aboutsummaryrefslogtreecommitdiffstats
path: root/utils/makehrtf.c
diff options
context:
space:
mode:
authorSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
committerSven Gothel <[email protected]>2019-04-07 23:39:04 +0200
commit73233ce69919fc19c53ce8663c5b8cc05227f07e (patch)
treef2b6ccc1a14d7c387f33398a44ea4511d7ecb212 /utils/makehrtf.c
parent8efa4c7ba5ee8eb399d31a9884e45f743d4625ad (diff)
parent99a55c445211fea77af6ab61cbc6a6ec4fbdc9b9 (diff)
Merge branch 'v1.19' of git://repo.or.cz/openal-soft into v1.19v1.19
Diffstat (limited to 'utils/makehrtf.c')
-rw-r--r--utils/makehrtf.c5002
1 files changed, 2900 insertions, 2102 deletions
diff --git a/utils/makehrtf.c b/utils/makehrtf.c
index 57d8a91a..0bd36849 100644
--- a/utils/makehrtf.c
+++ b/utils/makehrtf.c
@@ -2,7 +2,7 @@
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
- * Copyright (C) 2011-2014 Christopher Fitzgerald
+ * Copyright (C) 2011-2017 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -60,19 +60,38 @@
#include "config.h"
+#define _UNICODE
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
+#include <stddef.h>
#include <string.h>
+#include <limits.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
+#ifdef HAVE_GETOPT
+#include <unistd.h>
+#else
+#include "getopt.h"
+#endif
-// Rely (if naively) on OpenAL's header for the types used for serialization.
-#include "AL/al.h"
-#include "AL/alext.h"
+#include "win_main_utf8.h"
+
+/* Define int64_t and uint64_t types */
+#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+#include <inttypes.h>
+#elif defined(_WIN32) && defined(__GNUC__)
+#include <stdint.h>
+#elif defined(_WIN32)
+typedef __int64 int64_t;
+typedef unsigned __int64 uint64_t;
+#else
+/* Fallback if nothing above works */
+#include <inttypes.h>
+#endif
#ifndef M_PI
#define M_PI (3.14159265358979323846)
@@ -82,8 +101,9 @@
#define HUGE_VAL (1.0 / 0.0)
#endif
+
// The epsilon used to maintain signal stability.
-#define EPSILON (1e-15)
+#define EPSILON (1e-9)
// Constants for accessing the token reader's ring buffer.
#define TR_RING_BITS (16)
@@ -109,6 +129,9 @@
#define MIN_POINTS (16)
#define MAX_POINTS (8192)
+// The limit to the number of 'distances' listed in the data set definition.
+#define MAX_FD_COUNT (16)
+
// The limits to the number of 'azimuths' listed in the data set definition.
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
@@ -121,10 +144,10 @@
#define MIN_RADIUS (0.05)
#define MAX_RADIUS (0.15)
-// The limits for the 'distance' from source to listener in the definition
-// file.
-#define MIN_DISTANCE (0.5)
-#define MAX_DISTANCE (2.5)
+// The limits for the 'distance' from source to listener for each field in
+// the definition file.
+#define MIN_DISTANCE (0.05)
+#define MAX_DISTANCE (2.50)
// The maximum number of channels that can be addressed for a WAVE file
// source listed in the data set definition.
@@ -145,16 +168,16 @@
#define MAX_ASCII_BITS (32)
// The limits to the FFT window size override on the command line.
-#define MIN_FFTSIZE (512)
-#define MAX_FFTSIZE (16384)
+#define MIN_FFTSIZE (65536)
+#define MAX_FFTSIZE (131072)
// The limits to the equalization range limit on the command line.
#define MIN_LIMIT (2.0)
#define MAX_LIMIT (120.0)
// The limits to the truncation window size on the command line.
-#define MIN_TRUNCSIZE (8)
-#define MAX_TRUNCSIZE (128)
+#define MIN_TRUNCSIZE (16)
+#define MAX_TRUNCSIZE (512)
// The limits to the custom head radius on the command line.
#define MIN_CUSTOM_RADIUS (0.05)
@@ -165,6 +188,7 @@
#define MOD_TRUNCSIZE (8)
// The defaults for the command line options.
+#define DEFAULT_FFTSIZE (65536)
#define DEFAULT_EQUALIZE (1)
#define DEFAULT_SURFACE (1)
#define DEFAULT_LIMIT (24.0)
@@ -191,267 +215,378 @@
#define MAX_HRTD (63.0)
// The OpenAL Soft HRTF format marker. It stands for minimum-phase head
-// response protocol 01.
-#define MHR_FORMAT ("MinPHR01")
+// response protocol 02.
+#define MHR_FORMAT ("MinPHR02")
+
+// Sample and channel type enum values.
+typedef enum SampleTypeT {
+ ST_S16 = 0,
+ ST_S24 = 1
+} SampleTypeT;
+
+// Certain iterations rely on these integer enum values.
+typedef enum ChannelTypeT {
+ CT_NONE = -1,
+ CT_MONO = 0,
+ CT_STEREO = 1
+} ChannelTypeT;
// Byte order for the serialization routines.
-enum ByteOrderT {
- BO_NONE = 0,
- BO_LITTLE ,
- BO_BIG
-};
+typedef enum ByteOrderT {
+ BO_NONE,
+ BO_LITTLE,
+ BO_BIG
+} ByteOrderT;
// Source format for the references listed in the data set definition.
-enum SourceFormatT {
- SF_NONE = 0,
- SF_WAVE , // RIFF/RIFX WAVE file.
- SF_BIN_LE , // Little-endian binary file.
- SF_BIN_BE , // Big-endian binary file.
- SF_ASCII // ASCII text file.
-};
+typedef enum SourceFormatT {
+ SF_NONE,
+ SF_WAVE, // RIFF/RIFX WAVE file.
+ SF_BIN_LE, // Little-endian binary file.
+ SF_BIN_BE, // Big-endian binary file.
+ SF_ASCII // ASCII text file.
+} SourceFormatT;
// Element types for the references listed in the data set definition.
-enum ElementTypeT {
- ET_NONE = 0,
- ET_INT , // Integer elements.
- ET_FP // Floating-point elements.
-};
+typedef enum ElementTypeT {
+ ET_NONE,
+ ET_INT, // Integer elements.
+ ET_FP // Floating-point elements.
+} ElementTypeT;
// Head model used for calculating the impulse delays.
-enum HeadModelT {
- HM_NONE = 0,
- HM_DATASET , // Measure the onset from the dataset.
- HM_SPHERE // Calculate the onset using a spherical head model.
-};
-
-// Desired output format from the command line.
-enum OutputFormatT {
- OF_NONE = 0,
- OF_MHR // OpenAL Soft MHR data set file.
-};
+typedef enum HeadModelT {
+ HM_NONE,
+ HM_DATASET, // Measure the onset from the dataset.
+ HM_SPHERE // Calculate the onset using a spherical head model.
+} HeadModelT;
// Unsigned integer type.
-typedef unsigned int uint;
+typedef unsigned int uint;
// Serialization types. The trailing digit indicates the number of bits.
-typedef ALubyte uint8;
-
-typedef ALint int32;
-typedef ALuint uint32;
-typedef ALuint64SOFT uint64;
-
-typedef enum ByteOrderT ByteOrderT;
-typedef enum SourceFormatT SourceFormatT;
-typedef enum ElementTypeT ElementTypeT;
-typedef enum HeadModelT HeadModelT;
-typedef enum OutputFormatT OutputFormatT;
-
-typedef struct TokenReaderT TokenReaderT;
-typedef struct SourceRefT SourceRefT;
-typedef struct HrirDataT HrirDataT;
-typedef struct ResamplerT ResamplerT;
+typedef unsigned char uint8;
+typedef int int32;
+typedef unsigned int uint32;
+typedef uint64_t uint64;
// Token reader state for parsing the data set definition.
-struct TokenReaderT {
- FILE * mFile;
- const char * mName;
- uint mLine,
- mColumn;
- char mRing [TR_RING_SIZE];
- size_t mIn,
- mOut;
-};
+typedef struct TokenReaderT {
+ FILE *mFile;
+ const char *mName;
+ uint mLine;
+ uint mColumn;
+ char mRing[TR_RING_SIZE];
+ size_t mIn;
+ size_t mOut;
+} TokenReaderT;
// Source reference state used when loading sources.
-struct SourceRefT {
- SourceFormatT mFormat;
- ElementTypeT mType;
- uint mSize;
- int mBits;
- uint mChannel,
- mSkip,
- mOffset;
- char mPath [MAX_PATH_LEN + 1];
-};
+typedef struct SourceRefT {
+ SourceFormatT mFormat;
+ ElementTypeT mType;
+ uint mSize;
+ int mBits;
+ uint mChannel;
+ uint mSkip;
+ uint mOffset;
+ char mPath[MAX_PATH_LEN+1];
+} SourceRefT;
+
+// Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
+typedef struct HrirAzT {
+ double mAzimuth;
+ uint mIndex;
+ double mDelays[2];
+ double *mIrs[2];
+} HrirAzT;
+
+typedef struct HrirEvT {
+ double mElevation;
+ uint mIrCount;
+ uint mAzCount;
+ HrirAzT *mAzs;
+} HrirEvT;
+
+typedef struct HrirFdT {
+ double mDistance;
+ uint mIrCount;
+ uint mEvCount;
+ uint mEvStart;
+ HrirEvT *mEvs;
+} HrirFdT;
// The HRIR metrics and data set used when loading, processing, and storing
// the resulting HRTF.
-struct HrirDataT {
- uint mIrRate,
- mIrCount,
- mIrSize,
- mIrPoints,
- mFftSize,
- mEvCount,
- mEvStart,
- mAzCount [MAX_EV_COUNT],
- mEvOffset [MAX_EV_COUNT];
- double mRadius,
- mDistance,
- * mHrirs,
- * mHrtds,
- mMaxHrtd;
-};
+typedef struct HrirDataT {
+ uint mIrRate;
+ SampleTypeT mSampleType;
+ ChannelTypeT mChannelType;
+ uint mIrPoints;
+ uint mFftSize;
+ uint mIrSize;
+ double mRadius;
+ uint mIrCount;
+ uint mFdCount;
+ HrirFdT *mFds;
+} HrirDataT;
// The resampler metrics and FIR filter.
-struct ResamplerT {
- uint mP,
- mQ,
- mM,
- mL;
- double * mF;
-};
-
-/* Token reader routines for parsing text files. Whitespace is not
- * significant. It can process tokens as identifiers, numbers (integer and
- * floating-point), strings, and operators. Strings must be encapsulated by
- * double-quotes and cannot span multiple lines.
+typedef struct ResamplerT {
+ uint mP, mQ, mM, mL;
+ double *mF;
+} ResamplerT;
+
+
+/****************************************
+ *** Complex number type and routines ***
+ ****************************************/
+
+typedef struct {
+ double Real, Imag;
+} Complex;
+
+static Complex MakeComplex(double r, double i)
+{
+ Complex c = { r, i };
+ return c;
+}
+
+static Complex c_add(Complex a, Complex b)
+{
+ Complex r;
+ r.Real = a.Real + b.Real;
+ r.Imag = a.Imag + b.Imag;
+ return r;
+}
+
+static Complex c_sub(Complex a, Complex b)
+{
+ Complex r;
+ r.Real = a.Real - b.Real;
+ r.Imag = a.Imag - b.Imag;
+ return r;
+}
+
+static Complex c_mul(Complex a, Complex b)
+{
+ Complex r;
+ r.Real = a.Real*b.Real - a.Imag*b.Imag;
+ r.Imag = a.Imag*b.Real + a.Real*b.Imag;
+ return r;
+}
+
+static Complex c_muls(Complex a, double s)
+{
+ Complex r;
+ r.Real = a.Real * s;
+ r.Imag = a.Imag * s;
+ return r;
+}
+
+static double c_abs(Complex a)
+{
+ return sqrt(a.Real*a.Real + a.Imag*a.Imag);
+}
+
+static Complex c_exp(Complex a)
+{
+ Complex r;
+ double e = exp(a.Real);
+ r.Real = e * cos(a.Imag);
+ r.Imag = e * sin(a.Imag);
+ return r;
+}
+
+/*****************************
+ *** Token reader routines ***
+ *****************************/
+
+/* Whitespace is not significant. It can process tokens as identifiers, numbers
+ * (integer and floating-point), strings, and operators. Strings must be
+ * encapsulated by double-quotes and cannot span multiple lines.
*/
// Setup the reader on the given file. The filename can be NULL if no error
// output is desired.
-static void TrSetup (FILE * fp, const char * filename, TokenReaderT * tr) {
- const char * name = NULL;
- char ch;
-
- tr -> mFile = fp;
- name = filename;
- // If a filename was given, store a pointer to the base name.
- if (filename != NULL) {
- while ((ch = (* filename)) != '\0') {
- if ((ch == '/') || (ch == '\\'))
- name = filename + 1;
- filename ++;
- }
- }
- tr -> mName = name;
- tr -> mLine = 1;
- tr -> mColumn = 1;
- tr -> mIn = 0;
- tr -> mOut = 0;
+static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
+{
+ const char *name = NULL;
+
+ if(filename)
+ {
+ const char *slash = strrchr(filename, '/');
+ if(slash)
+ {
+ const char *bslash = strrchr(slash+1, '\\');
+ if(bslash) name = bslash+1;
+ else name = slash+1;
+ }
+ else
+ {
+ const char *bslash = strrchr(filename, '\\');
+ if(bslash) name = bslash+1;
+ else name = filename;
+ }
+ }
+
+ tr->mFile = fp;
+ tr->mName = name;
+ tr->mLine = 1;
+ tr->mColumn = 1;
+ tr->mIn = 0;
+ tr->mOut = 0;
}
// Prime the reader's ring buffer, and return a result indicating that there
// is text to process.
-static int TrLoad (TokenReaderT * tr) {
- size_t toLoad, in, count;
-
- toLoad = TR_RING_SIZE - (tr -> mIn - tr -> mOut);
- if ((toLoad >= TR_LOAD_SIZE) && (! feof (tr -> mFile))) {
- // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
- toLoad = TR_LOAD_SIZE;
- in = tr -> mIn & TR_RING_MASK;
- count = TR_RING_SIZE - in;
- if (count < toLoad) {
- tr -> mIn += fread (& tr -> mRing [in], 1, count, tr -> mFile);
- tr -> mIn += fread (& tr -> mRing [0], 1, toLoad - count, tr -> mFile);
- } else {
- tr -> mIn += fread (& tr -> mRing [in], 1, toLoad, tr -> mFile);
- }
- if (tr -> mOut >= TR_RING_SIZE) {
- tr -> mOut -= TR_RING_SIZE;
- tr -> mIn -= TR_RING_SIZE;
- }
- }
- if (tr -> mIn > tr -> mOut)
- return (1);
- return (0);
+static int TrLoad(TokenReaderT *tr)
+{
+ size_t toLoad, in, count;
+
+ toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
+ if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
+ {
+ // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
+ toLoad = TR_LOAD_SIZE;
+ in = tr->mIn&TR_RING_MASK;
+ count = TR_RING_SIZE - in;
+ if(count < toLoad)
+ {
+ tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
+ tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
+ }
+ else
+ tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
+
+ if(tr->mOut >= TR_RING_SIZE)
+ {
+ tr->mOut -= TR_RING_SIZE;
+ tr->mIn -= TR_RING_SIZE;
+ }
+ }
+ if(tr->mIn > tr->mOut)
+ return 1;
+ return 0;
}
// Error display routine. Only displays when the base name is not NULL.
-static void TrErrorVA (const TokenReaderT * tr, uint line, uint column, const char * format, va_list argPtr) {
- if (tr -> mName != NULL) {
- fprintf (stderr, "Error (%s:%u:%u): ", tr -> mName, line, column);
- vfprintf (stderr, format, argPtr);
- }
+static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
+{
+ if(!tr->mName)
+ return;
+ fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column);
+ vfprintf(stderr, format, argPtr);
}
// Used to display an error at a saved line/column.
-static void TrErrorAt (const TokenReaderT * tr, uint line, uint column, const char * format, ...) {
- va_list argPtr;
+static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
+{
+ va_list argPtr;
- va_start (argPtr, format);
- TrErrorVA (tr, line, column, format, argPtr);
- va_end (argPtr);
+ va_start(argPtr, format);
+ TrErrorVA(tr, line, column, format, argPtr);
+ va_end(argPtr);
}
// Used to display an error at the current line/column.
-static void TrError (const TokenReaderT * tr, const char * format, ...) {
- va_list argPtr;
+static void TrError(const TokenReaderT *tr, const char *format, ...)
+{
+ va_list argPtr;
- va_start (argPtr, format);
- TrErrorVA (tr, tr -> mLine, tr -> mColumn, format, argPtr);
- va_end (argPtr);
+ va_start(argPtr, format);
+ TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
+ va_end(argPtr);
}
// Skips to the next line.
-static void TrSkipLine (TokenReaderT * tr) {
- char ch;
+static void TrSkipLine(TokenReaderT *tr)
+{
+ char ch;
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- tr -> mOut ++;
- if (ch == '\n') {
- tr -> mLine ++;
- tr -> mColumn = 1;
- break;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ tr->mOut++;
+ if(ch == '\n')
+ {
+ tr->mLine++;
+ tr->mColumn = 1;
+ break;
+ }
+ tr->mColumn ++;
}
- tr -> mColumn ++;
- }
}
// Skips to the next token.
-static int TrSkipWhitespace (TokenReaderT * tr) {
- char ch;
-
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (isspace (ch)) {
- tr -> mOut ++;
- if (ch == '\n') {
- tr -> mLine ++;
- tr -> mColumn = 1;
- } else {
- tr -> mColumn ++;
- }
- } else if (ch == '#') {
- TrSkipLine (tr);
- } else {
- return (1);
- }
- }
- return (0);
+static int TrSkipWhitespace(TokenReaderT *tr)
+{
+ char ch;
+
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(isspace(ch))
+ {
+ tr->mOut++;
+ if(ch == '\n')
+ {
+ tr->mLine++;
+ tr->mColumn = 1;
+ }
+ else
+ tr->mColumn++;
+ }
+ else if(ch == '#')
+ TrSkipLine(tr);
+ else
+ return 1;
+ }
+ return 0;
}
// Get the line and/or column of the next token (or the end of input).
