aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Alc/effects/reverb.c121
-rw-r--r--examples/almultireverb.c379
2 files changed, 274 insertions, 226 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c
index 46129934..bd5553ad 100644
--- a/Alc/effects/reverb.c
+++ b/Alc/effects/reverb.c
@@ -1060,97 +1060,52 @@ static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, co
}
}
-/* Creates a transform matrix given a reverb vector. This works by first
- * creating an inverse rotation around Y then X, applying a Z-focus transform,
- * then non-inverse rotations back around X then Y, to place the focal point in
- * the direction of the vector, using the vector length as a focus strength.
- *
- * This convoluted construction ultimately results in a B-Format transformation
- * matrix that retains its original orientation, but spatially focuses the
- * signal in the desired direction. There is probably a more efficient way to
- * do this, but let's see how good the optimizer is.
+/* Creates a transform matrix given a reverb vector. The vector pans the reverb
+ * reflections toward the given direction, using its magnitude (up to 1) as a
+ * focal strength. This function results in a B-Format transformation matrix
+ * that spatially focuses the signal in the desired direction.
*/
static aluMatrixf GetTransformFromVector(const ALfloat *vec)
{
const ALfloat sqrt_3 = 1.732050808f;
- aluMatrixf zfocus, xrot, yrot;
- aluMatrixf tmp1, tmp2;
- ALfloat length;
- ALfloat sa, a;
-
- length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
-
- /* Define a Z-focus (X in Ambisonics) transform, given the panning vector
- * length.
+ aluMatrixf focus;
+ ALfloat norm[3];
+ ALfloat mag;
+
+ /* Normalize the panning vector according to the N3D scale, which has an
+ * extra sqrt(3) term on the directional components. Converting from OpenAL
+ * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
+ * that the reverb panning vectors use right-handed coordinates, unlike the
+ * rest of OpenAL which use left-handed. This is fixed by negating Z, which
+ * cancels out with the B-Format Z negation.
*/
- sa = sinf(minf(length, 1.0f) * (F_PI/2.0f));
- aluMatrixfSet(&zfocus,
- 1.0f/(1.0f+sa), 0.0f, 0.0f, sa/(1.0f+sa)/sqrt_3,
- 0.0f, sqrtf((1.0f-sa)/(1.0f+sa)), 0.0f, 0.0f,
- 0.0f, 0.0f, sqrtf((1.0f-sa)/(1.0f+sa)), 0.0f,
- sa/(1.0f+sa)*sqrt_3, 0.0f, 0.0f, 1.0f/(1.0f+sa)
- );
-
- /* Define rotation around X (Y in Ambisonics) */
- a = atan2f(vec[1], sqrtf(vec[0]*vec[0] + vec[2]*vec[2]));
- aluMatrixfSet(&xrot,
- 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, cosf(a), sinf(a),
- 0.0f, 0.0f, -sinf(a), cosf(a)
- );
+ mag = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
+ if(mag > 1.0f)
+ {
+ norm[0] = vec[0] / mag * -sqrt_3;
+ norm[1] = vec[1] / mag * sqrt_3;
+ norm[2] = vec[2] / mag * sqrt_3;
+ mag = 1.0f;
+ }
+ else
+ {
+ /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
+ * term. There's no need to renormalize the magnitude since it would
+ * just be reapplied in the matrix.
+ */
+ norm[0] = vec[0] * -sqrt_3;
+ norm[1] = vec[1] * sqrt_3;
+ norm[2] = vec[2] * sqrt_3;
+ }
- /* Define rotation around Y (Z in Ambisonics). NOTE: EFX's reverb vectors
- * use a right-handled coordinate system, compared to the rest of OpenAL
- * which uses left-handed. This is fixed by negating Z, however it would
- * need to also be negated to get a proper Ambisonics angle, thus
- * cancelling it out.
- */
- a = atan2f(-vec[0], vec[2]);
- aluMatrixfSet(&yrot,
- 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, cosf(a), 0.0f, sinf(a),
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, -sinf(a), 0.0f, cosf(a)
+ aluMatrixfSet(&focus,
+ 1.0f, 0.0f, 0.0f, 0.0f,
+ norm[0], 1.0f-mag, 0.0f, 0.0f,
+ norm[1], 0.0f, 1.0f-mag, 0.0f,
+ norm[2], 0.0f, 0.0f, 1.0f-mag
);
- /* First, define a matrix that applies the inverse of the Y- then X-
- * rotation matrices, so that the desired direction lands on Z.
