fb
--- /dev/null
+++ b/core/mixer/mixer_sse.cpp
@@ -0,0 +1,327 @@
+#include "config.h"
+
+#include <xmmintrin.h>
+
+#include <cmath>
+#include <limits>
+
+#include "alnumeric.h"
+#include "core/bsinc_defs.h"
+#include "core/cubic_defs.h"
+#include "defs.h"
+#include "hrtfbase.h"
+
+struct SSETag;
+struct CubicTag;
+struct BSincTag;
+struct FastBSincTag;
+
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__)
+#pragma GCC target("sse")
+#endif
+
+namespace {
+
+constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits};
+constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits};
+constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u};
+
+constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits};
+constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits};
+constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u};
+
+#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
+
+inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
+ const float left, const float right)
+{
+ const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
+
+ ASSUME(IrSize >= MinIrLength);
+ /* This isn't technically correct to test alignment, but it's true for
+ * systems that support SSE, which is the only one that needs to know the
+ * alignment of Values (which alternates between 8- and 16-byte aligned).
+ */
+ if(!(reinterpret_cast<uintptr_t>(Values)&15))
+ {
+ for(size_t i{0};i < IrSize;i += 2)
+ {
+ const __m128 coeffs{_mm_load_ps(Coeffs[i].data())};
+ __m128 vals{_mm_load_ps(Values[i].data())};
+ vals = MLA4(vals, lrlr, coeffs);
+ _mm_store_ps(Values[i].data(), vals);
+ }
+ }
+ else
+ {
+ __m128 imp0, imp1;
+ __m128 coeffs{_mm_load_ps(Coeffs[0].data())};
+ __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(Values[0].data()))};
+ imp0 = _mm_mul_ps(lrlr, coeffs);
+ vals = _mm_add_ps(imp0, vals);
+ _mm_storel_pi(reinterpret_cast<__m64*>(Values[0].data()), vals);
+ size_t td{((IrSize+1)>>1) - 1};
+ size_t i{1};
+ do {
+ coeffs = _mm_load_ps(Coeffs[i+1].data());
+ vals = _mm_load_ps(Values[i].data());
+ imp1 = _mm_mul_ps(lrlr, coeffs);
+ imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
+ vals = _mm_add_ps(imp0, vals);
+ _mm_store_ps(Values[i].data(), vals);
+ imp0 = imp1;
+ i += 2;
+ } while(--td);
+ vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(Values[i].data()));
+ imp0 = _mm_movehl_ps(imp0, imp0);
+ vals = _mm_add_ps(imp0, vals);
+ _mm_storel_pi(reinterpret_cast<__m64*>(Values[i].data()), vals);
+ }
+}
+
+force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst,
+ float &CurrentGain, const float TargetGain, const float delta, const size_t min_len,
+ const size_t aligned_len, size_t Counter)
+{
+ float gain{CurrentGain};
+ const float step{(TargetGain-gain) * delta};
+
+ size_t pos{0};
+ if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
+ gain = TargetGain;
+ else
+ {
+ float step_count{0.0f};
+ /* Mix with applying gain steps in aligned multiples of 4. */
+ if(size_t todo{min_len >> 2})
+ {
+ const __m128 four4{_mm_set1_ps(4.0f)};
+ const __m128 step4{_mm_set1_ps(step)};
+ const __m128 gain4{_mm_set1_ps(gain)};
+ __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
+ do {
+ const __m128 val4{_mm_load_ps(&InSamples[pos])};
+ __m128 dry4{_mm_load_ps(&dst[pos])};
+
+ /* dry += val * (gain + step*step_count) */
+ dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
+
+ _mm_store_ps(&dst[pos], dry4);
+ step_count4 = _mm_add_ps(step_count4, four4);
+ pos += 4;
+ } while(--todo);
+ /* NOTE: step_count4 now represents the next four counts after the
+ * last four mixed samples, so the lowest element represents the
+ * next step count to apply.