-static void TrIndication (TokenReaderT * tr, uint * line, uint * column) {
- TrSkipWhitespace (tr);
- if (line != NULL)
- (* line) = tr -> mLine;
- if (column != NULL)
- (* column) = tr -> mColumn;
+static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
+{
+ TrSkipWhitespace(tr);
+ if(line) *line = tr->mLine;
+ if(column) *column = tr->mColumn;
+}
+
+// Checks to see if a token is (likely to be) an identifier. It does not
+// display any errors and will not proceed to the next token.
+static int TrIsIdent(TokenReaderT *tr)
+{
+ char ch;
+
+ if(!TrSkipWhitespace(tr))
+ return 0;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ return ch == '_' || isalpha(ch);
}
+
// Checks to see if a token is the given operator. It does not display any
// errors and will not proceed to the next token.
-static int TrIsOperator (TokenReaderT * tr, const char * op) {
- size_t out, len;
- char ch;
-
- if (! TrSkipWhitespace (tr))
- return (0);
- out = tr -> mOut;
- len = 0;
- while ((op [len] != '\0') && (out < tr -> mIn)) {
- ch = tr -> mRing [out & TR_RING_MASK];
- if (ch != op [len])
- break;
- len ++;
- out ++;
- }
- if (op [len] == '\0')
- return (1);
- return (0);
+static int TrIsOperator(TokenReaderT *tr, const char *op)
+{
+ size_t out, len;
+ char ch;
+
+ if(!TrSkipWhitespace(tr))
+ return 0;
+ out = tr->mOut;
+ len = 0;
+ while(op[len] != '\0' && out < tr->mIn)
+ {
+ ch = tr->mRing[out&TR_RING_MASK];
+ if(ch != op[len]) break;
+ len++;
+ out++;
+ }
+ if(op[len] == '\0')
+ return 1;
+ return 0;
}
/* The TrRead*() routines obtain the value of a matching token type. They
@@ -460,322 +595,377 @@ static int TrIsOperator (TokenReaderT * tr, const char * op) {
*/
// Reads and validates an identifier token.
-static int TrReadIdent (TokenReaderT * tr, const uint maxLen, char * ident) {
- uint col, len;
- char ch;
-
- col = tr -> mColumn;
- if (TrSkipWhitespace (tr)) {
- col = tr -> mColumn;
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if ((ch == '_') || isalpha (ch)) {
- len = 0;
- do {
- if (len < maxLen)
- ident [len] = ch;
- len ++;
- tr -> mOut ++;
- if (! TrLoad (tr))
- break;
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- } while ((ch == '_') || isdigit (ch) || isalpha (ch));
- tr -> mColumn += len;
- if (len > maxLen) {
- TrErrorAt (tr, tr -> mLine, col, "Identifier is too long.\n");
- return (0);
- }
- ident [len] = '\0';
- return (1);
- }
- }
- TrErrorAt (tr, tr -> mLine, col, "Expected an identifier.\n");
- return (0);
+static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '_' || isalpha(ch))
+ {
+ len = 0;
+ do {
+ if(len < maxLen)
+ ident[len] = ch;
+ len++;
+ tr->mOut++;
+ if(!TrLoad(tr))
+ break;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ } while(ch == '_' || isdigit(ch) || isalpha(ch));
+
+ tr->mColumn += len;
+ if(len < maxLen)
+ {
+ ident[len] = '\0';
+ return 1;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
+ return 0;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
+ return 0;
}
// Reads and validates (including bounds) an integer token.
-static int TrReadInt (TokenReaderT * tr, const int loBound, const int hiBound, int * value) {
- uint col, digis, len;
- char ch, temp [64 + 1];
-
- col = tr -> mColumn;
- if (TrSkipWhitespace (tr)) {
- col = tr -> mColumn;
- len = 0;
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if ((ch == '+') || (ch == '-')) {
- temp [len] = ch;
- len ++;
- tr -> mOut ++;
- }
- digis = 0;
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (! isdigit (ch))
- break;
- if (len < 64)
- temp [len] = ch;
- len ++;
- digis ++;
- tr -> mOut ++;
- }
- tr -> mColumn += len;
- if ((digis > 0) && (ch != '.') && (! isalpha (ch))) {
- if (len > 64) {
- TrErrorAt (tr, tr -> mLine, col, "Integer is too long.");
- return (0);
- }
- temp [len] = '\0';
- (* value) = strtol (temp, NULL, 10);
- if (((* value) < loBound) || ((* value) > hiBound)) {
- TrErrorAt (tr, tr -> mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
- return (0);
- }
- return (1);
- }
- }
- TrErrorAt (tr, tr -> mLine, col, "Expected an integer.\n");
- return (0);
+static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
+{
+ uint col, digis, len;
+ char ch, temp[64+1];
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '+' || ch == '-')
+ {
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ digis = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ tr->mColumn += len;
+ if(digis > 0 && ch != '.' && !isalpha(ch))
+ {
+ if(len > 64)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
+ return 0;
+ }
+ temp[len] = '\0';
+ *value = strtol(temp, NULL, 10);
+ if(*value < loBound || *value > hiBound)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
+ return 0;
+ }
+ return 1;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
+ return 0;
}
// Reads and validates (including bounds) a float token.
-static int TrReadFloat (TokenReaderT * tr, const double loBound, const double hiBound, double * value) {
- uint col, digis, len;
- char ch, temp [64 + 1];
-
- col = tr -> mColumn;
- if (TrSkipWhitespace (tr)) {
- col = tr -> mColumn;
- len = 0;
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if ((ch == '+') || (ch == '-')) {
- temp [len] = ch;
- len ++;
- tr -> mOut ++;
- }
- digis = 0;
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (! isdigit (ch))
- break;
- if (len < 64)
- temp [len] = ch;
- len ++;
- digis ++;
- tr -> mOut ++;
- }
- if (ch == '.') {
- if (len < 64)
- temp [len] = ch;
- len ++;
- tr -> mOut ++;
- }
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (! isdigit (ch))
- break;
- if (len < 64)
- temp [len] = ch;
- len ++;
- digis ++;
- tr -> mOut ++;
- }
- if (digis > 0) {
- if ((ch == 'E') || (ch == 'e')) {
- if (len < 64)
- temp [len] = ch;
- len ++;
- digis = 0;
- tr -> mOut ++;
- if ((ch == '+') || (ch == '-')) {
- if (len < 64)
- temp [len] = ch;
- len ++;
- tr -> mOut ++;
- }
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (! isdigit (ch))
- break;
- if (len < 64)
- temp [len] = ch;
- len ++;
- digis ++;
- tr -> mOut ++;
- }
- }
- tr -> mColumn += len;
- if ((digis > 0) && (ch != '.') && (! isalpha (ch))) {
- if (len > 64) {
- TrErrorAt (tr, tr -> mLine, col, "Float is too long.");
- return (0);
- }
- temp [len] = '\0';
- (* value) = strtod (temp, NULL);
- if (((* value) < loBound) || ((* value) > hiBound)) {
- TrErrorAt (tr, tr -> mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
- return (0);
- }
- return (1);
- }
- } else {
- tr -> mColumn += len;
- }
- }
- TrErrorAt (tr, tr -> mLine, col, "Expected a float.\n");
- return (0);
+static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
+{
+ uint col, digis, len;
+ char ch, temp[64+1];
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '+' || ch == '-')
+ {
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+
+ digis = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ if(ch == '.')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ if(digis > 0)
+ {
+ if(ch == 'E' || ch == 'e')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis = 0;
+ tr->mOut++;
+ if(ch == '+' || ch == '-')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ }
+ tr->mColumn += len;
+ if(digis > 0 && ch != '.' && !isalpha(ch))
+ {
+ if(len > 64)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Float is too long.");
+ return 0;
+ }
+ temp[len] = '\0';
+ *value = strtod(temp, NULL);
+ if(*value < loBound || *value > hiBound)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
+ return 0;
+ }
+ return 1;
+ }
+ }
+ else
+ tr->mColumn += len;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
+ return 0;
}
// Reads and validates a string token.
-static int TrReadString (TokenReaderT * tr, const uint maxLen, char * text) {
- uint col, len;
- char ch;
-
- col = tr -> mColumn;
- if (TrSkipWhitespace (tr)) {
- col = tr -> mColumn;
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (ch == '\"') {
- tr -> mOut ++;
- len = 0;
- while (TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- tr -> mOut ++;
- if (ch == '\"')
- break;
- if (ch == '\n') {
- TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of line.\n");
- return (0);
- }
- if (len < maxLen)
- text [len] = ch;
- len ++;
- }
- if (ch != '\"') {
- tr -> mColumn += 1 + len;
- TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of input.\n");
- return (0);
- }
- tr -> mColumn += 2 + len;
- if (len > maxLen) {
- TrErrorAt (tr, tr -> mLine, col, "String is too long.\n");
- return (0);
- }
- text [len] = '\0';
- return (1);
- }
- }
- TrErrorAt (tr, tr -> mLine, col, "Expected a string.\n");
- return (0);
+static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '\"')
+ {
+ tr->mOut++;
+ len = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ tr->mOut++;
+ if(ch == '\"')
+ break;
+ if(ch == '\n')
+ {
+ TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
+ return 0;
+ }
+ if(len < maxLen)
+ text[len] = ch;
+ len++;
+ }
+ if(ch != '\"')
+ {
+ tr->mColumn += 1 + len;
+ TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
+ return 0;
+ }
+ tr->mColumn += 2 + len;
+ if(len > maxLen)
+ {
+ TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
+ return 0;
+ }
+ text[len] = '\0';
+ return 1;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
+ return 0;
}
// Reads and validates the given operator.
-static int TrReadOperator (TokenReaderT * tr, const char * op) {
- uint col, len;
- char ch;
-
- col = tr -> mColumn;
- if (TrSkipWhitespace (tr)) {
- col = tr -> mColumn;
- len = 0;
- while ((op [len] != '\0') && TrLoad (tr)) {
- ch = tr -> mRing [tr -> mOut & TR_RING_MASK];
- if (ch != op [len])
- break;
- len ++;
- tr -> mOut ++;
- }
- tr -> mColumn += len;
- if (op [len] == '\0')
- return (1);
- }
- TrErrorAt (tr, tr -> mLine, col, "Expected '%s' operator.\n", op);
- return (0);
+static int TrReadOperator(TokenReaderT *tr, const char *op)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ while(op[len] != '\0' && TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch != op[len]) break;
+ len++;
+ tr->mOut++;
+ }
+ tr->mColumn += len;
+ if(op[len] == '\0')
+ return 1;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
+ return 0;
}
/* Performs a string substitution. Any case-insensitive occurrences of the
* pattern string are replaced with the replacement string. The result is
* truncated if necessary.
*/
-static int StrSubst (const char * in, const char * pat, const char * rep, const size_t maxLen, char * out) {
- size_t inLen, patLen, repLen;
- size_t si, di;
- int truncated;
-
- inLen = strlen (in);
- patLen = strlen (pat);
- repLen = strlen (rep);
- si = 0;
- di = 0;
- truncated = 0;
- while ((si < inLen) && (di < maxLen)) {
- if (patLen <= (inLen - si)) {
- if (strncasecmp (& in [si], pat, patLen) == 0) {
- if (repLen > (maxLen - di)) {
- repLen = maxLen - di;
- truncated = 1;
- }
- strncpy (& out [di], rep, repLen);
- si += patLen;
- di += repLen;
- }
- }
- out [di] = in [si];
- si ++;
- di ++;
- }
- if (si < inLen)
- truncated = 1;
- out [di] = '\0';
- return (! truncated);
+static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
+{
+ size_t inLen, patLen, repLen;
+ size_t si, di;
+ int truncated;
+
+ inLen = strlen(in);
+ patLen = strlen(pat);
+ repLen = strlen(rep);
+ si = 0;
+ di = 0;
+ truncated = 0;
+ while(si < inLen && di < maxLen)
+ {
+ if(patLen <= inLen-si)
+ {
+ if(strncasecmp(&in[si], pat, patLen) == 0)
+ {
+ if(repLen > maxLen-di)
+ {
+ repLen = maxLen - di;
+ truncated = 1;
+ }
+ strncpy(&out[di], rep, repLen);
+ si += patLen;
+ di += repLen;
+ }
+ }
+ out[di] = in[si];
+ si++;
+ di++;
+ }
+ if(si < inLen)
+ truncated = 1;
+ out[di] = '\0';
+ return !truncated;
}
+
+/*********************
+ *** Math routines ***
+ *********************/
+
// Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013).
#if defined(_MSC_VER) && _MSC_VER < 1800
-static double round (double val) {
- if (val < 0.0)
- return (ceil (val - 0.5));
- return (floor (val + 0.5));
+static double round(double val)
+{
+ if(val < 0.0)
+ return ceil(val-0.5);
+ return floor(val+0.5);
}
-static double fmin (double a, double b) {
- return ((a < b) ? a : b);
+static double fmin(double a, double b)
+{
+ return (a<b) ? a : b;
}
-static double fmax (double a, double b) {
- return ((a > b) ? a : b);
+static double fmax(double a, double b)
+{
+ return (a>b) ? a : b;
}
#endif
// Simple clamp routine.
-static double Clamp (const double val, const double lower, const double upper) {
- return (fmin (fmax (val, lower), upper));
+static double Clamp(const double val, const double lower, const double upper)
+{
+ return fmin(fmax(val, lower), upper);
}
// Performs linear interpolation.
-static double Lerp (const double a, const double b, const double f) {
- return (a + (f * (b - a)));
+static double Lerp(const double a, const double b, const double f)
+{
+ return a + f * (b - a);
+}
+
+static inline uint dither_rng(uint *seed)
+{
+ *seed = *seed * 96314165 + 907633515;
+ return *seed;
}
-// Performs a high-passed triangular probability density function dither from
-// a double to an integer. It assumes the input sample is already scaled.
-static int HpTpdfDither (const double in, int * hpHist) {
- const double PRNG_SCALE = 1.0 / (RAND_MAX + 1.0);
- int prn;
- double out;
+// Performs a triangular probability density function dither. The input samples
+// should be normalized (-1 to +1).
+static void TpdfDither(double *restrict out, const double *restrict in, const double scale,
+ const int count, const int step, uint *seed)
+{
+ static const double PRNG_SCALE = 1.0 / UINT_MAX;
+ uint prn0, prn1;
+ int i;
- prn = rand ();
- out = round (in + (PRNG_SCALE * (prn - (* hpHist))));
- (* hpHist) = prn;
- return ((int) out);
+ for(i = 0;i < count;i++)
+ {
+ prn0 = dither_rng(seed);
+ prn1 = dither_rng(seed);
+ out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
+ }
}
// Allocates an array of doubles.
-static double *CreateArray(size_t n)
+static double *CreateDoubles(size_t n)
{
double *a;
- if(n == 0) n = 1;
- a = calloc(n, sizeof(double));
+ a = calloc(n?n:1, sizeof(*a));
if(a == NULL)
{
fprintf(stderr, "Error: Out of memory.\n");
@@ -784,168 +974,117 @@ static double *CreateArray(size_t n)
return a;
}
-// Frees an array of doubles.
-static void DestroyArray(double *a)
-{ free(a); }
-
-// Complex number routines. All outputs must be non-NULL.
-
-// Magnitude/absolute value.
-static double ComplexAbs (const double r, const double i) {
- return (sqrt ((r * r) + (i * i)));
-}
-
-// Multiply.
-static void ComplexMul (const double aR, const double aI, const double bR, const double bI, double * outR, double * outI) {
- (* outR) = (aR * bR) - (aI * bI);
- (* outI) = (aI * bR) + (aR * bI);
-}
-
-// Base-e exponent.
-static void ComplexExp (const double inR, const double inI, double * outR, double * outI) {
- double e;
+// Allocates an array of complex numbers.
+static Complex *CreateComplexes(size_t n)
+{
+ Complex *a;
- e = exp (inR);
- (* outR) = e * cos (inI);
- (* outI) = e * sin (inI);
+ a = calloc(n?n:1, sizeof(*a));
+ if(a == NULL)
+ {
+ fprintf(stderr, "Error: Out of memory.\n");
+ exit(-1);
+ }
+ return a;
}
-/* Fast Fourier transform routines. The number of points must be a power of
- * two. In-place operation is possible only if both the real and imaginary
- * parts are in-place together.
+/* Fast Fourier transform routines. The number of points must be a power of
+ * two.
*/
// Performs bit-reversal ordering.
-static void FftArrange (const uint n, const double * inR, const double * inI, double * outR, double * outI) {
- uint rk, k, m;
- double tempR, tempI;
-
- if ((inR == outR) && (inI == outI)) {
- // Handle in-place arrangement.
- rk = 0;
- for (k = 0; k < n; k ++) {
- if (rk > k) {
- tempR = inR [rk];
- tempI = inI [rk];
- outR [rk] = inR [k];
- outI [rk] = inI [k];
- outR [k] = tempR;
- outI [k] = tempI;
- }
- m = n;
- while (rk & (m >>= 1))
- rk &= ~m;
- rk |= m;
- }
- } else {
- // Handle copy arrangement.
- rk = 0;
- for (k = 0; k < n; k ++) {
- outR [rk] = inR [k];
- outI [rk] = inI [k];
- m = n;
- while (rk & (m >>= 1))
- rk &= ~m;
- rk |= m;
- }
- }
+static void FftArrange(const uint n, Complex *inout)
+{
+ uint rk, k, m;
+
+ // Handle in-place arrangement.
+ rk = 0;
+ for(k = 0;k < n;k++)
+ {
+ if(rk > k)
+ {
+ Complex temp = inout[rk];
+ inout[rk] = inout[k];
+ inout[k] = temp;
+ }
+
+ m = n;
+ while(rk&(m >>= 1))
+ rk &= ~m;
+ rk |= m;
+ }
}
// Performs the summation.