- */
-#define MATRIX_INVMULT(_res, _m1, _m2) do { \
- int row, col; \
- for(col = 0;col < 4;col++) \
- { \
- for(row = 0;row < 4;row++) \
- _res.m[row][col] = _m1.m[0][row]*_m2.m[col][0] + \
- _m1.m[1][row]*_m2.m[col][1] + \
- _m1.m[2][row]*_m2.m[col][2] + \
- _m1.m[3][row]*_m2.m[col][3]; \
- } \
-} while(0)
- MATRIX_INVMULT(tmp1, xrot, yrot);
-#undef MATRIX_INVMULT
-
-#define MATRIX_MULT(_res, _m1, _m2) do { \
- int row, col; \
- for(col = 0;col < 4;col++) \
- { \
- for(row = 0;row < 4;row++) \
- _res.m[row][col] = _m1.m[row][0]*_m2.m[0][col] + \
- _m1.m[row][1]*_m2.m[1][col] + \
- _m1.m[row][2]*_m2.m[2][col] + \
- _m1.m[row][3]*_m2.m[3][col]; \
- } \
-} while(0)
- /* Now apply matrices to focus on Z, then rotate back around X then Y, to
- * result in a focus in the direction of the vector.
- */
- MATRIX_MULT(tmp2, zfocus, tmp1);
- MATRIX_MULT(tmp1, xrot, tmp2);
- MATRIX_MULT(tmp2, yrot, tmp1);
-#undef MATRIX_MULT
-
- return tmp2;
+ return focus;
}
/* Update the early and late 3D panning gains. */
diff --git a/examples/almultireverb.c b/examples/almultireverb.c
index 2f820914..44398db3 100644
--- a/examples/almultireverb.c
+++ b/examples/almultireverb.c
@@ -231,12 +231,227 @@ static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
}
+/* Helper to normalize a given vector. */
+static void normalize(ALfloat vec[3])
+{
+ ALfloat mag = sqrtf(dot_product(vec, vec));
+ if(mag > 0.00001f)
+ {
+ vec[0] /= mag;
+ vec[1] /= mag;
+ vec[2] /= mag;
+ }
+ else
+ {
+ vec[0] = 0.0f;
+ vec[1] = 0.0f;
+ vec[2] = 0.0f;
+ }
+}
+
+
+/* The main update function to update the listener and environment effects. */
+static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
+{
+ static const ALfloat listener_move_scale = 10.0f;
+ /* Individual reverb zones are connected via "portals". Each portal has a
+ * position (center point of the connecting area), a normal (facing
+ * direction), and a radius (approximate size of the connecting area).
+ */
+ const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
+ const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
+ const ALfloat portal_radius = 2.5f;
+ ALfloat other_dir[3], this_dir[3];
+ ALfloat listener_pos[3];
+ ALfloat local_norm[3];
+ ALfloat local_dir[3];
+ ALfloat near_edge[3];
+ ALfloat far_edge[3];
+ ALfloat dist, edist;
+
+ /* Update the listener position for the amount of time passed. This uses a
+ * simple triangular LFO to offset the position (moves along the X axis
+ * between -listener_move_scale and +listener_move_scale for each
+ * transition).
+ */
+ listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
+ listener_pos[1] = 0.0f;
+ listener_pos[2] = 0.0f;
+ alListenerfv(AL_POSITION, listener_pos);
+
+ /* Calculate local_dir, which represents the listener-relative point to the
+ * adjacent zone (should also include orientation). Because EAX Reverb uses
+ * right-handed coordinates instead of left-handed like the rest of OpenAL,
+ * negate Z for the local values.
+ */
+ local_dir[0] = portal_pos[0] - listener_pos[0];
+ local_dir[1] = portal_pos[1] - listener_pos[1];
+ local_dir[2] = -(portal_pos[2] - listener_pos[2]);
+ /* A normal application would also rotate the portal's normal given the
+ * listener orientation, to get the listener-relative normal.
+ */
+ local_norm[0] = portal_norm[0];
+ local_norm[1] = portal_norm[1];
+ local_norm[2] = -portal_norm[2];
+
+ /* Calculate the distance from the listener to the portal, and ensure it's
+ * far enough away to not suffer severe floating-point precision issues.
