diff options
author | Chris Robinson <[email protected]> | 2019-12-11 00:48:03 -0800 |
---|---|---|
committer | Chris Robinson <[email protected]> | 2019-12-11 00:49:57 -0800 |
commit | 4867f93a34226be5d7d78e2f58f1413fc88816e4 (patch) | |
tree | 530b7d0504686a98e738f58d9294e811db42bccb /utils/sofa-info.cpp | |
parent | ae916929c95d676c14279d701f105819e9e62a13 (diff) |
Move duplicate SOFA-related functions to a reusable library
Diffstat (limited to 'utils/sofa-info.cpp')
-rw-r--r-- | utils/sofa-info.cpp | 270 |
1 files changed, 4 insertions, 266 deletions
diff --git a/utils/sofa-info.cpp b/utils/sofa-info.cpp index 81136334..6ab71306 100644 --- a/utils/sofa-info.cpp +++ b/utils/sofa-info.cpp @@ -23,46 +23,16 @@ #include <stdio.h> -#include <algorithm> -#include <array> -#include <cmath> #include <memory> #include <vector> -#include <mysofa.h> - +#include "sofa-support.h" #include "win_main_utf8.h" +#include "mysofa.h" -using uint = unsigned int; -using double3 = std::array<double,3>; - -struct MySofaDeleter { - void operator()(MYSOFA_HRTF *sofa) { mysofa_free(sofa); } -}; -using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaDeleter>; - -// Per-field measurement info. -struct HrirFdT { - double mDistance{0.0}; - uint mEvCount{0u}; - uint mEvStart{0u}; - std::vector<uint> mAzCounts; -}; -static const char *SofaErrorStr(int err) -{ - switch(err) - { - case MYSOFA_OK: return "OK"; - case MYSOFA_INVALID_FORMAT: return "Invalid format"; - case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format"; - case MYSOFA_INTERNAL_ERROR: return "Internal error"; - case MYSOFA_NO_MEMORY: return "Out of memory"; - case MYSOFA_READ_ERROR: return "Read error"; - } - return "Unknown"; -} +using uint = unsigned int; static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *attribute) { @@ -76,131 +46,10 @@ static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *att static void PrintSofaArray(const char *prefix, struct MYSOFA_ARRAY *array) { PrintSofaAttributes(prefix, array->attributes); - for(uint i{0u};i < array->elements;i++) fprintf(stdout, "%s[%u]: %.6f\n", prefix, i, array->values[i]); } -/* Produces a sorted array of unique elements from a particular axis of the - * triplets array. The filters are used to focus on particular coordinates - * of other axes as necessary. The epsilons are used to constrain the - * equality of unique elements. - */ -static std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, - const uint axis, const double *const (&filters)[3], const double (&epsilons)[3]) -{ - std::vector<double> elems; - for(const double3 &aer : aers) - { - const double elem{aer[axis]}; - - uint j; - for(j = 0;j < 3;j++) - { - if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j]) - break; - } - if(j < 3) - continue; - - auto iter = elems.begin(); - for(;iter != elems.end();++iter) - { - const double delta{elem - *iter}; - if(delta > epsilons[axis]) continue; - if(delta >= -epsilons[axis]) break; - - iter = elems.emplace(iter, elem); - break; - } - if(iter == elems.end()) - elems.emplace_back(elem); - } - return elems; -} - -/* Given a list of azimuths, this will produce the smallest step size that can - * uniformly cover the list. Ideally this will be over half, but in degenerate - * cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Get the maximum count possible, given the first two elements. It would - * be impossible to have more than this since the first element must be - * included. - */ - uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))}; - count = std::min(count, 255u); - - for(;count >= 5;--count) - { - /* Given the stepping value for this number of elements, check each - * multiple to ensure there's a matching element. - */ - const double step{360.0 / count}; - bool good{true}; - size_t idx{1u}; - for(uint mult{1u};mult < count && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - return step; - } - return 0.0; -} - -/* Given a list of elevations, this will produce the smallest step size that - * can uniformly cover the list. Ideally this will be over half, but in - * degenerate cases this can fall to a minimum of 5 (the lower limit). - */ -static double GetUniformElevStep(const double epsilon, std::vector<double> &elems) -{ - if(elems.size() < 5) return 0.0; - - /* Reverse