-static void FftSummation (const uint n, const double s, double * re, double * im) {
- double pi;
- uint m, m2;
- double vR, vI, wR, wI;
- uint i, k, mk;
- double tR, tI;
-
- pi = s * M_PI;
- for (m = 1, m2 = 2; m < n; m <<= 1, m2 <<= 1) {
- // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
- vR = sin (0.5 * pi / m);
- vR = -2.0 * vR * vR;
- vI = -sin (pi / m);
- // w = Complex (1.0, 0.0)
- wR = 1.0;
- wI = 0.0;
- for (i = 0; i < m; i ++) {
- for (k = i; k < n; k += m2) {
- mk = k + m;
- // t = ComplexMul (w, out [km2])
- tR = (wR * re [mk]) - (wI * im [mk]);
- tI = (wR * im [mk]) + (wI * re [mk]);
- // out [mk] = ComplexSub (out [k], t)
- re [mk] = re [k] - tR;
- im [mk] = im [k] - tI;
- // out [k] = ComplexAdd (out [k], t)
- re [k] += tR;
- im [k] += tI;
- }
- // t = ComplexMul (v, w)
- tR = (vR * wR) - (vI * wI);
- tI = (vR * wI) + (vI * wR);
- // w = ComplexAdd (w, t)
- wR += tR;
- wI += tI;
- }
- }
+static void FftSummation(const int n, const double s, Complex *cplx)
+{
+ double pi;
+ int m, m2;
+ int i, k, mk;
+
+ pi = s * M_PI;
+ for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
+ {
+ // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
+ double sm = sin(0.5 * pi / m);
+ Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m));
+ Complex w = MakeComplex(1.0, 0.0);
+ for(i = 0;i < m;i++)
+ {
+ for(k = i;k < n;k += m2)
+ {
+ Complex t;
+ mk = k + m;
+ t = c_mul(w, cplx[mk]);
+ cplx[mk] = c_sub(cplx[k], t);
+ cplx[k] = c_add(cplx[k], t);
+ }
+ w = c_add(w, c_mul(v, w));
+ }
+ }
}
// Performs a forward FFT.
-static void FftForward (const uint n, const double * inR, const double * inI, double * outR, double * outI) {
- FftArrange (n, inR, inI, outR, outI);
- FftSummation (n, 1.0, outR, outI);
+static void FftForward(const uint n, Complex *inout)
+{
+ FftArrange(n, inout);
+ FftSummation(n, 1.0, inout);
}
// Performs an inverse FFT.
-static void FftInverse (const uint n, const double * inR, const double * inI, double * outR, double * outI) {
- double f;
- uint i;
-
- FftArrange (n, inR, inI, outR, outI);
- FftSummation (n, -1.0, outR, outI);
- f = 1.0 / n;
- for (i = 0; i < n; i ++) {
- outR [i] *= f;
- outI [i] *= f;
- }
-}
-
-/* Calculate the complex helical sequence (or discrete-time analytical
- * signal) of the given input using the Hilbert transform. Given the
- * negative natural logarithm of a signal's magnitude response, the imaginary
- * components can be used as the angles for minimum-phase reconstruction.
+static void FftInverse(const uint n, Complex *inout)
+{
+ double f;
+ uint i;
+
+ FftArrange(n, inout);
+ FftSummation(n, -1.0, inout);
+ f = 1.0 / n;
+ for(i = 0;i < n;i++)
+ inout[i] = c_muls(inout[i], f);
+}
+
+/* Calculate the complex helical sequence (or discrete-time analytical signal)
+ * of the given input using the Hilbert transform. Given the natural logarithm
+ * of a signal's magnitude response, the imaginary components can be used as
+ * the angles for minimum-phase reconstruction.
*/
-static void Hilbert (const uint n, const double * in, double * outR, double * outI) {
- uint i;
-
- if (in == outR) {
- // Handle in-place operation.
- for (i = 0; i < n; i ++)
- outI [i] = 0.0;
- } else {
- // Handle copy operation.
- for (i = 0; i < n; i ++) {
- outR [i] = in [i];
- outI [i] = 0.0;
- }
- }
- FftForward (n, outR, outI, outR, outI);
- /* Currently the Fourier routines operate only on point counts that are
- * powers of two. If that changes and n is odd, the following conditional
- * should be: i < (n + 1) / 2.
- */
- for (i = 1; i < (n / 2); i ++) {
- outR [i] *= 2.0;
- outI [i] *= 2.0;
- }
- // If n is odd, the following increment should be skipped.
- i ++;
- for (; i < n; i ++) {
- outR [i] = 0.0;
- outI [i] = 0.0;
- }
- FftInverse (n, outR, outI, outR, outI);
+static void Hilbert(const uint n, Complex *inout)
+{
+ uint i;
+
+ // Handle in-place operation.
+ for(i = 0;i < n;i++)
+ inout[i].Imag = 0.0;
+
+ FftInverse(n, inout);
+ for(i = 1;i < (n+1)/2;i++)
+ inout[i] = c_muls(inout[i], 2.0);
+ /* Increment i if n is even. */
+ i += (n&1)^1;
+ for(;i < n;i++)
+ inout[i] = MakeComplex(0.0, 0.0);
+ FftForward(n, inout);
}
/* Calculate the magnitude response of the given input. This is used in
@@ -953,41 +1092,41 @@ static void Hilbert (const uint n, const double * in, double * outR, double * ou
* minimum phase reconstruction. The mirrored half of the response is also
* discarded.
*/
-static void MagnitudeResponse (const uint n, const double * inR, const double * inI, double * out) {
- const uint m = 1 + (n / 2);
- uint i;
-
- for (i = 0; i < m; i ++)
- out [i] = fmax (ComplexAbs (inR [i], inI [i]), EPSILON);
+static void MagnitudeResponse(const uint n, const Complex *in, double *out)
+{
+ const uint m = 1 + (n / 2);
+ uint i;
+ for(i = 0;i < m;i++)
+ out[i] = fmax(c_abs(in[i]), EPSILON);
}
/* Apply a range limit (in dB) to the given magnitude response. This is used
* to adjust the effects of the diffuse-field average on the equalization
* process.
*/
-static void LimitMagnitudeResponse (const uint n, const double limit, const double * in, double * out) {
- const uint m = 1 + (n / 2);
- double halfLim;
- uint i, lower, upper;
- double ave;
-
- halfLim = limit / 2.0;
- // Convert the response to dB.
- for (i = 0; i < m; i ++)
- out [i] = 20.0 * log10 (in [i]);
- // Use six octaves to calculate the average magnitude of the signal.
- lower = ((uint) ceil (n / pow (2.0, 8.0))) - 1;
- upper = ((uint) floor (n / pow (2.0, 2.0))) - 1;
- ave = 0.0;
- for (i = lower; i <= upper; i ++)
- ave += out [i];
- ave /= upper - lower + 1;
- // Keep the response within range of the average magnitude.
- for (i = 0; i < m; i ++)
- out [i] = Clamp (out [i], ave - halfLim, ave + halfLim);
- // Convert the response back to linear magnitude.
- for (i = 0; i < m; i ++)
- out [i] = pow (10.0, out [i] / 20.0);
+static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
+{
+ double halfLim;
+ uint i, lower, upper;
+ double ave;
+
+ halfLim = limit / 2.0;
+ // Convert the response to dB.
+ for(i = 0;i < m;i++)
+ out[i] = 20.0 * log10(in[i]);
+ // Use six octaves to calculate the average magnitude of the signal.
+ lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1;
+ upper = ((uint)floor(n / pow(2.0, 2.0))) - 1;
+ ave = 0.0;
+ for(i = lower;i <= upper;i++)
+ ave += out[i];
+ ave /= upper - lower + 1;
+ // Keep the response within range of the average magnitude.
+ for(i = 0;i < m;i++)
+ out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
+ // Convert the response back to linear magnitude.
+ for(i = 0;i < m;i++)
+ out[i] = pow(10.0, out[i] / 20.0);
}
/* Reconstructs the minimum-phase component for the given magnitude response
@@ -995,41 +1134,49 @@ static void LimitMagnitudeResponse (const uint n, const double limit, const doub
* residuals (which were discarded). The mirrored half of the response is
* reconstructed.
*/
-static void MinimumPhase (const uint n, const double * in, double * outR, double * outI) {
- const uint m = 1 + (n / 2);
- double * mags = NULL;
- uint i;
- double aR, aI;
-
- mags = CreateArray (n);
- for (i = 0; i < m; i ++) {
- mags [i] = fmax (in [i], EPSILON);
- outR [i] = -log (mags [i]);
- }
- for (; i < n; i ++) {
- mags [i] = mags [n - i];
- outR [i] = outR [n - i];
- }
- Hilbert (n, outR, outR, outI);
- // Remove any DC offset the filter has.
- outR [0] = 0.0;
- outI [0] = 0.0;
- for (i = 1; i < n; i ++) {
- ComplexExp (0.0, outI [i], & aR, & aI);
- ComplexMul (mags [i], 0.0, aR, aI, & outR [i], & outI [i]);
- }
- DestroyArray (mags);
+static void MinimumPhase(const uint n, const double *in, Complex *out)
+{
+ const uint m = 1 + (n / 2);
+ double *mags;
+ uint i;
+
+ mags = CreateDoubles(n);
+ for(i = 0;i < m;i++)
+ {
+ mags[i] = fmax(EPSILON, in[i]);
+ out[i] = MakeComplex(log(mags[i]), 0.0);
+ }
+ for(;i < n;i++)
+ {
+ mags[i] = mags[n - i];
+ out[i] = out[n - i];
+ }
+ Hilbert(n, out);
+ // Remove any DC offset the filter has.
+ mags[0] = EPSILON;
+ for(i = 0;i < n;i++)
+ {
+ Complex a = c_exp(MakeComplex(0.0, out[i].Imag));
+ out[i] = c_mul(MakeComplex(mags[i], 0.0), a);
+ }
+ free(mags);
}
+
+/***************************
+ *** Resampler functions ***
+ ***************************/
+
/* This is the normalized cardinal sine (sinc) function.
*
* sinc(x) = { 1, x = 0
* { sin(pi x) / (pi x), otherwise.
*/
-static double Sinc (const double x) {
- if (fabs (x) < EPSILON)
- return (1.0);
- return (sin (M_PI * x) / (M_PI * x));
+static double Sinc(const double x)
+{
+ if(fabs(x) < EPSILON)
+ return 1.0;
+ return sin(M_PI * x) / (M_PI * x);
}
/* The zero-order modified Bessel function of the first kind, used for the
@@ -1038,25 +1185,27 @@ static double Sinc (const double x) {
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
*/
-static double BesselI_0 (const double x) {
- double term, sum, x2, y, last_sum;
- int k;
-
- // Start at k=1 since k=0 is trivial.
- term = 1.0;
- sum = 1.0;
- x2 = x / 2.0;
- k = 1;
- // Let the integration converge until the term of the sum is no longer
- // significant.
- do {
- y = x2 / k;
- k ++;
- last_sum = sum;
- term *= y * y;
- sum += term;
- } while (sum != last_sum);
- return (sum);
+static double BesselI_0(const double x)
+{
+ double term, sum, x2, y, last_sum;
+ int k;
+
+ // Start at k=1 since k=0 is trivial.
+ term = 1.0;
+ sum = 1.0;
+ x2 = x/2.0;
+ k = 1;
+
+ // Let the integration converge until the term of the sum is no longer
+ // significant.
+ do {
+ y = x2 / k;
+ k++;
+ last_sum = sum;
+ term *= y * y;
+ sum += term;
+ } while(sum != last_sum);
+ return sum;
}
/* Calculate a Kaiser window from the given beta value and a normalized k
@@ -1073,28 +1222,23 @@ static double BesselI_0 (const double x) {
*
* k = 2 i / M - 1, where 0 <= i <= M.
*/
-static double Kaiser (const double b, const double k) {
- double k2;
-
- k2 = Clamp (k, -1.0, 1.0);
- if ((k < -1.0) || (k > 1.0))
- return (0.0);
- k2 *= k2;
- return (BesselI_0 (b * sqrt (1.0 - k2)) / BesselI_0 (b));
+static double Kaiser(const double b, const double k)
+{
+ if(!(k >= -1.0 && k <= 1.0))
+ return 0.0;
+ return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b);
}
// Calculates the greatest common divisor of a and b.
-static uint Gcd (const uint a, const uint b) {
- uint x, y, z;
-
- x = a;
- y = b;
- while (y > 0) {
- z = y;
- y = x % y;
- x = z;
- }
- return (x);
+static uint Gcd(uint x, uint y)
+{
+ while(y > 0)
+ {
+ uint z = y;
+ y = x % y;
+ x = z;
+ }
+ return x;
}
/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
@@ -1104,24 +1248,23 @@ static uint Gcd (const uint a, const uint b) {
* { ceil(5.79 / 2 pi f_t), r <= 21.
*
*/
-static uint CalcKaiserOrder (const double rejection, const double transition) {
- double w_t;
-
- w_t = 2.0 * M_PI * transition;
- if (rejection > 21.0)
- return ((uint) ceil ((rejection - 7.95) / (2.285 * w_t)));
- return ((uint) ceil (5.79 / w_t));
+static uint CalcKaiserOrder(const double rejection, const double transition)
+{
+ double w_t = 2.0 * M_PI * transition;
+ if(rejection > 21.0)
+ return (uint)ceil((rejection - 7.95) / (2.285 * w_t));
+ return (uint)ceil(5.79 / w_t);
}
// Calculates the beta value of the Kaiser window. Rejection is in dB.
-static double CalcKaiserBeta (const double rejection) {
- if (rejection > 50.0)
- return (0.1102 * (rejection - 8.7));
- else if (rejection >= 21.0)
- return ((0.5842 * pow (rejection - 21.0, 0.4)) +
- (0.07886 * (rejection - 21.0)));
- else
- return (0.0);
+static double CalcKaiserBeta(const double rejection)
+{
+ if(rejection > 50.0)
+ return 0.1102 * (rejection - 8.7);
+ if(rejection >= 21.0)
+ return (0.5842 * pow(rejection - 21.0, 0.4)) +
+ (0.07886 * (rejection - 21.0));
+ return 0.0;
}
/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
@@ -1136,8 +1279,9 @@ static double CalcKaiserBeta (const double rejection) {
* p -- gain compensation factor when sampling
* f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
*/
-static double SincFilter (const int l, const double b, const double gain, const double cutoff, const int i) {
- return (Kaiser (b, ((double) (i - l)) / l) * 2.0 * gain * cutoff * Sinc (2.0 * cutoff * (i - l)));
+static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
+{
+ return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
}
/* This is a polyphase sinc-filtered resampler.
@@ -1168,176 +1312,157 @@ static double SincFilter (const int l, const double b, const double gain, const
// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
// that's used to cut frequencies above the destination nyquist.
-static void ResamplerSetup (ResamplerT * rs, const uint srcRate, const uint dstRate) {
- uint gcd, l;
- double cutoff, width, beta;
- int i;
-
- gcd = Gcd (srcRate, dstRate);
- rs -> mP = dstRate / gcd;
- rs -> mQ = srcRate / gcd;
- /* The cutoff is adjusted by half the transition width, so the transition
- * ends before the nyquist (0.5). Both are scaled by the downsampling
- * factor.
- */
- if (rs -> mP > rs -> mQ) {
- cutoff = 0.45 / rs -> mP;
- width = 0.1 / rs -> mP;
- } else {
- cutoff = 0.45 / rs -> mQ;
- width = 0.1 / rs -> mQ;
- }
- // A rejection of -180 dB is used for the stop band.
- l = CalcKaiserOrder (180.0, width) / 2;
- beta = CalcKaiserBeta (180.0);
- rs -> mM = (2 * l) + 1;
- rs -> mL = l;
- rs -> mF = CreateArray (rs -> mM);
- for (i = 0; i < ((int) rs -> mM); i ++)
- rs -> mF [i] = SincFilter ((int) l, beta, rs -> mP, cutoff, i);
+static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
+{
+ double cutoff, width, beta;
+ uint gcd, l;
+ int i;
+
+ gcd = Gcd(srcRate, dstRate);
+ rs->mP = dstRate / gcd;
+ rs->mQ = srcRate / gcd;
+ /* The cutoff is adjusted by half the transition width, so the transition
+ * ends before the nyquist (0.5). Both are scaled by the downsampling
+ * factor.
+ */
+ if(rs->mP > rs->mQ)
+ {
+ cutoff = 0.475 / rs->mP;
+ width = 0.05 / rs->mP;
+ }
+ else
+ {
+ cutoff = 0.475 / rs->mQ;
+ width = 0.05 / rs->mQ;
+ }
+ // A rejection of -180 dB is used for the stop band. Round up when
+ // calculating the left offset to avoid increasing the transition width.
+ l = (CalcKaiserOrder(180.0, width)+1) / 2;
+ beta = CalcKaiserBeta(180.0);
+ rs->mM = l*2 + 1;
+ rs->mL = l;
+ rs->mF = CreateDoubles(rs->mM);
+ for(i = 0;i < ((int)rs->mM);i++)
+ rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i);
}
// Clean up after the resampler.
-static void ResamplerClear (ResamplerT * rs) {
- DestroyArray (rs -> mF);
- rs -> mF = NULL;
+static void ResamplerClear(ResamplerT *rs)
+{
+ free(rs->mF);
+ rs->mF = NULL;
}
// Perform the upsample-filter-downsample resampling operation using a
// polyphase filter implementation.
-static void ResamplerRun (ResamplerT * rs, const uint inN, const double * in, const uint outN, double * out) {
- const uint p = rs -> mP, q = rs -> mQ, m = rs -> mM, l = rs -> mL;
- const double * f = rs -> mF;
- double * work = NULL;
- uint i;
- double r;
- uint j_f, j_s;
-
- if (outN == 0)
- return;
-
- // Handle in-place operation.
- if (in == out)
- work = CreateArray (outN);
- else
- work = out;
- // Resample the input.
- for (i = 0; i < outN; i ++) {
- r = 0.0;
- // Input starts at l to compensate for the filter delay. This will
- // drop any build-up from the first half of the filter.
- j_f = (l + (q * i)) % p;
- j_s = (l + (q * i)) / p;
- while (j_f < m) {
- // Only take input when 0 <= j_s < inN. This single unsigned
- // comparison catches both cases.
- if (j_s < inN)
- r += f [j_f] * in [j_s];
- j_f += p;
- j_s --;
- }
- work [i] = r;
- }
- // Clean up after in-place operation.
- if (in == out) {
- for (i = 0; i < outN; i ++)
- out [i] = work [i];
- DestroyArray (work);
- }
+static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
+{
+ const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
+ const double *f = rs->mF;
+ uint j_f, j_s;
+ double *work;
+ uint i;
+
+ if(outN == 0)
+ return;
+
+ // Handle in-place operation.
+ if(in == out)
+ work = CreateDoubles(outN);
+ else
+ work = out;
+ // Resample the input.
+ for(i = 0;i < outN;i++)
+ {
+ double r = 0.0;
+ // Input starts at l to compensate for the filter delay. This will
+ // drop any build-up from the first half of the filter.
+ j_f = (l + (q * i)) % p;
+ j_s = (l + (q * i)) / p;
+ while(j_f < m)
+ {
+ // Only take input when 0 <= j_s < inN. This single unsigned
+ // comparison catches both cases.