+ */
+ dist = sqrtf(dot_product(local_dir, local_dir));
+ if(dist > 0.00001f)
+ {
+ const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
+ ALuint other_effect, this_effect;
+ ALfloat magnitude, dir_dot_norm;
+
+ /* Normalize the direction to the portal. */
+ local_dir[0] /= dist;
+ local_dir[1] /= dist;
+ local_dir[2] /= dist;
+
+ /* Calculate the dot product of the portal's local direction and local
+ * normal, which is used for angular and side checks later on.
+ */
+ dir_dot_norm = dot_product(local_dir, local_norm);
+
+ /* Figure out which zone we're in. */
+ if(dir_dot_norm <= 0.0f)
+ {
+ /* We're in front of the portal, so we're in Zone 0. */
+ this_effect = effects[0];
+ other_effect = effects[1];
+ this_reverb = &reverbs[0];
+ other_reverb = &reverbs[1];
+ }
+ else
+ {
+ /* We're behind the portal, so we're in Zone 1. */
+ this_effect = effects[1];
+ other_effect = effects[0];
+ this_reverb = &reverbs[1];
+ other_reverb = &reverbs[0];
+ }
+
+ /* Calculate the listener-relative extents of the portal. */
+ /* First, project the listener-to-portal vector onto the portal's plane
+ * to get the portal-relative direction along the plane that goes away
+ * from the listener (toward the farthest edge of the portal).
+ */
+ far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
+ far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
+ far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
+
+ edist = sqrtf(dot_product(far_edge, far_edge));
+ if(edist > 0.0001f)
+ {
+ /* Rescale the portal-relative vector to be at the radius edge. */
+ ALfloat mag = portal_radius / edist;
+ far_edge[0] *= mag;
+ far_edge[1] *= mag;
+ far_edge[2] *= mag;
+
+ /* Calculate the closest edge of the portal by negating the
+ * farthest, and add an offset to make them both relative to the
+ * listener.
+ */
+ near_edge[0] = local_dir[0]*dist - far_edge[0];
+ near_edge[1] = local_dir[1]*dist - far_edge[1];
+ near_edge[2] = local_dir[2]*dist - far_edge[2];
+ far_edge[0] += local_dir[0]*dist;
+ far_edge[1] += local_dir[1]*dist;
+ far_edge[2] += local_dir[2]*dist;
+
+ /* Normalize the listener-relative extents of the portal, then
+ * calculate the panning magnitude for the other zone given the
+ * apparent size of the opening. The panning magnitude affects the
+ * envelopment of the environment, with 1 being a point, 0.5 being
+ * half coverage around the listener, and 0 being full coverage.
+ */
+ normalize(far_edge);
+ normalize(near_edge);
+ magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
+
+ /* Recalculate the panning direction, to be directly between the
+ * direction of the two extents.
+ */
+ local_dir[0] = far_edge[0] + near_edge[0];
+ local_dir[1] = far_edge[1] + near_edge[1];
+ local_dir[2] = far_edge[2] + near_edge[2];
+ normalize(local_dir);
+ }
+ else
+ {
+ /* If we get here, the listener is directly in front of or behind
+ * the center of the portal, making all aperture edges effectively
+ * equidistant. Calculating the panning magnitude is simplified,
+ * using the arctangent of the radius and distance.
+ */
+ magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
+ }
+
+ /* Scale the other zone's panning vector. */
+ other_dir[0] = local_dir[0] * magnitude;
+ other_dir[1] = local_dir[1] * magnitude;
+ other_dir[2] = local_dir[2] * magnitude;
+ /* Pan the current zone to the opposite direction of the portal, and
+ * take the remaining percentage of the portal's magnitude.
+ */
+ this_dir[0] = local_dir[0] * (magnitude-1.0f);
+ this_dir[1] = local_dir[1] * (magnitude-1.0f);
+ this_dir[2] = local_dir[2] * (magnitude-1.0f);
+
+ /* Now set the effects' panning vectors and gain. Energy is shared
+ * between environments, so attenuate according to each zone's
+ * contribution (note: gain^2 = energy).
+ */
+ alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
+ alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
+ alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
+ alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
+
+ alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
+ alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
+ alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
+ alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
+ }
+ else
+ {
+ /* We're practically in the center of the portal. Give the panning
+ * vectors a 50/50 split, with Zone 0 covering the half in front of
+ * the normal, and Zone 1 covering the half behind.