the elevations so it increments starting with -90 (flipped from - * +90). This makes it easier to work out a proper stepping value. - */ - std::reverse(elems.begin(), elems.end()); - for(auto &v : elems) v *= -1.0; - - uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))}; - count = std::min(count, 255u); - - double ret{0.0}; - for(;count >= 5;--count) - { - const double step{180.0 / count}; - bool good{true}; - size_t idx{1u}; - /* Elevations don't need to match all multiples if there's not enough - * elements to check. Missing elevations can be synthesized. - */ - for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult) - { - const double target{step*mult + elems[0]}; - while(idx < elems.size() && target-elems[idx] > epsilon) - ++idx; - good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon); - } - if(good) - { - ret = step; - break; - } - } - /* Re-reverse the elevations to restore the correct order. */ - for(auto &v : elems) v *= -1.0; - std::reverse(elems.begin(), elems.end()); - - return ret; -} - /* Attempts to produce a compatible layout. Most data sets tend to be * uniform and have the same major axis as used by OpenAL Soft's HRTF model. * This will remove outliers and produce a maximally dense layout when @@ -211,118 +60,7 @@ static void PrintCompatibleLayout(const uint m, const float *xyzs) { fputc('\n', stdout); - auto aers = std::vector<double3>(m, double3{}); - for(uint i{0u};i < m;++i) - { - float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]}; - mysofa_c2s(&vals[0]); - aers[i] = {vals[0], vals[1], vals[2]}; - } - - auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001}); - - auto fds = std::vector<HrirFdT>(radii.size()); - for(size_t fi{0u};fi < radii.size();fi++) - fds[fi].mDistance = radii[fi]; - - for(uint fi{0u};fi < fds.size();) - { - const double dist{fds[fi].mDistance}; - auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001}); - - /* Remove elevations that don't have a valid set of azimuths. */ - auto invalid_elev = [&dist,&aers](const double ev) -> bool - { - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - if(std::abs(ev) > 89.999) - return azims.size() != 1; - if(azims.empty() || !(std::abs(azims[0]) < 0.1)) - return true; - return GetUniformAzimStep(0.1, azims) <= 0.0; - }; - elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end()); - - double step{GetUniformElevStep(0.1, elevs)}; - if(step <= 0.0) - { - if(elevs.empty()) - fprintf(stdout, "No usable elevations on field distance %f.\n", dist); - else - { - fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist, - elevs[0]); - for(size_t ei{1u};ei < elevs.size();++ei) - fprintf(stdout, ", %+.2f", elevs[ei]); - fputc('\n', stdout); - } - fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi)); - continue; - } - - uint evStart{0u}; - for(uint ei{0u};ei < elevs.size();ei++) - { - if(!(elevs[ei] < 0.0)) - { - fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist); - return; - } - - double eif{(90.0+elevs[ei]) / step}; - const double ev_start{std::round(eif)}; - - if(std::abs(eif - ev_start) < (0.1/step)) - { - evStart = static_cast<uint>(ev_start); - break; - } - } - - const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1; - if(evCount < 5) - { - fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist); - fds.erase(fds.begin() + static_cast<ptrdiff_t>(fi)); - continue; - } - - fds[fi].mEvCount = evCount; - fds[fi].mEvStart = evStart; - fds[fi].mAzCounts.resize(evCount); - auto &azCounts = fds[fi].mAzCounts; - - for(uint ei{evStart};ei < evCount;ei++) - { - double ev{-90.0 + ei*180.0/(evCount - 1)}; - auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001}); - - if(ei == 0 || ei == (evCount-1)) - { - if(azims.size() != 1) - { - fprintf(stdout, "Non-singular poles on field distance %f.\n", dist); - return; - } - azCounts[ei] = 1; - } - else - { - step = GetUniformAzimStep(0.1, azims); - if(step <= 0.0) - { - fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n", - ev, dist); - return; - } - azCounts[ei] = static_cast<uint>(std::round(360.0f / step)); - } - } - - for(uint ei{0u};ei < evStart;ei++) - azCounts[ei] = azCounts[evCount - ei - 1]; - ++fi; - } + auto fds = GetCompatibleLayout(m, xyzs); if(fds.empty()) { fprintf(stdout, "No compatible field layouts in SOFA file.\n"); |