+ if(j_s < inN)
+ r += f[j_f] * in[j_s];
+ j_f += p;
+ j_s--;
+ }
+ work[i] = r;
+ }
+ // Clean up after in-place operation.
+ if(work != out)
+ {
+ for(i = 0;i < outN;i++)
+ out[i] = work[i];
+ free(work);
+ }
}
+/*************************
+ *** File source input ***
+ *************************/
+
// Read a binary value of the specified byte order and byte size from a file,
// storing it as a 32-bit unsigned integer.
-static int ReadBin4 (FILE * fp, const char * filename, const ByteOrderT order, const uint bytes, uint32 * out) {
- uint8 in [4];
- uint32 accum;
- uint i;
-
- if (fread (in, 1, bytes, fp) != bytes) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", filename);
- return (0);
- }
- accum = 0;
- switch (order) {
- case BO_LITTLE :
- for (i = 0; i < bytes; i ++)
- accum = (accum << 8) | in [bytes - i - 1];
- break;
- case BO_BIG :
- for (i = 0; i < bytes; i ++)
- accum = (accum << 8) | in [i];
- break;
- default :
- break;
- }
- (* out) = accum;
- return (1);
+static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out)
+{
+ uint8 in[4];
+ uint32 accum;
+ uint i;
+
+ if(fread(in, 1, bytes, fp) != bytes)
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ accum = 0;
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < bytes;i++)
+ accum = (accum<<8) | in[bytes - i - 1];
+ break;
+ case BO_BIG:
+ for(i = 0;i < bytes;i++)
+ accum = (accum<<8) | in[i];
+ break;
+ default:
+ break;
+ }
+ *out = accum;
+ return 1;
}
// Read a binary value of the specified byte order from a file, storing it as
// a 64-bit unsigned integer.
-static int ReadBin8 (FILE * fp, const char * filename, const ByteOrderT order, uint64 * out) {
- uint8 in [8];
- uint64 accum;
- uint i;
-
- if (fread (in, 1, 8, fp) != 8) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", filename);
- return (0);
- }
- accum = 0ULL;
- switch (order) {
- case BO_LITTLE :
- for (i = 0; i < 8; i ++)
- accum = (accum << 8) | in [8 - i - 1];
- break;
- case BO_BIG :
- for (i = 0; i < 8; i ++)
- accum = (accum << 8) | in [i];
- break;
- default :
- break;
- }
- (* out) = accum;
- return (1);
-}
-
-// Write an ASCII string to a file.
-static int WriteAscii (const char * out, FILE * fp, const char * filename) {
- size_t len;
-
- len = strlen (out);
- if (fwrite (out, 1, len, fp) != len) {
- fclose (fp);
- fprintf (stderr, "Error: Bad write to file '%s'.\n", filename);
- return (0);
- }
- return (1);
-}
+static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out)
+{
+ uint8 in [8];
+ uint64 accum;
+ uint i;
-// Write a binary value of the given byte order and byte size to a file,
-// loading it from a 32-bit unsigned integer.
-static int WriteBin4 (const ByteOrderT order, const uint bytes, const uint32 in, FILE * fp, const char * filename) {
- uint8 out [4];
- uint i;
-
- switch (order) {
- case BO_LITTLE :
- for (i = 0; i < bytes; i ++)
- out [i] = (in >> (i * 8)) & 0x000000FF;
- break;
- case BO_BIG :
- for (i = 0; i < bytes; i ++)
- out [bytes - i - 1] = (in >> (i * 8)) & 0x000000FF;
- break;
- default :
- break;
- }
- if (fwrite (out, 1, bytes, fp) != bytes) {
- fprintf (stderr, "Error: Bad write to file '%s'.\n", filename);
- return (0);
- }
- return (1);
+ if(fread(in, 1, 8, fp) != 8)
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ accum = 0ULL;
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < 8;i++)
+ accum = (accum<<8) | in[8 - i - 1];
+ break;
+ case BO_BIG:
+ for(i = 0;i < 8;i++)
+ accum = (accum<<8) | in[i];
+ break;
+ default:
+ break;
+ }
+ *out = accum;
+ return 1;
}
/* Read a binary value of the specified type, byte order, and byte size from
@@ -1346,39 +1471,45 @@ static int WriteBin4 (const ByteOrderT order, const uint bytes, const uint32 in,
* whether they are padded toward the MSB (negative) or LSB (positive).
* Floating-point types are not normalized.
*/
-static int ReadBinAsDouble (FILE * fp, const char * filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double * out) {
- union {
- uint32 ui;
- int32 i;
- float f;
- } v4;
- union {
- uint64 ui;
- double f;
- } v8;
-
- (* out) = 0.0;
- if (bytes > 4) {
- if (! ReadBin8 (fp, filename, order, & v8 . ui))
- return (0);
- if (type == ET_FP)
- (* out) = v8 . f;
- } else {
- if (! ReadBin4 (fp, filename, order, bytes, & v4 . ui))
- return (0);
- if (type == ET_FP) {
- (* out) = (double) v4 . f;
- } else {
- if (bits > 0)
- v4 . ui >>= (8 * bytes) - ((uint) bits);
+static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
+{
+ union {
+ uint32 ui;
+ int32 i;
+ float f;
+ } v4;
+ union {
+ uint64 ui;
+ double f;
+ } v8;
+
+ *out = 0.0;
+ if(bytes > 4)
+ {
+ if(!ReadBin8(fp, filename, order, &v8.ui))
+ return 0;
+ if(type == ET_FP)
+ *out = v8.f;
+ }
+ else
+ {
+ if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
+ return 0;
+ if(type == ET_FP)
+ *out = v4.f;
else
- v4 . ui &= (0xFFFFFFFF >> (32 + bits));
- if (v4 . ui & ((uint) (1 << (abs (bits) - 1))))
- v4 . ui |= (0xFFFFFFFF << abs (bits));
- (* out) = v4 . i / ((double) (1 << (abs (bits) - 1)));
- }
- }
- return (1);
+ {
+ if(bits > 0)
+ v4.ui >>= (8*bytes) - ((uint)bits);
+ else
+ v4.ui &= (0xFFFFFFFF >> (32+bits));
+
+ if(v4.ui&(uint)(1<<(abs(bits)-1)))
+ v4.ui |= (0xFFFFFFFF << abs (bits));
+ *out = v4.i / (double)(1<<(abs(bits)-1));
+ }
+ }
+ return 1;
}
/* Read an ascii value of the specified type from a file, converting it to a
@@ -1386,391 +1517,585 @@ static int ReadBinAsDouble (FILE * fp, const char * filename, const ByteOrderT o
* result. The sign of the bits should always be positive. This also skips
* up to one separator character before the element itself.
*/
-static int ReadAsciiAsDouble (TokenReaderT * tr, const char * filename, const ElementTypeT type, const uint bits, double * out) {
- int v;
-
- if (TrIsOperator (tr, ","))
- TrReadOperator (tr, ",");
- else if (TrIsOperator (tr, ":"))
- TrReadOperator (tr, ":");
- else if (TrIsOperator (tr, ";"))
- TrReadOperator (tr, ";");
- else if (TrIsOperator (tr, "|"))
- TrReadOperator (tr, "|");
- if (type == ET_FP) {
- if (! TrReadFloat (tr, -HUGE_VAL, HUGE_VAL, out)) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", filename);
- return (0);
- }
- } else {
- if (! TrReadInt (tr, -(1 << (bits - 1)), (1 << (bits - 1)) - 1, & v)) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", filename);
- return (0);
- }
- (* out) = v / ((double) ((1 << (bits - 1)) - 1));
- }
- return (1);
+static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
+{
+ if(TrIsOperator(tr, ","))
+ TrReadOperator(tr, ",");
+ else if(TrIsOperator(tr, ":"))
+ TrReadOperator(tr, ":");
+ else if(TrIsOperator(tr, ";"))
+ TrReadOperator(tr, ";");
+ else if(TrIsOperator(tr, "|"))
+ TrReadOperator(tr, "|");
+
+ if(type == ET_FP)
+ {
+ if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out))
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ }
+ else
+ {
+ int v;
+ if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ *out = v / (double)((1<<(bits-1))-1);
+ }
+ return 1;
}
// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
// the source parameters and data set metrics.
-static int ReadWaveFormat (FILE * fp, const ByteOrderT order, const uint hrirRate, SourceRefT * src) {
- uint32 fourCC, chunkSize;
- uint32 format, channels, rate, dummy, block, size, bits;
-
- chunkSize = 0;
- do {
- if (chunkSize > 0)
- fseek (fp, (long) chunkSize, SEEK_CUR);
- if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) ||
- (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize)))
- return (0);
- } while (fourCC != FOURCC_FMT);
- if ((! ReadBin4 (fp, src -> mPath, order, 2, & format)) ||
- (! ReadBin4 (fp, src -> mPath, order, 2, & channels)) ||
- (! ReadBin4 (fp, src -> mPath, order, 4, & rate)) ||
- (! ReadBin4 (fp, src -> mPath, order, 4, & dummy)) ||
- (! ReadBin4 (fp, src -> mPath, order, 2, & block)))
- return (0);
- block /= channels;
- if (chunkSize > 14) {
- if (! ReadBin4 (fp, src -> mPath, order, 2, & size))
- return (0);
- size /= 8;
- if (block > size)
+static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
+{
+ uint32 fourCC, chunkSize;
+ uint32 format, channels, rate, dummy, block, size, bits;
+
+ chunkSize = 0;
+ do {
+ if(chunkSize > 0)
+ fseek (fp, (long) chunkSize, SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+ } while(fourCC != FOURCC_FMT);
+ if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
+ !ReadBin4(fp, src->mPath, order, 2, &channels) ||
+ !ReadBin4(fp, src->mPath, order, 4, &rate) ||
+ !ReadBin4(fp, src->mPath, order, 4, &dummy) ||
+ !ReadBin4(fp, src->mPath, order, 2, &block))
+ return 0;
+ block /= channels;
+ if(chunkSize > 14)
+ {
+ if(!ReadBin4(fp, src->mPath, order, 2, &size))
+ return 0;
+ size /= 8;
+ if(block > size)
+ size = block;
+ }
+ else
size = block;
- } else {
- size = block;
- }
- if (format == WAVE_FORMAT_EXTENSIBLE) {
- fseek (fp, 2, SEEK_CUR);
- if (! ReadBin4 (fp, src -> mPath, order, 2, & bits))
- return (0);
- if (bits == 0)
+ if(format == WAVE_FORMAT_EXTENSIBLE)
+ {
+ fseek(fp, 2, SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, order, 2, &bits))
+ return 0;
+ if(bits == 0)
+ bits = 8 * size;
+ fseek(fp, 4, SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, order, 2, &format))
+ return 0;
+ fseek(fp, (long)(chunkSize - 26), SEEK_CUR);
+ }
+ else
+ {
bits = 8 * size;
- fseek (fp, 4, SEEK_CUR);
- if (! ReadBin4 (fp, src -> mPath, order, 2, & format))
- return (0);
- fseek (fp, (long) (chunkSize - 26), SEEK_CUR);
- } else {
- bits = 8 * size;
- if (chunkSize > 14)
- fseek (fp, (long) (chunkSize - 16), SEEK_CUR);
- else
- fseek (fp, (long) (chunkSize - 14), SEEK_CUR);
- }
- if ((format != WAVE_FORMAT_PCM) && (format != WAVE_FORMAT_IEEE_FLOAT)) {
- fprintf (stderr, "Error: Unsupported WAVE format in file '%s'.\n", src -> mPath);
- return (0);
- }
- if (src -> mChannel >= channels) {
- fprintf (stderr, "Error: Missing source channel in WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- if (rate != hrirRate) {
- fprintf (stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- if (format == WAVE_FORMAT_PCM) {
- if ((size < 2) || (size > 4)) {
- fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- if ((bits < 16) || (bits > (8 * size))) {
- fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- src -> mType = ET_INT;
- } else {
- if ((size != 4) && (size != 8)) {
- fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- src -> mType = ET_FP;
- }
- src -> mSize = size;
- src -> mBits = (int) bits;
- src -> mSkip = channels;
- return (1);
+ if(chunkSize > 14)
+ fseek(fp, (long)(chunkSize - 16), SEEK_CUR);
+ else
+ fseek(fp, (long)(chunkSize - 14), SEEK_CUR);
+ }
+ if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
+ {
+ fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(src->mChannel >= channels)
+ {
+ fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(rate != hrirRate)
+ {
+ fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(format == WAVE_FORMAT_PCM)
+ {
+ if(size < 2 || size > 4)
+ {
+ fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(bits < 16 || bits > (8*size))
+ {
+ fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ src->mType = ET_INT;
+ }
+ else
+ {
+ if(size != 4 && size != 8)
+ {
+ fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ src->mType = ET_FP;
+ }
+ src->mSize = size;
+ src->mBits = (int)bits;
+ src->mSkip = channels;
+ return 1;
}
// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
-static int ReadWaveData (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) {
- int pre, post, skip;
- uint i;
-
- pre = (int) (src -> mSize * src -> mChannel);
- post = (int) (src -> mSize * (src -> mSkip - src -> mChannel - 1));
- skip = 0;
- for (i = 0; i < n; i ++) {
- skip += pre;
- if (skip > 0)
- fseek (fp, skip, SEEK_CUR);
- if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i]))
- return (0);
- skip = post;
- }
- if (skip > 0)
- fseek (fp, skip, SEEK_CUR);
- return (1);
+static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ int pre, post, skip;
+ uint i;
+
+ pre = (int)(src->mSize * src->mChannel);
+ post = (int)(src->mSize * (src->mSkip - src->mChannel - 1));
+ skip = 0;
+ for(i = 0;i < n;i++)
+ {
+ skip += pre;
+ if(skip > 0)
+ fseek(fp, skip, SEEK_CUR);
+ if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
+ return 0;
+ skip = post;
+ }
+ if(skip > 0)
+ fseek(fp, skip, SEEK_CUR);
+ return 1;
}
// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
// doubles.
-static int ReadWaveList (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) {
- uint32 fourCC, chunkSize, listSize, count;
- uint block, skip, offset, i;
- double lastSample;
-
- for (;;) {
- if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) ||
- (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize)))
- return (0);
- if (fourCC == FOURCC_DATA) {
- block = src -> mSize * src -> mSkip;
- count = chunkSize / block;
- if (count < (src -> mOffset + n)) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath);
- return (0);
- }
- fseek (fp, (long) (src -> mOffset * block), SEEK_CUR);
- if (! ReadWaveData (fp, src, order, n, & hrir [0]))
- return (0);
- return (1);
- } else if (fourCC == FOURCC_LIST) {
- if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC))
- return (0);
- chunkSize -= 4;
- if (fourCC == FOURCC_WAVL)
- break;
- }
- if (chunkSize > 0)
- fseek (fp, (long) chunkSize, SEEK_CUR);
- }
- listSize = chunkSize;
- block = src -> mSize * src -> mSkip;
- skip = src -> mOffset;
- offset = 0;
- lastSample = 0.0;
- while ((offset < n) && (listSize > 8)) {
- if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) ||
- (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize)))
- return (0);
- listSize -= 8 + chunkSize;
- if (fourCC == FOURCC_DATA) {
- count = chunkSize / block;
- if (count > skip) {
- fseek (fp, (long) (skip * block), SEEK_CUR);
- chunkSize -= skip * block;
- count -= skip;
- skip = 0;
- if (count > (n - offset))
- count = n - offset;
- if (! ReadWaveData (fp, src, order, count, & hrir [offset]))
- return (0);
- chunkSize -= count * block;
- offset += count;
- lastSample = hrir [offset - 1];
- } else {
- skip -= count;
- count = 0;
- }
- } else if (fourCC == FOURCC_SLNT) {
- if (! ReadBin4 (fp, src -> mPath, order, 4, & count))
- return (0);
- chunkSize -= 4;
- if (count > skip) {
- count -= skip;
- skip = 0;
- if (count > (n - offset))
- count = n - offset;
- for (i = 0; i < count; i ++)
- hrir [offset + i] = lastSample;
- offset += count;
- } else {
- skip -= count;
- count = 0;
- }
- }
- if (chunkSize > 0)
- fseek (fp, (long) chunkSize, SEEK_CUR);
- }
- if (offset < n) {
- fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath);
- return (0);
- }
- return (1);
+static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ uint32 fourCC, chunkSize, listSize, count;
+ uint block, skip, offset, i;
+ double lastSample;
+
+ for(;;)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+
+ if(fourCC == FOURCC_DATA)
+ {
+ block = src->mSize * src->mSkip;
+ count = chunkSize / block;
+ if(count < (src->mOffset + n))
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
+ return 0;
+ }
+ fseek(fp, (long)(src->mOffset * block), SEEK_CUR);
+ if(!ReadWaveData(fp, src, order, n, &hrir[0]))
+ return 0;
+ return 1;
+ }
+ else if(fourCC == FOURCC_LIST)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
+ return 0;
+ chunkSize -= 4;
+ if(fourCC == FOURCC_WAVL)
+ break;
+ }
+ if(chunkSize > 0)
+ fseek(fp, (long)chunkSize, SEEK_CUR);
+ }
+ listSize = chunkSize;
+ block = src->mSize * src->mSkip;
+ skip = src->mOffset;
+ offset = 0;
+ lastSample = 0.0;
+ while(offset < n && listSize > 8)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+ listSize -= 8 + chunkSize;
+ if(fourCC == FOURCC_DATA)
+ {
+ count = chunkSize / block;
+ if(count > skip)
+ {
+ fseek(fp, (long)(skip * block), SEEK_CUR);
+ chunkSize -= skip * block;
+ count -= skip;
+ skip = 0;
+ if(count > (n - offset))
+ count = n - offset;
+ if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
+ return 0;
+ chunkSize -= count * block;
+ offset += count;
+ lastSample = hrir [offset - 1];
+ }
+ else
+ {
+ skip -= count;
+ count = 0;
+ }
+ }
+ else if(fourCC == FOURCC_SLNT)
+ {
+ if(!ReadBin4(fp, src->mPath, order, 4, &count))
+ return 0;
+ chunkSize -= 4;
+ if(count > skip)
+ {
+ count -= skip;
+ skip = 0;
+ if(count > (n - offset))
+ count = n - offset;
+ for(i = 0; i < count; i ++)
+ hrir[offset + i] = lastSample;
+ offset += count;
+ }
+ else
+ {
+ skip -= count;
+ count = 0;
+ }
+ }
+ if(chunkSize > 0)
+ fseek(fp, (long)chunkSize, SEEK_CUR);
+ }
+ if(offset < n)
+ {
+ fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
+ return 0;
+ }
+ return 1;
}
// Load a source HRIR from a RIFF/RIFX WAVE file.