+ */
+ step_count = _mm_cvtss_f32(step_count4);
+ }
+ /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
+ for(size_t leftover{min_len&3};leftover;++pos,--leftover)
+ {
+ dst[pos] += InSamples[pos] * (gain + step*step_count);
+ step_count += 1.0f;
+ }
+ if(pos == Counter)
+ gain = TargetGain;
+ else
+ gain += step*step_count;
+
+ /* Mix until pos is aligned with 4 or the mix is done. */
+ for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+ }
+ CurrentGain = gain;
+
+ if(!(std::abs(gain) > GainSilenceThreshold))
+ return;
+ if(size_t todo{(InSamples.size()-pos) >> 2})
+ {
+ const __m128 gain4{_mm_set1_ps(gain)};
+ do {
+ const __m128 val4{_mm_load_ps(&InSamples[pos])};
+ __m128 dry4{_mm_load_ps(&dst[pos])};
+ dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
+ _mm_store_ps(&dst[pos], dry4);
+ pos += 4;
+ } while(--todo);
+ }
+ for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
+ dst[pos] += InSamples[pos] * gain;
+}
+
+} // namespace
+
+template<>
+void Resample_<CubicTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ ASSUME(frac < MixerFracOne);
+
+ const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter);
+
+ src -= 1;
+ for(float &out_sample : dst)
+ {
+ const uint pi{frac >> CubicPhaseDiffBits};
+ const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)};
+ const __m128 pf4{_mm_set1_ps(pf)};
+
+ /* Apply the phase interpolated filter. */
+
+ /* f = fil + pf*phd */
+ const __m128 f4 = MLA4(_mm_load_ps(filter[pi].mCoeffs), pf4,
+ _mm_load_ps(filter[pi].mDeltas));
+ /* r = f*src */
+ __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(src))};
+
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the scale and phase interpolated filter.
+ __m128 r4{_mm_setzero_ps()};
+ {
+ const __m128 pf4{_mm_set1_ps(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
+ const float *RESTRICT spd{scd + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
+ const __m128 f4 = MLA4(
+ MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
+ pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
+ /* r += f*src */
+ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+template<>
+void Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac,
+ const uint increment, const al::span<float> dst)
+{
+ const float *const filter{state->bsinc.filter};
+ const size_t m{state->bsinc.m};
+ ASSUME(m > 0);
+ ASSUME(frac < MixerFracOne);
+
+ src -= state->bsinc.l;
+ for(float &out_sample : dst)
+ {
+ // Calculate the phase index and factor.
+ const uint pi{frac >> BSincPhaseDiffBits};
+ const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)};
+
+ // Apply the phase interpolated filter.
+ __m128 r4{_mm_setzero_ps()};
+ {
+ const __m128 pf4{_mm_set1_ps(pf)};
+ const float *RESTRICT fil{filter + m*pi*2};
+ const float *RESTRICT phd{fil + m};
+ size_t td{m >> 2};
+ size_t j{0u};
+
+ do {
+ /* f = fil + pf*phd */
+ const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
+ /* r += f*src */
+ r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
+ j += 4;
+ } while(--td);
+ }
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ out_sample = _mm_cvtss_f32(r4);
+
+ frac += increment;
+ src += frac>>MixerFracBits;
+ frac &= MixerFracMask;
+ }
+}
+
+
+template<>
+void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize)
+{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
+
+template<>
+void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
+{
+ MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
+ BufferSize);
+}
+
+template<>
+void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
+ const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
+ float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
+{
+ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
+ IrSize, BufferSize);
+}
+
+
+template<>
+void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
+ float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ for(FloatBufferLine &output : OutBuffer)
+ MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++,
+ *TargetGains++, delta, min_len, aligned_len, Counter);
+}
+
+template<>
+void Mix_<SSETag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain,
+ const float TargetGain, const size_t Counter)
+{
+ const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
+ const auto min_len = minz(Counter, InSamples.size());
+ const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
+
+ MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len,
+ aligned_len, Counter);
+}