+ */
+ this_dir[0] = local_norm[0] / 2.0f;
+ this_dir[1] = local_norm[1] / 2.0f;
+ this_dir[2] = local_norm[2] / 2.0f;
+
+ other_dir[0] = local_norm[0] / -2.0f;
+ other_dir[1] = local_norm[1] / -2.0f;
+ other_dir[2] = local_norm[2] / -2.0f;
+
+ alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
+ alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
+ alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
+ alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
+
+ alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
+ alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
+ alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
+ alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
+ }
+
+ /* Finally, update the effect slots with the updated effect parameters. */
+ alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
+ alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
+}
+
int main(int argc, char **argv)
{
static const int MaxTransitions = 8;
- EFXEAXREVERBPROPERTIES reverb0 = EFX_REVERB_PRESET_CASTLE_LARGEROOM;
- EFXEAXREVERBPROPERTIES reverb1 = EFX_REVERB_PRESET_CASTLE_LONGPASSAGE;
+ EFXEAXREVERBPROPERTIES reverbs[2] = {
+ EFX_REVERB_PRESET_CARPETEDHALLWAY,
+ EFX_REVERB_PRESET_BATHROOM
+ };
struct timespec basetime;
ALCdevice *device = NULL;
ALCcontext *context = NULL;
@@ -363,7 +578,7 @@ int main(int argc, char **argv)
* relative to the listener.
*/
alGenEffects(2, effects);
- if(!LoadEffect(effects[0], &reverb0) || !LoadEffect(effects[1], &reverb1))
+ if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
{
alDeleteEffects(2, effects);
alDeleteBuffers(1, &buffer);
@@ -396,10 +611,13 @@ int main(int argc, char **argv)
alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
- /* Create the source to play the sound with. */
+ /* Create the source to play the sound with, place it in front of the
+ * listener's path in the left zone.
+ */
source = 0;
alGenSources(1, &source);
alSourcei(source, AL_LOOPING, AL_TRUE);
+ alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
alSourcei(source, AL_DIRECT_FILTER, direct_filter);
alSourcei(source, AL_BUFFER, buffer);
@@ -407,7 +625,8 @@ int main(int argc, char **argv)
* to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
* to occlude the source from each zone by varying amounts; for example, a
* source within a particular zone would be unfiltered, while a source that
- * can only see a zone through a window may be attenuated for that zone.
+ * can only see a zone through a window or thin wall may be attenuated for
+ * that zone.
*/
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[0], 0, AL_FILTER_NULL);
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[1], 1, AL_FILTER_NULL);
@@ -421,23 +640,8 @@ int main(int argc, char **argv)
/* Play the sound for a while. */
alSourcePlay(source);
do {
- /* Individual reverb zones are connected via "portals". Each portal has
- * a position (center point of the connecting area), a normal (facing
- * direction), and a radius (approximate size of the connecting area).
- * For this example it also has movement velocity, although normally it
- * would be the listener that moves relative to the portal instead of
- * the portal itself.
- */
- const ALfloat portal_pos[3] = { -10.0f, 0.0f, 0.0f };
- const ALfloat portal_norm[3] = { 1.0f, 0.0f, 0.0f };
- const ALfloat portal_vel[3] = { 5.0f, 0.0f, 0.0f };
- const ALfloat portal_radius = 2.5f;
- ALfloat other_dir[3], this_dir[3];
- ALfloat local_norm[3];
- ALfloat local_dir[3];
- ALfloat local_radius;
- ALfloat dist, timediff;
struct timespec curtime;
+ ALfloat timediff;
/* Start a batch update, to ensure all changes apply simultaneously. */
alcSuspendContext(context);
@@ -452,136 +656,25 @@ int main(int argc, char **argv)
/* Avoid negative time deltas, in case of non-monotonic clocks. */
if(timediff < 0.0f)
timediff = 0.0f;
- else while(timediff >= 4.0f)
+ else while(timediff >= 4.0f*((loops&1)+1))
{
- /* For this example, each transition occurs over 4 seconds.
- * Decrease the delta and increase the base time to start a new
- * transition.
+ /* For this example, each transition occurs over 4 seconds, and
+ * there's 2 transitions per cycle.
*/
- timediff -= 4.0f;
- basetime.tv_sec += 4;
if(++loops < MaxTransitions)
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
- }
-
- /* Move the portal according to the amount of time passed. local_dir
- * represents the listener-relative point to the adjacent zone.
- */
- local_dir[0] = portal_pos[0] + portal_vel[0]*timediff;
- local_dir[1] = portal_pos[1] + portal_vel[1]*timediff;
- local_dir[2] = portal_pos[2] + portal_vel[2]*timediff;
- /* A normal application would also rotate the portal's normal given the
- * listener orientation, to get the listener-relative normal.