-static int LoadWaveSource (FILE * fp, SourceRefT * src, const uint hrirRate, const uint n, double * hrir) {
- uint32 fourCC, dummy;
- ByteOrderT order;
-
- if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) ||
- (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & dummy)))
- return (0);
- if (fourCC == FOURCC_RIFF) {
- order = BO_LITTLE;
- } else if (fourCC == FOURCC_RIFX) {
- order = BO_BIG;
- } else {
- fprintf (stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src -> mPath);
- return (0);
- }
- if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC))
- return (0);
- if (fourCC != FOURCC_WAVE) {
- fprintf (stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src -> mPath);
- return (0);
- }
- if (! ReadWaveFormat (fp, order, hrirRate, src))
- return (0);
- if (! ReadWaveList (fp, src, order, n, hrir))
- return (0);
- return (1);
+static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
+{
+ uint32 fourCC, dummy;
+ ByteOrderT order;
+
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
+ return 0;
+ if(fourCC == FOURCC_RIFF)
+ order = BO_LITTLE;
+ else if(fourCC == FOURCC_RIFX)
+ order = BO_BIG;
+ else
+ {
+ fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
+ return 0;
+ }
+
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
+ return 0;
+ if(fourCC != FOURCC_WAVE)
+ {
+ fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(!ReadWaveFormat(fp, order, hrirRate, src))
+ return 0;
+ if(!ReadWaveList(fp, src, order, n, hrir))
+ return 0;
+ return 1;
}
// Load a source HRIR from a binary file.
-static int LoadBinarySource (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) {
- uint i;
+static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ uint i;
- fseek (fp, (long) src -> mOffset, SEEK_SET);
- for (i = 0; i < n; i ++) {
- if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i]))
- return (0);
- if (src -> mSkip > 0)
- fseek (fp, (long) src -> mSkip, SEEK_CUR);
- }
- return (1);
+ fseek(fp, (long)src->mOffset, SEEK_SET);
+ for(i = 0;i < n;i++)
+ {
+ if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
+ return 0;
+ if(src->mSkip > 0)
+ fseek(fp, (long)src->mSkip, SEEK_CUR);
+ }
+ return 1;
}
// Load a source HRIR from an ASCII text file containing a list of elements
// separated by whitespace or common list operators (',', ';', ':', '|').
-static int LoadAsciiSource (FILE * fp, const SourceRefT * src, const uint n, double * hrir) {
- TokenReaderT tr;
- uint i, j;
- double dummy;
-
- TrSetup (fp, NULL, & tr);
- for (i = 0; i < src -> mOffset; i ++) {
- if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy))
- return (0);
- }
- for (i = 0; i < n; i ++) {
- if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & hrir [i]))
- return (0);
- for (j = 0; j < src -> mSkip; j ++) {
- if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy))
- return (0);
- }
- }
- return (1);
+static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
+{
+ TokenReaderT tr;
+ uint i, j;
+ double dummy;
+
+ TrSetup(fp, NULL, &tr);
+ for(i = 0;i < src->mOffset;i++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
+ return 0;
+ }
+ for(i = 0;i < n;i++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i]))
+ return 0;
+ for(j = 0;j < src->mSkip;j++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
+ return 0;
+ }
+ }
+ return 1;
}
// Load a source HRIR from a supported file type.
-static int LoadSource (SourceRefT * src, const uint hrirRate, const uint n, double * hrir) {
- FILE * fp = NULL;
- int result;
-
- if (src -> mFormat == SF_ASCII)
- fp = fopen (src -> mPath, "r");
- else
- fp = fopen (src -> mPath, "rb");
- if (fp == NULL) {
- fprintf (stderr, "Error: Could not open source file '%s'.\n", src -> mPath);
- return (0);
- }
- if (src -> mFormat == SF_WAVE)
- result = LoadWaveSource (fp, src, hrirRate, n, hrir);
- else if (src -> mFormat == SF_BIN_LE)
- result = LoadBinarySource (fp, src, BO_LITTLE, n, hrir);
- else if (src -> mFormat == SF_BIN_BE)
- result = LoadBinarySource (fp, src, BO_BIG, n, hrir);
- else
- result = LoadAsciiSource (fp, src, n, hrir);
- fclose (fp);
- return (result);
+static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
+{
+ int result;
+ FILE *fp;
+
+ if(src->mFormat == SF_ASCII)
+ fp = fopen(src->mPath, "r");
+ else
+ fp = fopen(src->mPath, "rb");
+ if(fp == NULL)
+ {
+ fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(src->mFormat == SF_WAVE)
+ result = LoadWaveSource(fp, src, hrirRate, n, hrir);
+ else if(src->mFormat == SF_BIN_LE)
+ result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
+ else if(src->mFormat == SF_BIN_BE)
+ result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
+ else
+ result = LoadAsciiSource(fp, src, n, hrir);
+ fclose(fp);
+ return result;
+}
+
+
+/***************************
+ *** File storage output ***
+ ***************************/
+
+// Write an ASCII string to a file.
+static int WriteAscii(const char *out, FILE *fp, const char *filename)
+{
+ size_t len;
+
+ len = strlen(out);
+ if(fwrite(out, 1, len, fp) != len)
+ {
+ fclose(fp);
+ fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
+ return 0;
+ }
+ return 1;
+}
+
+// Write a binary value of the given byte order and byte size to a file,
+// loading it from a 32-bit unsigned integer.
+static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename)
+{
+ uint8 out[4];
+ uint i;
+
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < bytes;i++)
+ out[i] = (in>>(i*8)) & 0x000000FF;
+ break;
+ case BO_BIG:
+ for(i = 0;i < bytes;i++)
+ out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
+ break;
+ default:
+ break;
+ }
+ if(fwrite(out, 1, bytes, fp) != bytes)
+ {
+ fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
+ return 0;
+ }
+ return 1;
+}
+
+// Store the OpenAL Soft HRTF data set.
+static int StoreMhr(const HrirDataT *hData, const char *filename)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ FILE *fp;
+ uint fi, ei, ai, i;
+ uint dither_seed = 22222;
+
+ if((fp=fopen(filename, "wb")) == NULL)
+ {
+ fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename);
+ return 0;
+ }
+ if(!WriteAscii(MHR_FORMAT, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename))
+ return 0;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename))
+ return 0;
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
+ return 0;
+ }
+ }
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
+ ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
+ const int bps = (hData->mSampleType == ST_S16) ? 2 :
+ ((hData->mSampleType == ST_S24) ? 3 : 0);
+
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ double out[2 * MAX_TRUNCSIZE];
+
+ TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
+ if(hData->mChannelType == CT_STEREO)
+ TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
+ for(i = 0;i < (channels * n);i++)
+ {
+ int v = (int)Clamp(out[i], -scale-1.0, scale);
+ if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename))
+ return 0;
+ }
+ }
+ }
+ }
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD);
+
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
+ return 0;
+ if(hData->mChannelType == CT_STEREO)
+ {
+ v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD);
+
+ if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
+ return 0;
+ }
+ }
+ }
+ }
+ fclose(fp);
+ return 1;
}
+
+/***********************
+ *** HRTF processing ***
+ ***********************/
+
// Calculate the onset time of an HRIR and average it with any existing
-// timing for its elevation and azimuth.
-static void AverageHrirOnset (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) {
- double mag;
- uint n, i, j;
-
- mag = 0.0;
- n = hData -> mIrPoints;
- for (i = 0; i < n; i ++)
- mag = fmax (fabs (hrir [i]), mag);
- mag *= 0.15;
- for (i = 0; i < n; i ++) {
- if (fabs (hrir [i]) >= mag)
- break;
- }
- j = hData -> mEvOffset [ei] + ai;
- hData -> mHrtds [j] = Lerp (hData -> mHrtds [j], ((double) i) / hData -> mIrRate, f);
+// timing for its field, elevation, azimuth, and ear.
+static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
+{
+ double mag = 0.0;
+ uint i;
+
+ for(i = 0;i < n;i++)
+ mag = fmax(fabs(hrir[i]), mag);
+ mag *= 0.15;
+ for(i = 0;i < n;i++)
+ {
+ if(fabs(hrir[i]) >= mag)
+ break;
+ }
+ return Lerp(onset, (double)i / rate, f);
}
// Calculate the magnitude response of an HRIR and average it with any
-// existing responses for its elevation and azimuth.
-static void AverageHrirMagnitude (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) {
- double * re = NULL, * im = NULL;
- uint n, m, i, j;
-
- n = hData -> mFftSize;
- re = CreateArray (n);
- im = CreateArray (n);
- for (i = 0; i < hData -> mIrPoints; i ++) {
- re [i] = hrir [i];
- im [i] = 0.0;
- }
- for (; i < n; i ++) {
- re [i] = 0.0;
- im [i] = 0.0;
- }
- FftForward (n, re, im, re, im);
- MagnitudeResponse (n, re, im, re);
- m = 1 + (n / 2);
- j = (hData -> mEvOffset [ei] + ai) * hData -> mIrSize;
- for (i = 0; i < m; i ++)
- hData -> mHrirs [j + i] = Lerp (hData -> mHrirs [j + i], re [i], f);
- DestroyArray (im);
- DestroyArray (re);
+// existing responses for its field, elevation, azimuth, and ear.
+static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
+{
+ uint m = 1 + (n / 2), i;
+ Complex *h = CreateComplexes(n);
+ double *r = CreateDoubles(n);
+
+ for(i = 0;i < points;i++)
+ h[i] = MakeComplex(hrir[i], 0.0);
+ for(;i < n;i++)
+ h[i] = MakeComplex(0.0, 0.0);
+ FftForward(n, h);
+ MagnitudeResponse(n, h, r);
+ for(i = 0;i < m;i++)
+ mag[i] = Lerp(mag[i], r[i], f);
+ free(r);
+ free(h);
}
/* Calculate the contribution of each HRIR to the diffuse-field average based
* on the area of its surface patch. All patches are centered at the HRIR
* coordinates on the unit sphere and are measured by solid angle.
*/
-static void CalculateDfWeights (const HrirDataT * hData, double * weights) {
- uint ei;
- double evs, sum, ev, up_ev, down_ev, solidAngle;
-
- evs = 90.0 / (hData -> mEvCount - 1);
- sum = 0.0;
- for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) {
- // For each elevation, calculate the upper and lower limits of the
- // patch band.
- ev = -90.0 + (ei * 2.0 * evs);
- if (ei < (hData -> mEvCount - 1))
- up_ev = (ev + evs) * M_PI / 180.0;
- else
- up_ev = M_PI / 2.0;
- if (ei > 0)
- down_ev = (ev - evs) * M_PI / 180.0;
- else
- down_ev = -M_PI / 2.0;
- // Calculate the area of the patch band.
- solidAngle = 2.0 * M_PI * (sin (up_ev) - sin (down_ev));
- // Each weight is the area of one patch.
- weights [ei] = solidAngle / hData -> mAzCount [ei];
- // Sum the total surface area covered by the HRIRs.
- sum += solidAngle;
- }
- // Normalize the weights given the total surface coverage.
- for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++)
- weights [ei] /= sum;
+static void CalculateDfWeights(const HrirDataT *hData, double *weights)
+{
+ double sum, evs, ev, upperEv, lowerEv, solidAngle;
+ uint fi, ei;
+
+ sum = 0.0;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ // For each elevation, calculate the upper and lower limits of
+ // the patch band.
+ ev = hData->mFds[fi].mEvs[ei].mElevation;
+ lowerEv = fmax(-M_PI / 2.0, ev - evs);
+ upperEv = fmin(M_PI / 2.0, ev + evs);
+ // Calculate the area of the patch band.
+ solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv));
+ // Each weight is the area of one patch.
+ weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount;
+ // Sum the total surface area covered by the HRIRs of all fields.
+ sum += solidAngle;
+ }
+ }
+ /* TODO: It may be interesting to experiment with how a volume-based
+ weighting performs compared to the existing distance-indepenent
+ surface patches.
+ */
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ // Normalize the weights given the total surface coverage for all
+ // fields.
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ weights[(fi * MAX_EV_COUNT) + ei] /= sum;
+ }
}
/* Calculate the diffuse-field average from the given magnitude responses of
@@ -1778,880 +2103,1353 @@ static void CalculateDfWeights (const HrirDataT * hData, double * weights) {
* surface area covered by each HRIR. The final average can then be limited
* by the specified magnitude range (in positive dB; 0.0 to skip).
*/
-static void CalculateDiffuseFieldAverage (const HrirDataT * hData, const int weighted, const double limit, double * dfa) {
- double * weights = NULL;
- uint ei, ai, count, step, start, end, m, j, i;
- double weight;
-
- weights = CreateArray (hData -> mEvCount);
- if (weighted) {
- // Use coverage weighting to calculate the average.
- CalculateDfWeights (hData, weights);
- } else {
- // If coverage weighting is not used, the weights still need to be
- // averaged by the number of HRIRs.
- count = 0;
- for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++)
- count += hData -> mAzCount [ei];
- for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++)
- weights [ei] = 1.0 / count;
- }
- ei = hData -> mEvStart;
- ai = 0;
- step = hData -> mIrSize;
- start = hData -> mEvOffset [ei] * step;
- end = hData -> mIrCount * step;
- m = 1 + (hData -> mFftSize / 2);
- for (i = 0; i < m; i ++)
- dfa [i] = 0.0;
- for (j = start; j < end; j += step) {
- // Get the weight for this HRIR's contribution.
- weight = weights [ei];
- // Add this HRIR's weighted power average to the total.
- for (i = 0; i < m; i ++)
- dfa [i] += weight * hData -> mHrirs [j + i] * hData -> mHrirs [j + i];
- // Determine the next weight to use.
- ai ++;
- if (ai >= hData -> mAzCount [ei]) {
- ei ++;
- ai = 0;
- }
- }
- // Finish the average calculation and keep it from being too small.
- for (i = 0; i < m; i ++)
- dfa [i] = fmax (sqrt (dfa [i]), EPSILON);
- // Apply a limit to the magnitude range of the diffuse-field average if
- // desired.
- if (limit > 0.0)
- LimitMagnitudeResponse (hData -> mFftSize, limit, dfa, dfa);
- DestroyArray (weights);
+static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
+{
+ double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT);
+ uint count, ti, fi, ei, i, ai;
+
+ if(weighted)
+ {
+ // Use coverage weighting to calculate the average.
+ CalculateDfWeights(hData, weights);
+ }
+ else
+ {
+ double weight;
+
+ // If coverage weighting is not used, the weights still need to be
+ // averaged by the number of existing HRIRs.
+ count = hData->mIrCount;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
+ count -= hData->mFds[fi].mEvs[ei].mAzCount;
+ }
+ weight = 1.0 / count;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ weights[(fi * MAX_EV_COUNT) + ei] = weight;
+ }
+ }
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] = 0.0;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ // Get the weight for this HRIR's contribution.
+ double weight = weights[(fi * MAX_EV_COUNT) + ei];
+
+ // Add this HRIR's weighted power average to the total.
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
+ }
+ }
+ }
+ // Finish the average calculation and keep it from being too small.
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON);
+ // Apply a limit to the magnitude range of the diffuse-field average
+ // if desired.
+ if(limit > 0.0)
+ LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
+ }
+ free(weights);
}
// Perform diffuse-field equalization on the magnitude responses of the HRIR
// set using the given average response.
-static void DiffuseFieldEqualize (const double * dfa, const HrirDataT * hData) {
- uint step, start, end, m, j, i;
+static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
+{
+ uint ti, fi, ei, ai, i;
- step = hData -> mIrSize;
- start = hData -> mEvOffset [hData -> mEvStart] * step;
- end = hData -> mIrCount * step;
- m = 1 + (hData -> mFftSize / 2);
- for (j = start; j < end; j += step) {
- for (i = 0; i < m; i ++)
- hData -> mHrirs [j + i] /= dfa [i];
- }
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ azd->mIrs[ti][i] /= dfa[(ti * m) + i];
+ }
+ }
+ }
+ }
}
// Perform minimum-phase reconstruction using the magnitude responses of the
// HRIR set.
-static void ReconstructHrirs (const HrirDataT * hData) {
- double * re = NULL, * im = NULL;
- uint step, start, end, n, j, i;
-
- step = hData -> mIrSize;
- start = hData -> mEvOffset [hData -> mEvStart] * step;
- end = hData -> mIrCount * step;
- n = hData -> mFftSize;
- re = CreateArray (n);
- im = CreateArray (n);
- for (j = start; j < end; j += step) {
- MinimumPhase (n, & hData -> mHrirs [j], re, im);
- FftInverse (n, re, im, re, im);
- for (i = 0; i < hData -> mIrPoints; i ++)
- hData -> mHrirs [j + i] = re [i];
- }
- DestroyArray (im);
- DestroyArray (re);
+static void ReconstructHrirs(const HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mFftSize;
+ uint ti, fi, ei, ai, i;
+ Complex *h = CreateComplexes(n);
+ uint total, count, pcdone, lastpc;
+
+ total = hData->mIrCount;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
+ total -= hData->mFds[fi].mEvs[ei].mAzCount;
+ }
+ total *= channels;
+ count = pcdone = lastpc = 0;
+ printf("%3d%% done.", pcdone);
+ fflush(stdout);
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ MinimumPhase(n, azd->mIrs[ti], h);
+ FftInverse(n, h);
+ for(i = 0;i < hData->mIrPoints;i++)
+ azd->mIrs[ti][i] = h[i].Real;
+ pcdone = ++count * 100 / total;
+ if(pcdone != lastpc)
+ {
+ lastpc = pcdone;
+ printf("\r%3d%% done.", pcdone);
+ fflush(stdout);
+ }
+ }
+ }
+ }
+ }
+ printf("\n");
+ free(h);
}
// Resamples the HRIRs for use at the given sampling rate.
-static void ResampleHrirs (const uint rate, HrirDataT * hData) {
- ResamplerT rs;
- uint n, step, start, end, j;
-
- ResamplerSetup (& rs, hData -> mIrRate, rate);
- n = hData -> mIrPoints;
- step = hData -> mIrSize;
- start = hData -> mEvOffset [hData -> mEvStart] * step;
- end = hData -> mIrCount * step;
- for (j = start; j < end; j += step)
- ResamplerRun (& rs, n, & hData -> mHrirs [j], n, & hData -> mHrirs [j]);
- ResamplerClear (& rs);
- hData -> mIrRate = rate;
-}
-
-/* Given an elevation index and an azimuth, calculate the indices of the two
- * HRIRs that bound the coordinate along with a factor for calculating the
- * continous HRIR using interpolation.
