aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Alc/ALu.c20
-rw-r--r--Alc/alcReverb.c4
-rw-r--r--Alc/hrtf.c8
-rw-r--r--OpenAL32/Include/alu.h8
-rw-r--r--OpenAL32/alFilter.c2
5 files changed, 21 insertions, 21 deletions
diff --git a/Alc/ALu.c b/Alc/ALu.c
index a2352de9..00620f96 100644
--- a/Alc/ALu.c
+++ b/Alc/ALu.c
@@ -180,7 +180,7 @@ ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
}
/* Calculate gains */
- DryGain = clampF(SourceVolume, MinVolume, MaxVolume);
+ DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
DryGainHF = 1.0f;
switch(ALSource->DirectFilter.type)
{
@@ -191,7 +191,7 @@ ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
}
for(i = 0;i < NumSends;i++)
{
- WetGain[i] = clampF(SourceVolume, MinVolume, MaxVolume);
+ WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
WetGainHF[i] = 1.0f;
switch(ALSource->Send[i].WetFilter.type)
{
@@ -497,7 +497,7 @@ ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
ALContext->DistanceModel)
{
case InverseDistanceClamped:
- ClampedDist = clampF(ClampedDist, MinDist, MaxDist);
+ ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
@@ -515,7 +515,7 @@ ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
break;
case LinearDistanceClamped:
- ClampedDist = clampF(ClampedDist, MinDist, MaxDist);
+ ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
@@ -523,17 +523,17 @@ ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
if(MaxDist != MinDist)
{
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
- Attenuation = maxF(Attenuation, 0.0f);
+ Attenuation = maxf(Attenuation, 0.0f);
for(i = 0;i < NumSends;i++)
{
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
- RoomAttenuation[i] = maxF(RoomAttenuation[i], 0.0f);
+ RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
}
}
break;
case ExponentDistanceClamped:
- ClampedDist = clampF(ClampedDist, MinDist, MaxDist);
+ ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
@@ -601,9 +601,9 @@ ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
}
// Clamp to Min/Max Gain
- DryGain = clampF(DryGain, MinVolume, MaxVolume);
+ DryGain = clampf(DryGain, MinVolume, MaxVolume);
for(i = 0;i < NumSends;i++)
- WetGain[i] = clampF(WetGain[i], MinVolume, MaxVolume);
+ WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
// Apply filter gains and filters
switch(ALSource->DirectFilter.type)
@@ -761,7 +761,7 @@ ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
ALfloat length;
ALint pos;
- length = maxF(Distance, MinDist);
+ length = maxf(Distance, MinDist);
if(length > 0.0f)
{
ALfloat invlen = 1.0f/length;
diff --git a/Alc/alcReverb.c b/Alc/alcReverb.c
index e4fb4ebf..d4e5d318 100644
--- a/Alc/alcReverb.c
+++ b/Alc/alcReverb.c
@@ -391,7 +391,7 @@ static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF,
/* Using the limit calculated above, apply the upper bound to the HF
* ratio. Also need to limit the result to a minimum of 0.1, just like the
* HF ratio parameter. */
- return clampF(limitRatio, 0.1f, hfRatio);
+ return clampf(limitRatio, 0.1f, hfRatio);
}
// Calculate the coefficient for a HF (and eventually LF) decay damping
@@ -415,7 +415,7 @@ static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloa
// Very low decay times will produce minimal output, so apply an
// upper bound to the coefficient.
- coeff = minF(coeff, 0.98f);
+ coeff = minf(coeff, 0.98f);
}
return coeff;
}
diff --git a/Alc/hrtf.c b/Alc/hrtf.c
index e1f02ce7..344b826b 100644
--- a/Alc/hrtf.c
+++ b/Alc/hrtf.c
@@ -89,8 +89,8 @@ ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3],
ALfloat gainChange, angleChange;
// Calculate the normalized dB gain change.
- newGain = maxF(newGain, 0.0001f);
- oldGain = maxF(oldGain, 0.0001f);
+ newGain = maxf(newGain, 0.0001f);
+ oldGain = maxf(oldGain, 0.0001f);
gainChange = aluFabs(log10(newGain / oldGain) / log10(0.0001f));
// Calculate the normalized listener to source angle change when there is
@@ -109,7 +109,7 @@ ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3],
// Use the largest of the two changes for the delta factor, and apply a
// significance shaping function to it.
- return clampF(angleChange*2.0f, gainChange*2.0f, 1.0f);
+ return clampf(angleChange*2.0f, gainChange*2.0f, 1.0f);
}
// Calculates static HRIR coefficients and delays for the given polar
@@ -223,7 +223,7 @@ ALuint GetMovingHrtfCoeffs(ALfloat elevation, ALfloat azimuth, ALfloat gain, ALf
ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
// Calculate the stepping parameters.
- delta = maxF(floor(delta*(Hrtf.sampleRate*0.015f) + 0.5), 1.0f);
+ delta = maxf(floor(delta*(Hrtf.sampleRate*0.015f) + 0.5), 1.0f);
step = 1.0f / delta;
// Calculate the normalized and attenuated target HRIR coefficients using
diff --git a/OpenAL32/Include/alu.h b/OpenAL32/Include/alu.h
index 45eb09c5..bddc2cf8 100644
--- a/OpenAL32/Include/alu.h
+++ b/OpenAL32/Include/alu.h
@@ -127,12 +127,12 @@ enum DistanceModel {
#endif
-static __inline ALfloat minF(ALfloat a, ALfloat b)
+static __inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
-static __inline ALfloat maxF(ALfloat a, ALfloat b)
+static __inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
-static __inline ALfloat clampF(ALfloat val, ALfloat mn, ALfloat mx)
-{ return minF(mx, maxF(mn, val)); }
+static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
+{ return minf(max, maxf(min, val)); }
static __inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
diff --git a/OpenAL32/alFilter.c b/OpenAL32/alFilter.c
index 13391ab0..5e73cbae 100644
--- a/OpenAL32/alFilter.c
+++ b/OpenAL32/alFilter.c
@@ -387,7 +387,7 @@ ALfloat lpCoeffCalc(ALfloat g, ALfloat cw)
* head towards 1, which will flatten the signal */
if(g < 0.9999f) /* 1-epsilon */
{
- g = maxF(g, 0.01f);
+ g = maxf(g, 0.01f);
a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) /
(1 - g);
}