- *
- * For this example, the portal is always head-on but every other
- * transition negates the normal. This effectively simulates a
- * different portal moving in closer than the last one that faces the
- * other way, switching the old adjacent zone to a new one.
- */
- local_norm[0] = portal_norm[0] * ((loops&1) ? -1.0f : 1.0f);
- local_norm[1] = portal_norm[1] * ((loops&1) ? -1.0f : 1.0f);
- local_norm[2] = portal_norm[2] * ((loops&1) ? -1.0f : 1.0f);
-
- /* Calculate the distance from the listener to the portal. */
- dist = sqrtf(dot_product(local_dir, local_dir));
- if(!(dist > 0.00001f))
- {
- /* We're practically in the center of the portal. Give the panning
- * vectors a 50/50 split, with Zone 0 covering the half in front of
- * the normal, and Zone 1 covering the half behind.
- */
- this_dir[0] = local_norm[0] / 2.0f;
- this_dir[1] = local_norm[1] / 2.0f;
- this_dir[2] = local_norm[2] / 2.0f;
-
- other_dir[0] = local_norm[0] / -2.0f;
- other_dir[1] = local_norm[1] / -2.0f;
- other_dir[2] = local_norm[2] / -2.0f;
-
- alEffectf(effects[0], AL_EAXREVERB_GAIN, reverb0.flGain);
- alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
- alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
-
- alEffectf(effects[1], AL_EAXREVERB_GAIN, reverb1.flGain);
- alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
- alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
- }
- else
- {
- const EFXEAXREVERBPROPERTIES *other_reverb;
- const EFXEAXREVERBPROPERTIES *this_reverb;
- ALuint other_effect, this_effect;
- ALfloat spread, attn;
-
- /* Normalize the direction to the portal. */
- local_dir[0] /= dist;
- local_dir[1] /= dist;
- local_dir[2] /= dist;
-
- /* Scale the radius according to its local angle. The visibility to
- * the other zone reduces as the portal becomes perpendicular.
- */
- local_radius = portal_radius * fabsf(dot_product(local_dir, local_norm));
-
- /* Calculate distance attenuation for the other zone, using the
- * standard inverse distance model with the radius as a reference.
- */
- attn = local_radius / dist;
- if(attn > 1.0f) attn = 1.0f;
-
- /* Calculate the 'spread' of the portal, which is the amount of
- * coverage the other zone has around the listener.
- */
- spread = atan2f(local_radius, dist) / (ALfloat)M_PI;
-
- /* Figure out which zone we're in, given the direction to the
- * portal and its normal.
- */
- if(dot_product(local_dir, local_norm) <= 0.0f)
- {
- /* We're in front of the portal, so we're in Zone 0. */
- this_effect = effects[0];
- other_effect = effects[1];
- this_reverb = &reverb0;
- other_reverb = &reverb1;
- }
- else
+ if(!(loops&1))
{
- /* We're behind the portal, so we're in Zone 1. */
- this_effect = effects[1];
- other_effect = effects[0];
- this_reverb = &reverb1;
- other_reverb = &reverb0;
+ /* Cycle completed. Decrease the delta and increase the base
+ * time to start a new cycle.
+ */
+ timediff -= 8.0f;
+ basetime.tv_sec += 8;
}
-
- /* Scale the other zone's panning vector down as the portal's
- * spread increases, so that it envelops the listener more.
- */
- other_dir[0] = local_dir[0] * (1.0f-spread);
- other_dir[1] = local_dir[1] * (1.0f-spread);
- other_dir[2] = local_dir[2] * (1.0f-spread);
- /* Pan the current zone to the opposite direction of the portal,
- * and take the remaining percentage of the portal's spread.
- */
- this_dir[0] = local_dir[0] * -spread;
- this_dir[1] = local_dir[1] * -spread;
- this_dir[2] = local_dir[2] * -spread;
-
- /* Now set the effects' panning vectors and distance attenuation. */
- alEffectf(this_effect, AL_EAXREVERB_GAIN, this_reverb->flGain);
- alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
- alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
-
- alEffectf(other_effect, AL_EAXREVERB_GAIN, other_reverb->flGain * attn);
- alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
- alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
}
- /* Finally, update the effect slots with the updated effect parameters,
- * and finish the update batch.
- */
- alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
- alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
+ /* Update the listener and effects, and finish the batch. */
+ UpdateListenerAndEffects(timediff, slots, effects, reverbs);
alcProcessContext(context);
al_nssleep(10000000);