+static void ResampleHrirs(const uint rate, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ uint ti, fi, ei, ai;
+ ResamplerT rs;
+
+ ResamplerSetup(&rs, hData->mIrRate, rate);
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
+ }
+ }
+ }
+ hData->mIrRate = rate;
+ ResamplerClear(&rs);
+}
+
+/* Given field and elevation indices and an azimuth, calculate the indices of
+ * the two HRIRs that bound the coordinate along with a factor for
+ * calculating the continuous HRIR using interpolation.
*/
-static void CalcAzIndices (const HrirDataT * hData, const uint ei, const double az, uint * j0, uint * j1, double * jf) {
- double af;
- uint ai;
-
- af = ((2.0 * M_PI) + az) * hData -> mAzCount [ei] / (2.0 * M_PI);
- ai = ((uint) af) % hData -> mAzCount [ei];
- af -= floor (af);
- (* j0) = hData -> mEvOffset [ei] + ai;
- (* j1) = hData -> mEvOffset [ei] + ((ai + 1) % hData -> mAzCount [ei]);
- (* jf) = af;
-}
-
-// Synthesize any missing onset timings at the bottom elevations. This just
-// blends between slightly exaggerated known onsets. Not an accurate model.
-static void SynthesizeOnsets (HrirDataT * hData) {
- uint oi, e, a, j0, j1;
- double t, of, jf;
-
- oi = hData -> mEvStart;
- t = 0.0;
- for (a = 0; a < hData -> mAzCount [oi]; a ++)
- t += hData -> mHrtds [hData -> mEvOffset [oi] + a];
- hData -> mHrtds [0] = 1.32e-4 + (t / hData -> mAzCount [oi]);
- for (e = 1; e < hData -> mEvStart; e ++) {
- of = ((double) e) / hData -> mEvStart;
- for (a = 0; a < hData -> mAzCount [e]; a ++) {
- CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf);
- hData -> mHrtds [hData -> mEvOffset [e] + a] = Lerp (hData -> mHrtds [0], Lerp (hData -> mHrtds [j0], hData -> mHrtds [j1], jf), of);
- }
- }
-}
-
-/* Attempt to synthesize any missing HRIRs at the bottom elevations. Right
- * now this just blends the lowest elevation HRIRs together and applies some
- * attenuation and high frequency damping. It is a simple, if inaccurate
- * model.
+static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af)
+{
+ double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI);
+ uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount;
+
+ f -= floor(f);
+ *a0 = i;
+ *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount;
+ *af = f;
+}
+
+// Synthesize any missing onset timings at the bottom elevations of each
+// field. This just blends between slightly exaggerated known onsets (not
+// an accurate model).
+static void SynthesizeOnsets(HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint ti, fi, oi, ai, ei, a0, a1;
+ double t, of, af;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ if(hData->mFds[fi].mEvStart <= 0)
+ continue;
+ oi = hData->mFds[fi].mEvStart;
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ t = 0.0;
+ for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
+ t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti];
+ hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount);
+ for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
+ {
+ of = (double)ei / hData->mFds[fi].mEvStart;
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp(
+ hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti],
+ Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti],
+ hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af),
+ of
+ );
+ }
+ }
+ }
+ }
+}
+
+/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
+ * field. Right now this just blends the lowest elevation HRIRs together and
+ * applies some attenuation and high frequency damping. It is a simple, if
+ * inaccurate model.
*/
-static void SynthesizeHrirs (HrirDataT * hData) {
- uint oi, a, e, step, n, i, j;
- double of, b;
- uint j0, j1;
- double jf;
- double lp [4], s0, s1;
-
- if (hData -> mEvStart <= 0)
- return;
- step = hData -> mIrSize;
- oi = hData -> mEvStart;
- n = hData -> mIrPoints;
- for (i = 0; i < n; i ++)
- hData -> mHrirs [i] = 0.0;
- for (a = 0; a < hData -> mAzCount [oi]; a ++) {
- j = (hData -> mEvOffset [oi] + a) * step;
- for (i = 0; i < n; i ++)
- hData -> mHrirs [i] += hData -> mHrirs [j + i] / hData -> mAzCount [oi];
- }
- for (e = 1; e < hData -> mEvStart; e ++) {
- of = ((double) e) / hData -> mEvStart;
- b = (1.0 - of) * (3.5e-6 * hData -> mIrRate);
- for (a = 0; a < hData -> mAzCount [e]; a ++) {
- j = (hData -> mEvOffset [e] + a) * step;
- CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf);
- j0 *= step;
- j1 *= step;
- lp [0] = 0.0;
- lp [1] = 0.0;
- lp [2] = 0.0;
- lp [3] = 0.0;
- for (i = 0; i < n; i ++) {
- s0 = hData -> mHrirs [i];
- s1 = Lerp (hData -> mHrirs [j0 + i], hData -> mHrirs [j1 + i], jf);
- s0 = Lerp (s0, s1, of);
- lp [0] = Lerp (s0, lp [0], b);
- lp [1] = Lerp (lp [0], lp [1], b);
- lp [2] = Lerp (lp [1], lp [2], b);
- lp [3] = Lerp (lp [2], lp [3], b);
- hData -> mHrirs [j + i] = lp [3];
- }
- }
- }
- b = 3.5e-6 * hData -> mIrRate;
- lp [0] = 0.0;
- lp [1] = 0.0;
- lp [2] = 0.0;
- lp [3] = 0.0;
- for (i = 0; i < n; i ++) {
- s0 = hData -> mHrirs [i];
- lp [0] = Lerp (s0, lp [0], b);
- lp [1] = Lerp (lp [0], lp [1], b);
- lp [2] = Lerp (lp [1], lp [2], b);
- lp [3] = Lerp (lp [2], lp [3], b);
- hData -> mHrirs [i] = lp [3];
- }
- hData -> mEvStart = 0;
+static void SynthesizeHrirs(HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ uint ti, fi, ai, ei, i;
+ double lp[4], s0, s1;
+ double of, b;
+ uint a0, a1;
+ double af;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ const uint oi = hData->mFds[fi].mEvStart;
+ if(oi <= 0) continue;
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < n;i++)
+ hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
+ for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
+ {
+ for(i = 0;i < n;i++)
+ hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] /
+ hData->mFds[fi].mEvs[oi].mAzCount;
+ }
+ for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
+ {
+ of = (double)ei / hData->mFds[fi].mEvStart;
+ b = (1.0 - of) * (3.5e-6 * hData->mIrRate);
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
+ lp[0] = 0.0;
+ lp[1] = 0.0;
+ lp[2] = 0.0;
+ lp[3] = 0.0;
+ for(i = 0;i < n;i++)
+ {
+ s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
+ s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i],
+ hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af);
+ s0 = Lerp(s0, s1, of);
+ lp[0] = Lerp(s0, lp[0], b);
+ lp[1] = Lerp(lp[0], lp[1], b);
+ lp[2] = Lerp(lp[1], lp[2], b);
+ lp[3] = Lerp(lp[2], lp[3], b);
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
+ }
+ }
+ }
+ b = 3.5e-6 * hData->mIrRate;
+ lp[0] = 0.0;
+ lp[1] = 0.0;
+ lp[2] = 0.0;
+ lp[3] = 0.0;
+ for(i = 0;i < n;i++)
+ {
+ s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
+ lp[0] = Lerp(s0, lp[0], b);
+ lp[1] = Lerp(lp[0], lp[1], b);
+ lp[2] = Lerp(lp[1], lp[2], b);
+ lp[3] = Lerp(lp[2], lp[3], b);
+ hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
+ }
+ }
+ hData->mFds[fi].mEvStart = 0;
+ }
}
// The following routines assume a full set of HRIRs for all elevations.
// Normalize the HRIR set and slightly attenuate the result.
-static void NormalizeHrirs (const HrirDataT * hData) {
- uint step, end, n, j, i;
- double maxLevel;
-
- step = hData -> mIrSize;
- end = hData -> mIrCount * step;
- n = hData -> mIrPoints;
- maxLevel = 0.0;
- for (j = 0; j < end; j += step) {
- for (i = 0; i < n; i ++)
- maxLevel = fmax (fabs (hData -> mHrirs [j + i]), maxLevel);
- }
- maxLevel = 1.01 * maxLevel;
- for (j = 0; j < end; j += step) {
- for (i = 0; i < n; i ++)
- hData -> mHrirs [j + i] /= maxLevel;
- }
+static void NormalizeHrirs(const HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ uint ti, fi, ei, ai, i;
+ double maxLevel = 0.0;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < n;i++)
+ maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel);
+ }
+ }
+ }
+ }
+ maxLevel = 1.01 * maxLevel;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < n;i++)
+ azd->mIrs[ti][i] /= maxLevel;
+ }
+ }
+ }
+ }
}
// Calculate the left-ear time delay using a spherical head model.
-static double CalcLTD (const double ev, const double az, const double rad, const double dist) {
- double azp, dlp, l, al;
+static double CalcLTD(const double ev, const double az, const double rad, const double dist)
+{
+ double azp, dlp, l, al;
- azp = asin (cos (ev) * sin (az));
- dlp = sqrt ((dist * dist) + (rad * rad) + (2.0 * dist * rad * sin (azp)));
- l = sqrt ((dist * dist) - (rad * rad));
- al = (0.5 * M_PI) + azp;
- if (dlp > l)
- dlp = l + (rad * (al - acos (rad / dist)));
- return (dlp / 343.3);
+ azp = asin(cos(ev) * sin(az));
+ dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
+ l = sqrt((dist*dist) - (rad*rad));
+ al = (0.5 * M_PI) + azp;
+ if(dlp > l)
+ dlp = l + (rad * (al - acos(rad / dist)));
+ return dlp / 343.3;
}
// Calculate the effective head-related time delays for each minimum-phase
// HRIR.
-static void CalculateHrtds (const HeadModelT model, const double radius, HrirDataT * hData) {
- double minHrtd, maxHrtd;
- uint e, a, j;
- double t;
-
- minHrtd = 1000.0;
- maxHrtd = -1000.0;
- for (e = 0; e < hData -> mEvCount; e ++) {
- for (a = 0; a < hData -> mAzCount [e]; a ++) {
- j = hData -> mEvOffset [e] + a;
- if (model == HM_DATASET) {
- t = hData -> mHrtds [j] * radius / hData -> mRadius;
- } else {
- t = CalcLTD ((-90.0 + (e * 180.0 / (hData -> mEvCount - 1))) * M_PI / 180.0,
- (a * 360.0 / hData -> mAzCount [e]) * M_PI / 180.0,
- radius, hData -> mDistance);
- }
- hData -> mHrtds [j] = t;
- maxHrtd = fmax (t, maxHrtd);
- minHrtd = fmin (t, minHrtd);
- }
- }
- maxHrtd -= minHrtd;
- for (j = 0; j < hData -> mIrCount; j ++)
- hData -> mHrtds [j] -= minHrtd;
- hData -> mMaxHrtd = maxHrtd;
+static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ double minHrtd = INFINITY, maxHrtd = -INFINITY;
+ uint ti, fi, ei, ai;
+ double t;
+
+ if(model == HM_DATASET)
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ t = azd->mDelays[ti] * radius / hData->mRadius;
+ azd->mDelays[ti] = t;
+ maxHrtd = fmax(t, maxHrtd);
+ minHrtd = fmin(t, minHrtd);
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
+
+ for(ai = 0;ai < evd->mAzCount;ai++)
+ {
+ HrirAzT *azd = &evd->mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
+ azd->mDelays[ti] = t;
+ maxHrtd = fmax(t, maxHrtd);
+ minHrtd = fmin(t, minHrtd);
+ }
+ }
+ }
+ }
+ }
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
+ }
+ }
+ }
}
-// Store the OpenAL Soft HRTF data set.
-static int StoreMhr (const HrirDataT * hData, const char * filename) {
- FILE * fp = NULL;
- uint e, step, end, n, j, i;
- int hpHist, v;
-
- if ((fp = fopen (filename, "wb")) == NULL) {
- fprintf (stderr, "Error: Could not open MHR file '%s'.\n", filename);
- return (0);
- }
- if (! WriteAscii (MHR_FORMAT, fp, filename))
- return (0);
- if (! WriteBin4 (BO_LITTLE, 4, (uint32) hData -> mIrRate, fp, filename))
- return (0);
- if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mIrPoints, fp, filename))
- return (0);
- if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mEvCount, fp, filename))
- return (0);
- for (e = 0; e < hData -> mEvCount; e ++) {
- if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mAzCount [e], fp, filename))
- return (0);
- }
- step = hData -> mIrSize;
- end = hData -> mIrCount * step;
- n = hData -> mIrPoints;
- srand (0x31DF840C);
- for (j = 0; j < end; j += step) {
- hpHist = 0;
- for (i = 0; i < n; i ++) {
- v = HpTpdfDither (32767.0 * hData -> mHrirs [j + i], & hpHist);
- if (! WriteBin4 (BO_LITTLE, 2, (uint32) v, fp, filename))
- return (0);
- }
- }
- for (j = 0; j < hData -> mIrCount; j ++) {
- v = (int) fmin (round (hData -> mIrRate * hData -> mHrtds [j]), MAX_HRTD);
- if (! WriteBin4 (BO_LITTLE, 1, (uint32) v, fp, filename))
- return (0);
- }
- fclose (fp);
- return (1);
+// Clear the initial HRIR data state.
+static void ResetHrirData(HrirDataT *hData)
+{
+ hData->mIrRate = 0;
+ hData->mSampleType = ST_S24;
+ hData->mChannelType = CT_NONE;
+ hData->mIrPoints = 0;
+ hData->mFftSize = 0;
+ hData->mIrSize = 0;
+ hData->mRadius = 0.0;
+ hData->mIrCount = 0;
+ hData->mFdCount = 0;
+ hData->mFds = NULL;
+}
+
+// Allocate and configure dynamic HRIR structures.
+static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
+{
+ uint evTotal = 0, azTotal = 0, fi, ei, ai;
+
+ for(fi = 0;fi < fdCount;fi++)
+ {
+ evTotal += evCounts[fi];
+ for(ei = 0;ei < evCounts[fi];ei++)
+ azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
+ }
+ if(!fdCount || !evTotal || !azTotal)
+ return 0;
+
+ hData->mFds = calloc(fdCount, sizeof(*hData->mFds));
+ if(hData->mFds == NULL)
+ return 0;
+ hData->mFds[0].mEvs = calloc(evTotal, sizeof(*hData->mFds[0].mEvs));
+ if(hData->mFds[0].mEvs == NULL)
+ return 0;
+ hData->mFds[0].mEvs[0].mAzs = calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs));
+ if(hData->mFds[0].mEvs[0].mAzs == NULL)
+ return 0;
+ hData->mIrCount = azTotal;
+ hData->mFdCount = fdCount;
+ evTotal = 0;
+ azTotal = 0;
+ for(fi = 0;fi < fdCount;fi++)
+ {
+ hData->mFds[fi].mDistance = distances[fi];
+ hData->mFds[fi].mEvCount = evCounts[fi];
+ hData->mFds[fi].mEvStart = 0;
+ hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal];
+ evTotal += evCounts[fi];
+ for(ei = 0;ei < evCounts[fi];ei++)
+ {
+ uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
+
+ hData->mFds[fi].mIrCount += azCount;
+ hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
+ hData->mFds[fi].mEvs[ei].mIrCount += azCount;
+ hData->mFds[fi].mEvs[ei].mAzCount = azCount;
+ hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal];
+ for(ai = 0;ai < azCount;ai++)
+ {
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL;
+ }
+ azTotal += azCount;
+ }
+ }
+ return 1;
+}
+
+// Clean up HRIR data.
+static void FreeHrirData(HrirDataT *hData)
+{
+ if(hData->mFds != NULL)
+ {
+ if(hData->mFds[0].mEvs != NULL)
+ {
+ if(hData->mFds[0].mEvs[0].mAzs)
+ {
+ free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]);
+ free(hData->mFds[0].mEvs[0].mAzs);
+ }
+ free(hData->mFds[0].mEvs);
+ }
+ free(hData->mFds);
+ hData->mFds = NULL;
+ }
+}
+
+// Match the channel type from a given identifier.
+static ChannelTypeT MatchChannelType(const char *ident)
+{
+ if(strcasecmp(ident, "mono") == 0)
+ return CT_MONO;
+ if(strcasecmp(ident, "stereo") == 0)
+ return CT_STEREO;
+ return CT_NONE;
}
// Process the data set definition to read and validate the data set metrics.
-static int ProcessMetrics (TokenReaderT * tr, const uint fftSize, const uint truncSize, HrirDataT * hData) {
- char ident [MAX_IDENT_LEN + 1];
- uint line, col;
- int intVal;
- uint points;
- double fpVal;
- int hasRate = 0, hasPoints = 0, hasAzimuths = 0;
- int hasRadius = 0, hasDistance = 0;
-
- while (! (hasRate && hasPoints && hasAzimuths && hasRadius && hasDistance)) {
- TrIndication (tr, & line, & col);
- if (! TrReadIdent (tr, MAX_IDENT_LEN, ident))
- return (0);
- if (strcasecmp (ident, "rate") == 0) {
- if (hasRate) {
- TrErrorAt (tr, line, col, "Redefinition of 'rate'.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "="))
- return (0);
- if (! TrReadInt (tr, MIN_RATE, MAX_RATE, & intVal))
- return (0);
- hData -> mIrRate = (uint) intVal;
- hasRate = 1;
- } else if (strcasecmp (ident, "points") == 0) {
- if (hasPoints) {
- TrErrorAt (tr, line, col, "Redefinition of 'points'.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "="))
- return (0);
- TrIndication (tr, & line, & col);
- if (! TrReadInt (tr, MIN_POINTS, MAX_POINTS, & intVal))
- return (0);
- points = (uint) intVal;
- if ((fftSize > 0) && (points > fftSize)) {
- TrErrorAt (tr, line, col, "Value exceeds the overridden FFT size.\n");
- return (0);
- }
- if (points < truncSize) {
- TrErrorAt (tr, line, col, "Value is below the truncation size.\n");
- return (0);
- }
- hData -> mIrPoints = points;
- hData -> mFftSize = fftSize;
- if (fftSize <= 0) {
- points = 1;
- while (points < (4 * hData -> mIrPoints))
- points <<= 1;
- hData -> mFftSize = points;
- hData -> mIrSize = 1 + (points / 2);
- } else {
- hData -> mFftSize = fftSize;
- hData -> mIrSize = 1 + (fftSize / 2);
- if (points > hData -> mIrSize)
- hData -> mIrSize = points;
- }
- hasPoints = 1;
- } else if (strcasecmp (ident, "azimuths") == 0) {
- if (hasAzimuths) {
- TrErrorAt (tr, line, col, "Redefinition of 'azimuths'.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "="))
- return (0);
- hData -> mIrCount = 0;
- hData -> mEvCount = 0;
- hData -> mEvOffset [0] = 0;
- for (;;) {
- if (! TrReadInt (tr, MIN_AZ_COUNT, MAX_AZ_COUNT, & intVal))
- return (0);
- hData -> mAzCount [hData -> mEvCount] = (uint) intVal;
- hData -> mIrCount += (uint) intVal;
- hData -> mEvCount ++;
- if (! TrIsOperator (tr, ","))
- break;
- if (hData -> mEvCount >= MAX_EV_COUNT) {
- TrError (tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
- return (0);
- }
- hData -> mEvOffset [hData -> mEvCount] = hData -> mEvOffset [hData -> mEvCount - 1] + ((uint) intVal);
- TrReadOperator (tr, ",");
- }
- if (hData -> mEvCount < MIN_EV_COUNT) {
- TrErrorAt (tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
- return (0);
- }
- hasAzimuths = 1;
- } else if (strcasecmp (ident, "radius") == 0) {
- if (hasRadius) {
- TrErrorAt (tr, line, col, "Redefinition of 'radius'.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "="))
- return (0);
- if (! TrReadFloat (tr, MIN_RADIUS, MAX_RADIUS, & fpVal))
- return (0);
- hData -> mRadius = fpVal;
- hasRadius = 1;
- } else if (strcasecmp (ident, "distance") == 0) {
- if (hasDistance) {
- TrErrorAt (tr, line, col, "Redefinition of 'distance'.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "="))
- return (0);
- if (! TrReadFloat (tr, MIN_DISTANCE, MAX_DISTANCE, & fpVal))
- return (0);
- hData -> mDistance = fpVal;
- hasDistance = 1;
- } else {
- TrErrorAt (tr, line, col, "Expected a metric name.\n");
- return (0);
- }
- TrSkipWhitespace (tr);
- }
- return (1);
-}
-
-// Parse an index pair from the data set definition.
-static int ReadIndexPair (TokenReaderT * tr, const HrirDataT * hData, uint * ei, uint * ai) {
- int intVal;
-
- if (! TrReadInt (tr, 0, (int) hData -> mEvCount, & intVal))
- return (0);
- (* ei) = (uint) intVal;
- if (! TrReadOperator (tr, ","))
- return (0);
- if (! TrReadInt (tr, 0, (int) hData -> mAzCount [(* ei)], & intVal))
- return (0);
- (* ai) = (uint) intVal;
- return (1);
+static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
+{
+ int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
+ int hasDistance = 0, hasAzimuths = 0;
+ char ident[MAX_IDENT_LEN+1];
+ uint line, col;
+ double fpVal;
+ uint points;
+ int intVal;
+ double distances[MAX_FD_COUNT];
+ uint fdCount = 0;
+ uint evCounts[MAX_FD_COUNT];
+ uint *azCounts = calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts));
+
+ if(azCounts == NULL)
+ {
+ fprintf(stderr, "Error: Out of memory.\n");
+ exit(-1);
+ }
+ TrIndication(tr, &line, &col);
+ while(TrIsIdent(tr))
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ goto error;
+ if(strcasecmp(ident, "rate") == 0)
+ {
+ if(hasRate)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+ if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
+ goto error;
+ hData->mIrRate = (uint)intVal;
+ hasRate = 1;
+ }
+ else if(strcasecmp(ident, "type") == 0)
+ {
+ char type[MAX_IDENT_LEN+1];
+
+ if(hasType)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
+ goto error;
+ hData->mChannelType = MatchChannelType(type);
+ if(hData->mChannelType == CT_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a channel type.\n");
+ goto error;
+ }
+ hasType = 1;
+ }
+ else if(strcasecmp(ident, "points") == 0)
+ {
+ if(hasPoints)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
+ goto error;
+ points = (uint)intVal;
+ if(fftSize > 0 && points > fftSize)
+ {
+ TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
+ goto error;
+ }
+ if(points < truncSize)
+ {
+ TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
+ goto error;
+ }
+ hData->mIrPoints = points;
+ if(fftSize <= 0)
+ {
+ hData->mFftSize = DEFAULT_FFTSIZE;
+ hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
+ }
+ else
+ {
+ hData->mFftSize = fftSize;
+ hData->mIrSize = 1 + (fftSize / 2);
+ if(points > hData->mIrSize)
+ hData->mIrSize = points;
+ }
+ hasPoints = 1;
+ }
+ else if(strcasecmp(ident, "radius") == 0)
+ {
+ if(hasRadius)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+ if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
+ goto error;
+ hData->mRadius = fpVal;
+ hasRadius = 1;
+ }
+ else if(strcasecmp(ident, "distance") == 0)
+ {
+ uint count = 0;
+
+ if(hasDistance)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+
+ for(;;)
+ {
+ if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
+ goto error;
+ if(count > 0 && fpVal <= distances[count - 1])
+ {
+ TrError(tr, "Distances are not ascending.\n");
+ goto error;
+ }
+ distances[count++] = fpVal;
+ if(!TrIsOperator(tr, ","))
+ break;
+ if(count >= MAX_FD_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
+ goto error;
+ }
+ TrReadOperator(tr, ",");
+ }
+ if(fdCount != 0 && count != fdCount)
+ {
+ TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
+ goto error;
+ }
+ fdCount = count;
+ hasDistance = 1;
+ }
+ else if(strcasecmp(ident, "azimuths") == 0)
+ {
+ uint count = 0;
+
+ if(hasAzimuths)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+
+ evCounts[0] = 0;
+ for(;;)
+ {
+ if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
+ goto error;
+ azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal;
+ if(TrIsOperator(tr, ","))
+ {
+ if(evCounts[count] >= MAX_EV_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
+ goto error;
+ }
+ TrReadOperator(tr, ",");
+ }
+ else
+ {
+ if(evCounts[count] < MIN_EV_COUNT)
+ {
+ TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
+ goto error;
+ }
+ if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
+ {
+ TrError(tr, "Poles are not singular for field %d.\n", count - 1);
+ goto error;
+ }
+ count++;
+ if(TrIsOperator(tr, ";"))
+ {
+ if(count >= MAX_FD_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
+ goto error;
+ }
+ evCounts[count] = 0;
+ TrReadOperator(tr, ";");
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+ if(fdCount != 0 && count != fdCount)
+ {
+ TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
+ goto error;
+ }
+ fdCount = count;
+ hasAzimuths = 1;
+ }
+ else
+ {
+ TrErrorAt(tr, line, col, "Expected a metric name.\n");
+ goto error;
+ }
+ TrSkipWhitespace(tr);
+ }
+ if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
+ {
+ TrErrorAt(tr, line, col, "Expected a metric name.\n");
+ goto error;
+ }
+ if(distances[0] < hData->mRadius)
+ {
+ TrError(tr, "Distance cannot start below head radius.\n");
+ goto error;
+ }
+ if(hData->mChannelType == CT_NONE)
+ hData->mChannelType = CT_MONO;
+ if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData))
+ {
+ fprintf(stderr, "Error: Out of memory.\n");
+ exit(-1);
+ }
+ free(azCounts);
+ return 1;
+
+error:
+ free(azCounts);
+ return 0;
+}
+
+// Parse an index triplet from the data set definition.
+static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
+{
+ int intVal;
+
+ if(hData->mFdCount > 1)
+ {
+ if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal))
+ return 0;
+ *fi = (uint)intVal;
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ }
+ else
+ {
+ *fi = 0;
+ }
+ if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal))
+ return 0;
+ *ei = (uint)intVal;
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal))
+ return 0;
+ *ai = (uint)intVal;
+ return 1;
}
// Match the source format from a given identifier.
-static SourceFormatT MatchSourceFormat (const char * ident) {
- if (strcasecmp (ident, "wave") == 0)
- return (SF_WAVE);
- else if (strcasecmp (ident, "bin_le") == 0)
- return (SF_BIN_LE);
- else if (strcasecmp (ident, "bin_be") == 0)
- return (SF_BIN_BE);
- else if (strcasecmp (ident, "ascii") == 0)
- return (SF_ASCII);
- return (SF_NONE);
+static SourceFormatT MatchSourceFormat(const char *ident)
+{
+ if(strcasecmp(ident, "wave") == 0)
+ return SF_WAVE;
+ if(strcasecmp(ident, "bin_le") == 0)
+ return SF_BIN_LE;
+ if(strcasecmp(ident, "bin_be") == 0)
+ return SF_BIN_BE;
+ if(strcasecmp(ident, "ascii") == 0)
+ return SF_ASCII;
+ return SF_NONE;
}
// Match the source element type from a given identifier.
-static ElementTypeT MatchElementType (const char * ident) {
- if (strcasecmp (ident, "int") == 0)
- return (ET_INT);
- else if (strcasecmp (ident, "fp") == 0)
- return (ET_FP);
- return (ET_NONE);
+static ElementTypeT MatchElementType(const char *ident)
+{
+ if(strcasecmp(ident, "int") == 0)
+ return ET_INT;
+ if(strcasecmp(ident, "fp") == 0)
+ return ET_FP;
+ return ET_NONE;
}
// Parse and validate a source reference from the data set definition.
-static int ReadSourceRef (TokenReaderT * tr, SourceRefT * src) {
- uint line, col;
- char ident [MAX_IDENT_LEN + 1];
- int intVal;
-
- TrIndication (tr, & line, & col);
- if (! TrReadIdent (tr, MAX_IDENT_LEN, ident))
- return (0);
- src -> mFormat = MatchSourceFormat (ident);
- if (src -> mFormat == SF_NONE) {
- TrErrorAt (tr, line, col, "Expected a source format.\n");
- return (0);
- }
- if (! TrReadOperator (tr, "("))
- return (0);
- if (src -> mFormat == SF_WAVE) {
- if (! TrReadInt (tr, 0, MAX_WAVE_CHANNELS, & intVal))
- return (0);
- src -> mType = ET_NONE;
- src -> mSize = 0;
- src -> mBits = 0;
- src -> mChannel = (uint) intVal;
- src -> mSkip = 0;
- } else {
- TrIndication (tr, & line, & col);
- if (! TrReadIdent (tr, MAX_IDENT_LEN, ident))
- return (0);
- src -> mType = MatchElementType (ident);
- if (src -> mType == ET_NONE) {
- TrErrorAt (tr, line, col, "Expected a source element type.\n");
- return (0);
- }
- if ((src -> mFormat == SF_BIN_LE) || (src -> mFormat == SF_BIN_BE)) {
- if (! TrReadOperator (tr, ","))
- return (0);
- if (src -> mType == ET_INT) {
- if (! TrReadInt (tr, MIN_BIN_SIZE, MAX_BIN_SIZE, & intVal))
- return (0);
- src -> mSize = (uint) intVal;
- if (TrIsOperator (tr, ",")) {
- TrReadOperator (tr, ",");
- TrIndication (tr, & line, & col);
- if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal))
- return (0);
- if ((abs (intVal) < MIN_BIN_BITS) || (((uint) abs (intVal)) > (8 * src -> mSize))) {
- TrErrorAt (tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8 * src -> mSize);
- return (0);
- }
- src -> mBits = intVal;
- } else {
- src -> mBits = (int) (8 * src -> mSize);
- }
- } else {
- TrIndication (tr, & line, & col);
- if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal))
- return (0);
- if ((intVal != 4) && (intVal != 8)) {
- TrErrorAt (tr, line, col, "Expected a value of 4 or 8.\n");
- return (0);
- }
- src -> mSize = (uint) intVal;
- src -> mBits = 0;
- }
- } else if ((src -> mFormat == SF_ASCII) && (src -> mType == ET_INT)) {
- if (! TrReadOperator (tr, ","))
- return (0);
- if (! TrReadInt (tr, MIN_ASCII_BITS, MAX_ASCII_BITS, & intVal))
- return (0);
- src -> mSize = 0;
- src -> mBits = intVal;
- } else {
- src -> mSize = 0;
- src -> mBits = 0;
- }
- if (TrIsOperator (tr, ";")) {
- TrReadOperator (tr, ";");
- if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal))
- return (0);
- src -> mSkip = (uint) intVal;
- } else {
- src -> mSkip = 0;
- }
- }
- if (! TrReadOperator (tr, ")"))
- return (0);
- if (TrIsOperator (tr, "@")) {
- TrReadOperator (tr, "@");
- if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal))
- return (0);
- src -> mOffset = (uint) intVal;
- } else {
- src -> mOffset = 0;
- }
- if (! TrReadOperator (tr, ":"))
- return (0);
- if (! TrReadString (tr, MAX_PATH_LEN, src -> mPath))
- return (0);
- return (1);
+static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
+{
+ char ident[MAX_IDENT_LEN+1];
+ uint line, col;
+ int intVal;
+
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ src->mFormat = MatchSourceFormat(ident);
+ if(src->mFormat == SF_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a source format.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "("))
+ return 0;
+ if(src->mFormat == SF_WAVE)
+ {
+ if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
+ return 0;
+ src->mType = ET_NONE;
+ src->mSize = 0;
+ src->mBits = 0;
+ src->mChannel = (uint)intVal;
+ src->mSkip = 0;
+ }
+ else
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ src->mType = MatchElementType(ident);
+ if(src->mType == ET_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a source element type.\n");
+ return 0;
+ }
+ if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
+ {
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(src->mType == ET_INT)
+ {
+ if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
+ return 0;
+ src->mSize = (uint)intVal;
+ if(!TrIsOperator(tr, ","))
+ src->mBits = (int)(8*src->mSize);
+ else
+ {
+ TrReadOperator(tr, ",");
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
+ return 0;
+ if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize))
+ {
+ TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
+ return 0;
+ }
+ src->mBits = intVal;
+ }
+ }
+ else
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
+ return 0;
+ if(intVal != 4 && intVal != 8)
+ {
+ TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
+ return 0;
+ }
+ src->mSize = (uint)intVal;
+ src->mBits = 0;
+ }
+ }
+ else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
+ {
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
+ return 0;
+ src->mSize = 0;
+ src->mBits = intVal;
+ }
+ else
+ {
+ src->mSize = 0;
+ src->mBits = 0;
+ }
+
+ if(!TrIsOperator(tr, ";"))
+ src->mSkip = 0;
+ else
+ {
+ TrReadOperator(tr, ";");
+ if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
+ return 0;
+ src->mSkip = (uint)intVal;
+ }
+ }
+ if(!TrReadOperator(tr, ")"))
+ return 0;
+ if(TrIsOperator(tr, "@"))
+ {
+ TrReadOperator(tr, "@");
+ if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
+ return 0;
+ src->mOffset = (uint)intVal;
+ }
+ else
+ src->mOffset = 0;
+ if(!TrReadOperator(tr, ":"))
+ return 0;
+ if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
+ return 0;
+ return 1;
+}
+
+// Match the target ear (index) from a given identifier.
+static int MatchTargetEar(const char *ident)
+{
+ if(strcasecmp(ident, "left") == 0)
+ return 0;
+ if(strcasecmp(ident, "right") == 0)
+ return 1;
+ return -1;
}
// Process the list of sources in the data set definition.
-static int ProcessSources (const HeadModelT model, TokenReaderT * tr, HrirDataT * hData) {
- uint * setCount = NULL, * setFlag = NULL;
- double * hrir = NULL;
- uint line, col, ei, ai;
- SourceRefT src;
- double factor;
-
- setCount = (uint *) calloc (hData -> mEvCount, sizeof (uint));
- setFlag = (uint *) calloc (hData -> mIrCount, sizeof (uint));
- hrir = CreateArray (hData -> mIrPoints);
- while (TrIsOperator (tr, "[")) {
- TrIndication (tr, & line, & col);
- TrReadOperator (tr, "[");
- if (ReadIndexPair (tr, hData, & ei, & ai)) {
- if (TrReadOperator (tr, "]")) {
- if (! setFlag [hData -> mEvOffset [ei] + ai]) {
- if (TrReadOperator (tr, "=")) {
- factor = 1.0;
- for (;;) {
- if (ReadSourceRef (tr, & src)) {
- if (LoadSource (& src, hData -> mIrRate, hData -> mIrPoints, hrir)) {
- if (model == HM_DATASET)
- AverageHrirOnset (hrir, 1.0 / factor, ei, ai, hData);
- AverageHrirMagnitude (hrir, 1.0 / factor, ei, ai, hData);
- factor += 1.0;
- if (! TrIsOperator (tr, "+"))
- break;
- TrReadOperator (tr, "+");
- continue;
- }
- }
- DestroyArray (hrir);
- free (setFlag);
- free (setCount);
- return (0);
+static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize);
+ double *hrir = CreateDoubles(hData->mIrPoints);
+ uint line, col, fi, ei, ai, ti;
+ int count;
+
+ printf("Loading sources...");
+ fflush(stdout);
+ count = 0;
+ while(TrIsOperator(tr, "["))
+ {
+ double factor[2] = { 1.0, 1.0 };
+
+ TrIndication(tr, &line, &col);
+ TrReadOperator(tr, "[");
+ if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
+ goto error;
+ if(!TrReadOperator(tr, "]"))
+ goto error;
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] != NULL)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of source.\n");
+ goto error;
+ }
+ if(!TrReadOperator(tr, "="))
+ goto error;
+
+ for(;;)
+ {
+ SourceRefT src;
+ uint ti = 0;
+
+ if(!ReadSourceRef(tr, &src))
+ goto error;
+
+ // TODO: Would be nice to display 'x of y files', but that would
+ // require preparing the source refs first to get a total count
+ // before loading them.
+ ++count;
+ printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
+ fflush(stdout);
+
+ if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir))
+ goto error;
+
+ if(hData->mChannelType == CT_STEREO)
+ {
+ char ident[MAX_IDENT_LEN+1];
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ goto error;
+ ti = MatchTargetEar(ident);
+ if((int)ti < 0)
+ {
+ TrErrorAt(tr, line, col, "Expected a target ear.\n");
+ goto error;
}
- setFlag [hData -> mEvOffset [ei] + ai] = 1;
- setCount [ei] ++;
- continue;
- }
- } else {
- TrErrorAt (tr, line, col, "Redefinition of source.\n");
- }
- }
- }
- DestroyArray (hrir);
- free (setFlag);
- free (setCount);
- return (0);
- }
- ei = 0;
- while ((ei < hData -> mEvCount) && (setCount [ei] < 1))
- ei ++;
- if (ei < hData -> mEvCount) {
- hData -> mEvStart = ei;
- while ((ei < hData -> mEvCount) && (setCount [ei] == hData -> mAzCount [ei]))
- ei ++;
- if (ei >= hData -> mEvCount) {
- if (! TrLoad (tr)) {
- DestroyArray (hrir);
- free (setFlag);
- free (setCount);
- return (1);
- } else {
- TrError (tr, "Errant data at end of source list.\n");
- }
- } else {
- TrError (tr, "Missing sources for elevation index %d.\n", ei);
- }
- } else {
- TrError (tr, "Missing source references.\n");
- }
- DestroyArray (hrir);
- free (setFlag);
- free (setCount);
- return (0);
+ }
+ azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
+ if(model == HM_DATASET)
+ azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]);
+ AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]);
+ factor[ti] += 1.0;
+ if(!TrIsOperator(tr, "+"))
+ break;
+ TrReadOperator(tr, "+");
+ }
+ if(hData->mChannelType == CT_STEREO)
+ {
+ if(azd->mIrs[0] == NULL)
+ {
+ TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
+ goto error;
+ }
+ else if(azd->mIrs[1] == NULL)
+ {
+ TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
+ goto error;
+ }
+ }
+ }
+ printf("\n");
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] != NULL)
+ break;
+ }
+ if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
+ break;
+ }
+ if(ei >= hData->mFds[fi].mEvCount)
+ {
+ TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
+ goto error;
+ }
+ hData->mFds[fi].mEvStart = ei;
+ for(;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] == NULL)
+ {
+ TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
+ goto error;
+ }
+ }
+ }
+ }
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
+ }
+ }
+ }
+ }
+ if(!TrLoad(tr))
+ {
+ free(hrir);
+ return 1;
+ }
+ TrError(tr, "Errant data at end of source list.\n");
+
+error:
+ free(hrir);
+ return 0;
}
/* Parse the data set definition and process the source data, storing the
* resulting data set as desired. If the input name is NULL it will read
* from standard input.
*/
-static int ProcessDefinition (const char * inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const OutputFormatT outFormat, const char * outName) {
- FILE * fp = NULL;
- TokenReaderT tr;
- HrirDataT hData;
- double * dfa = NULL;
- char rateStr [8 + 1], expName [MAX_PATH_LEN];
-
- hData . mIrRate = 0;
- hData . mIrPoints = 0;
- hData . mFftSize = 0;
- hData . mIrSize = 0;
- hData . mIrCount = 0;
- hData . mEvCount = 0;
- hData . mRadius = 0;
- hData . mDistance = 0;
- fprintf (stdout, "Reading HRIR definition...\n");
- if (inName != NULL) {
- fp = fopen (inName, "r");
- if (fp == NULL) {
- fprintf (stderr, "Error: Could not open definition file '%s'\n", inName);
- return (0);
- }
- TrSetup (fp, inName, & tr);
- } else {
- fp = stdin;
- TrSetup (fp, "<stdin>", & tr);
- }
- if (! ProcessMetrics (& tr, fftSize, truncSize, & hData)) {
- if (inName != NULL)
- fclose (fp);
- return (0);
- }
- hData . mHrirs = CreateArray (hData . mIrCount * hData . mIrSize);
- hData . mHrtds = CreateArray (hData . mIrCount);
- if (! ProcessSources (model, & tr, & hData)) {
- DestroyArray (hData . mHrtds);
- DestroyArray (hData . mHrirs);
- if (inName != NULL)
- fclose (fp);
- return (0);
- }
- if (inName != NULL)
- fclose (fp);
- if (equalize) {
- dfa = CreateArray (1 + (hData . mFftSize / 2));
- fprintf (stdout, "Calculating diffuse-field average...\n");
- CalculateDiffuseFieldAverage (& hData, surface, limit, dfa);
- fprintf (stdout, "Performing diffuse-field equalization...\n");
- DiffuseFieldEqualize (dfa, & hData);
- DestroyArray (dfa);
- }
- fprintf (stdout, "Performing minimum phase reconstruction...\n");
- ReconstructHrirs (& hData);
- if ((outRate != 0) && (outRate != hData . mIrRate)) {
- fprintf (stdout, "Resampling HRIRs...\n");
- ResampleHrirs (outRate, & hData);
- }
- fprintf (stdout, "Truncating minimum-phase HRIRs...\n");
- hData . mIrPoints = truncSize;
- fprintf (stdout, "Synthesizing missing elevations...\n");
- if (model == HM_DATASET)
- SynthesizeOnsets (& hData);
- SynthesizeHrirs (& hData);
- fprintf (stdout, "Normalizing final HRIRs...\n");
- NormalizeHrirs (& hData);
- fprintf (stdout, "Calculating impulse delays...\n");
- CalculateHrtds (model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData . mRadius, & hData);
- snprintf (rateStr, 8, "%u", hData . mIrRate);
- StrSubst (outName, "%r", rateStr, MAX_PATH_LEN, expName);
- switch (outFormat) {
- case OF_MHR :
- fprintf (stdout, "Creating MHR data set file...\n");
- if (! StoreMhr (& hData, expName))
- return (0);
- break;
- default :
- break;
- }
- DestroyArray (hData . mHrtds);
- DestroyArray (hData . mHrirs);
- return (1);
+static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
+{
+ char rateStr[8+1], expName[MAX_PATH_LEN];
+ TokenReaderT tr;
+ HrirDataT hData;
+ FILE *fp;
+ int ret;
+
+ ResetHrirData(&hData);
+ fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
+ if(inName != NULL)
+ {
+ fp = fopen(inName, "r");
+ if(fp == NULL)
+ {
+ fprintf(stderr, "Error: Could not open definition file '%s'\n", inName);
+ return 0;
+ }
+ TrSetup(fp, inName, &tr);
+ }
+ else
+ {
+ fp = stdin;
+ TrSetup(fp, "<stdin>", &tr);
+ }
+ if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
+ {
+ if(inName != NULL)
+ fclose(fp);
+ return 0;
+ }
+ if(!ProcessSources(model, &tr, &hData))
+ {
+ FreeHrirData(&hData);
+ if(inName != NULL)
+ fclose(fp);
+ return 0;
+ }
+ if(fp != stdin)
+ fclose(fp);
+ if(equalize)
+ {
+ uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
+ uint m = 1 + hData.mFftSize / 2;
+ double *dfa = CreateDoubles(c * m);
+
+ fprintf(stdout, "Calculating diffuse-field average...\n");
+ CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa);
+ fprintf(stdout, "Performing diffuse-field equalization...\n");
+ DiffuseFieldEqualize(c, m, dfa, &hData);
+ free(dfa);
+ }
+ fprintf(stdout, "Performing minimum phase reconstruction...\n");
+ ReconstructHrirs(&hData);
+ if(outRate != 0 && outRate != hData.mIrRate)
+ {
+ fprintf(stdout, "Resampling HRIRs...\n");
+ ResampleHrirs(outRate, &hData);
+ }
+ fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
+ hData.mIrPoints = truncSize;
+ fprintf(stdout, "Synthesizing missing elevations...\n");
+ if(model == HM_DATASET)
+ SynthesizeOnsets(&hData);
+ SynthesizeHrirs(&hData);
+ fprintf(stdout, "Normalizing final HRIRs...\n");
+ NormalizeHrirs(&hData);
+ fprintf(stdout, "Calculating impulse delays...\n");
+ CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
+ snprintf(rateStr, 8, "%u", hData.mIrRate);
+ StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
+ fprintf(stdout, "Creating MHR data set %s...\n", expName);
+ ret = StoreMhr(&hData, expName);
+
+ FreeHrirData(&hData);
+ return ret;
+}
+
+static void PrintHelp(const char *argv0, FILE *ofile)
+{
+ fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
+ fprintf(ofile, "Options:\n");
+ fprintf(ofile, " -m Ignored for compatibility.\n");
+ fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
+ fprintf(ofile, " resample the HRIRs accordingly.\n");
+ fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
+ fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
+ fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
+ fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
+ fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
+ fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
+ fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
+ fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
+ fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
+ fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n");
+ fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
+ fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
+ fprintf(ofile, " the data set sample rate.\n");
}
// Standard command line dispatch.
-int main (const int argc, const char * argv []) {
- const char * inName = NULL, * outName = NULL;
- OutputFormatT outFormat;
- int argi;
- uint outRate, fftSize;
- int equalize, surface;
- double limit;
- uint truncSize;
- HeadModelT model;
- double radius;
- char * end = NULL;
-
- if (argc < 2) {
- fprintf (stderr, "Error: No command specified. See '%s -h' for help.\n", argv [0]);
- return (-1);
- }
- if ((strcmp (argv [1], "--help") == 0) || (strcmp (argv [1], "-h") == 0)) {
- fprintf (stdout, "HRTF Processing and Composition Utility\n\n");
- fprintf (stdout, "Usage: %s <command> [<option>...]\n\n", argv [0]);
- fprintf (stdout, "Commands:\n");
- fprintf (stdout, " -m, --make-mhr Makes an OpenAL Soft compatible HRTF data set.\n");
- fprintf (stdout, " Defaults output to: ./oalsoft_hrtf_%%r.mhr\n");
- fprintf (stdout, " -h, --help Displays this help information.\n\n");
- fprintf (stdout, "Options:\n");
- fprintf (stdout, " -r=<rate> Change the data set sample rate to the specified value and\n");
- fprintf (stdout, " resample the HRIRs accordingly.\n");
- fprintf (stdout, " -f=<points> Override the FFT window size (defaults to the first power-\n");
- fprintf (stdout, " of-two that fits four times the number of HRIR points).\n");
- fprintf (stdout, " -e={on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
- fprintf (stdout, " -s={on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
- fprintf (stdout, " -l={<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
- fprintf (stdout, " average (default: %.2f).\n", DEFAULT_LIMIT);
- fprintf (stdout, " -w=<points> Specify the size of the truncation window that's applied\n");
- fprintf (stdout, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
- fprintf (stdout, " -d={dataset| Specify the model used for calculating the head-delay timing\n");
- fprintf (stdout, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
- fprintf (stdout, " -c=<size> Use a customized head radius measured ear-to-ear in meters.\n");
- fprintf (stdout, " -i=<filename> Specify an HRIR definition file to use (defaults to stdin).\n");
- fprintf (stdout, " -o=<filename> Specify an output file. Overrides command-selected default.\n");
- fprintf (stdout, " Use of '%%r' will be substituted with the data set sample rate.\n");
- return (0);
- }
- if ((strcmp (argv [1], "--make-mhr") == 0) || (strcmp (argv [1], "-m") == 0)) {
- if (argc > 3)
- outName = argv [3];
- else
- outName = "./oalsoft_hrtf_%r.mhr";
- outFormat = OF_MHR;
- } else {
- fprintf (stderr, "Error: Invalid command '%s'.\n", argv [1]);
- return (-1);
- }
- argi = 2;
- outRate = 0;
- fftSize = 0;
- equalize = DEFAULT_EQUALIZE;
- surface = DEFAULT_SURFACE;
- limit = DEFAULT_LIMIT;
- truncSize = DEFAULT_TRUNCSIZE;
- model = DEFAULT_HEAD_MODEL;
- radius = DEFAULT_CUSTOM_RADIUS;
- while (argi < argc) {
- if (strncmp (argv [argi], "-r=", 3) == 0) {
- outRate = strtoul (& argv [argi] [3], & end, 10);
- if ((end [0] != '\0') || (outRate < MIN_RATE) || (outRate > MAX_RATE)) {
- fprintf (stderr, "Error: Expected a value from %u to %u for '-r'.\n", MIN_RATE, MAX_RATE);
- return (-1);
- }
- } else if (strncmp (argv [argi], "-f=", 3) == 0) {
- fftSize = strtoul (& argv [argi] [3], & end, 10);
- if ((end [0] != '\0') || (fftSize & (fftSize - 1)) || (fftSize < MIN_FFTSIZE) || (fftSize > MAX_FFTSIZE)) {
- fprintf (stderr, "Error: Expected a power-of-two value from %u to %u for '-f'.\n", MIN_FFTSIZE, MAX_FFTSIZE);
- return (-1);
- }
- } else if (strncmp (argv [argi], "-e=", 3) == 0) {
- if (strcmp (& argv [argi] [3], "on") == 0) {
- equalize = 1;
- } else if (strcmp (& argv [argi] [3], "off") == 0) {
- equalize = 0;
- } else {
- fprintf (stderr, "Error: Expected 'on' or 'off' for '-e'.\n");
- return (-1);
- }
- } else if (strncmp (argv [argi], "-s=", 3) == 0) {
- if (strcmp (& argv [argi] [3], "on") == 0) {
- surface = 1;
- } else if (strcmp (& argv [argi] [3], "off") == 0) {
- surface = 0;
- } else {
- fprintf (stderr, "Error: Expected 'on' or 'off' for '-s'.\n");
- return (-1);
- }
- } else if (strncmp (argv [argi], "-l=", 3) == 0) {
- if (strcmp (& argv [argi] [3], "none") == 0) {
- limit = 0.0;
- } else {
- limit = strtod (& argv [argi] [3], & end);
- if ((end [0] != '\0') || (limit < MIN_LIMIT) || (limit > MAX_LIMIT)) {
- fprintf (stderr, "Error: Expected 'none' or a value from %.2f to %.2f for '-l'.\n", MIN_LIMIT, MAX_LIMIT);
- return (-1);
- }
- }
- } else if (strncmp (argv [argi], "-w=", 3) == 0) {
- truncSize = strtoul (& argv [argi] [3], & end, 10);
- if ((end [0] != '\0') || (truncSize < MIN_TRUNCSIZE) || (truncSize > MAX_TRUNCSIZE) || (truncSize % MOD_TRUNCSIZE)) {
- fprintf (stderr, "Error: Expected a value from %u to %u in multiples of %u for '-w'.\n", MIN_TRUNCSIZE, MAX_TRUNCSIZE, MOD_TRUNCSIZE);
- return (-1);
- }
- } else if (strncmp (argv [argi], "-d=", 3) == 0) {
- if (strcmp (& argv [argi] [3], "dataset") == 0) {
- model = HM_DATASET;
- } else if (strcmp (& argv [argi] [3], "sphere") == 0) {
- model = HM_SPHERE;
- } else {
- fprintf (stderr, "Error: Expected 'dataset' or 'sphere' for '-d'.\n");
- return (-1);
- }
- } else if (strncmp (argv [argi], "-c=", 3) == 0) {
- radius = strtod (& argv [argi] [3], & end);
- if ((end [0] != '\0') || (radius < MIN_CUSTOM_RADIUS) || (radius > MAX_CUSTOM_RADIUS)) {
- fprintf (stderr, "Error: Expected a value from %.2f to %.2f for '-c'.\n", MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
- return (-1);
- }
- } else if (strncmp (argv [argi], "-i=", 3) == 0) {
- inName = & argv [argi] [3];
- } else if (strncmp (argv [argi], "-o=", 3) == 0) {
- outName = & argv [argi] [3];
- } else {
- fprintf (stderr, "Error: Invalid option '%s'.\n", argv [argi]);
- return (-1);
- }
- argi ++;
- }
- if (! ProcessDefinition (inName, outRate, fftSize, equalize, surface, limit, truncSize, model, radius, outFormat, outName))
- return (-1);
- fprintf (stdout, "Operation completed.\n");
- return (0);
-}
+int main(int argc, char *argv[])
+{
+ const char *inName = NULL, *outName = NULL;
+ uint outRate, fftSize;
+ int equalize, surface;
+ char *end = NULL;
+ HeadModelT model;
+ uint truncSize;
+ double radius;
+ double limit;
+ int opt;
+
+ GET_UNICODE_ARGS(&argc, &argv);
+
+ if(argc < 2)
+ {
+ fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
+ PrintHelp(argv[0], stdout);
+ exit(EXIT_SUCCESS);
+ }
+
+ outName = "./oalsoft_hrtf_%r.mhr";
+ outRate = 0;
+ fftSize = 0;
+ equalize = DEFAULT_EQUALIZE;
+ surface = DEFAULT_SURFACE;
+ limit = DEFAULT_LIMIT;
+ truncSize = DEFAULT_TRUNCSIZE;
+ model = DEFAULT_HEAD_MODEL;
+ radius = DEFAULT_CUSTOM_RADIUS;
+
+ while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1)
+ {
+ switch(opt)
+ {
+ case 'm':
+ fprintf(stderr, "Ignoring unused command '-m'.\n");
+ break;
+
+ case 'r':
+ outRate = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'f':
+ fftSize = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'e':
+ if(strcmp(optarg, "on") == 0)
+ equalize = 1;
+ else if(strcmp(optarg, "off") == 0)
+ equalize = 0;
+ else
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+ case 's':
+ if(strcmp(optarg, "on") == 0)
+ surface = 1;
+ else if(strcmp(optarg, "off") == 0)
+ surface = 0;
+ else
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'l':
+ if(strcmp(optarg, "none") == 0)
+ limit = 0.0;
+ else
+ {
+ limit = strtod(optarg, &end);
+ if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
+ exit(EXIT_FAILURE);
+ }
+ }
+ break;
+
+ case 'w':
+ truncSize = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'd':
+ if(strcmp(optarg, "dataset") == 0)
+ model = HM_DATASET;
+ else if(strcmp(optarg, "sphere") == 0)
+ model = HM_SPHERE;
+ else
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'c':
+ radius = strtod(optarg, &end);
+ if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
+ {
+ fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
+ exit(EXIT_FAILURE);
+ }
+ break;
+ case 'i':
+ inName = optarg;
+ break;
+ case 'o':
+ outName = optarg;
+ break;
+ case 'h':
+ PrintHelp(argv[0], stdout);
+ exit(EXIT_SUCCESS);
+
+ default: /* '?' */
+ PrintHelp(argv[0], stderr);
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
+ truncSize, model, radius, outName))
+ return -1;
+ fprintf(stdout, "Operation completed.\n");
+
+ return EXIT_SUCCESS;
+}