summaryrefslogtreecommitdiffstats
path: root/Alc/alcReverb.c
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/alcReverb.c')
-rw-r--r--Alc/alcReverb.c1249
1 files changed, 895 insertions, 354 deletions
diff --git a/Alc/alcReverb.c b/Alc/alcReverb.c
index 8a5a1149..631d1b94 100644
--- a/Alc/alcReverb.c
+++ b/Alc/alcReverb.c
@@ -20,8 +20,9 @@
#include "config.h"
-#include <math.h>
+#include <stdio.h>
#include <stdlib.h>
+#include <math.h>
#include "AL/al.h"
#include "AL/alc.h"
@@ -33,8 +34,8 @@
typedef struct DelayLine
{
- // The delay lines use sample lengths that are powers of 2 to allow
- // bitmasking instead of modulus wrapping.
+ // The delay lines use sample lengths that are powers of 2 to allow the
+ // use of bit-masking instead of a modulus for wrapping.
ALuint Mask;
ALfloat *Line;
} DelayLine;
@@ -46,29 +47,48 @@ typedef struct ALverbState {
// All delay lines are allocated as a single buffer to reduce memory
// fragmentation and management code.
ALfloat *SampleBuffer;
- ALuint TotalLength;
+ ALuint TotalSamples;
// Master effect low-pass filter (2 chained 1-pole filters).
FILTER LpFilter;
ALfloat LpHistory[2];
- // Initial effect delay and decorrelation.
+ struct {
+ // Modulator delay line.
+ DelayLine Delay;
+ // The vibrato time is tracked with an index over a modulus-wrapped
+ // range (in samples).
+ ALuint Index;
+ ALuint Range;
+ // The depth of frequency change (also in samples) and its filter.
+ ALfloat Depth;
+ ALfloat Coeff;
+ ALfloat Filter;
+ } Mod;
+ // Initial effect delay.
DelayLine Delay;
// The tap points for the initial delay. First tap goes to early
- // reflections, the last four decorrelate to late reverb.
- ALuint Tap[5];
+ // reflections, the last to late reverb.
+ ALuint DelayTap[2];
struct {
- // Total gain for early reflections.
+ // Output gain for early reflections.
ALfloat Gain;
// Early reflections are done with 4 delay lines.
ALfloat Coeff[4];
DelayLine Delay[4];
ALuint Offset[4];
- // The gain for each output channel based on 3D panning.
+ // The gain for each output channel based on 3D panning (only for the
+ // EAX path).
ALfloat PanGain[OUTPUTCHANNELS];
} Early;
+ // Decorrelator delay line.
+ DelayLine Decorrelator;
+ // There are actually 4 decorrelator taps, but the first occurs at the
+ // initial sample.
+ ALuint DecoTap[3];
struct {
- // Total gain for late reverb.
+ // Output gain for late reverb.
ALfloat Gain;
- // Attenuation to compensate for modal density and decay rate.
+ // Attenuation to compensate for the modal density and decay rate of
+ // the late lines.
ALfloat DensityGain;
// The feed-back and feed-forward all-pass coefficient.
ALfloat ApFeedCoeff;
@@ -85,13 +105,58 @@ typedef struct ALverbState {
// The cyclical delay lines are 1-pole low-pass filtered.
ALfloat LpCoeff[4];
ALfloat LpSample[4];
- // The gain for each output channel based on 3D panning.
+ // The gain for each output channel based on 3D panning (only for the
+ // EAX path).
ALfloat PanGain[OUTPUTCHANNELS];
} Late;
+ struct {
+ // Attenuation to compensate for the modal density and decay rate of
+ // the echo line.
+ ALfloat DensityGain;
+ // Echo delay and all-pass lines.
+ DelayLine Delay;
+ DelayLine ApDelay;
+ ALfloat Coeff;
+ ALfloat ApFeedCoeff;
+ ALfloat ApCoeff;
+ ALuint Offset;
+ ALuint ApOffset;
+ // The echo line is 1-pole low-pass filtered.
+ ALfloat LpCoeff;
+ ALfloat LpSample;
+ // Echo mixing coefficients.
+ ALfloat MixCoeff[2];
+ } Echo;
// The current read offset for all delay lines.
ALuint Offset;
} ALverbState;
+/* This coefficient is used to define the maximum frequency range controlled
+ * by the modulation depth. The current value of 0.1 will allow it to swing
+ * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
+ * sampler to stall on the downswing, and above 1 it will cause it to sample
+ * backwards.
+ */
+static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
+
+/* A filter is used to avoid the terrible distortion caused by changing
+ * modulation time and/or depth. To be consistent across different sample
+ * rates, the coefficient must be raised to a constant divided by the sample
+ * rate: coeff^(constant / rate).
+ */
+static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
+static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
+
+// When diffusion is above 0, an all-pass filter is used to take the edge off
+// the echo effect. It uses the following line length (in seconds).
+static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
+
+// Input into the late reverb is decorrelated between four channels. Their
+// timings are dependent on a fraction and multiplier. See the
+// UpdateDecorrelator() routine for the calculations involved.
+static const ALfloat DECO_FRACTION = 0.15f;
+static const ALfloat DECO_MULTIPLIER = 2.0f;
+
// All delay line lengths are specified in seconds.
// The lengths of the early delay lines.
@@ -116,54 +181,479 @@ static const ALfloat LATE_LINE_LENGTH[4] =
// effect's density parameter (inverted for some reason) and this multiplier.
static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
-// Input into the late reverb is decorrelated between four channels. Their
-// timings are dependent on a fraction and multiplier. See VerbUpdate() for
-// the calculations involved.
-static const ALfloat DECO_FRACTION = 1.0f / 32.0f;
-static const ALfloat DECO_MULTIPLIER = 2.0f;
-
-// The maximum length of initial delay for the master delay line (a sum of
-// the maximum early reflection and late reverb delays).
-static const ALfloat MASTER_LINE_LENGTH = 0.3f + 0.1f;
-
-static ALuint CalcLengths(ALuint length[13], ALuint frequency)
+// Calculate the length of a delay line and store its mask and offset.
+static ALuint CalcLineLength(ALfloat length, ALuint offset, ALuint frequency, DelayLine *Delay)
{
- ALuint samples, totalLength, index;
+ ALuint samples;
// All line lengths are powers of 2, calculated from their lengths, with
// an additional sample in case of rounding errors.
+ samples = NextPowerOf2((ALuint)(length * frequency) + 1);
+ // All lines share a single sample buffer.
+ Delay->Mask = samples - 1;
+ Delay->Line = (ALfloat*)offset;
+ // Return the sample count for accumulation.
+ return samples;
+}
+
+// Given the allocated sample buffer, this function updates each delay line
+// offset.
+static __inline ALvoid RealizeLineOffset(ALfloat * sampleBuffer, DelayLine *Delay)
+{
+ Delay->Line = &sampleBuffer[(ALuint)Delay->Line];
+}
+
+/* Calculates the delay line metrics and allocates the shared sample buffer
+ * for all lines given a flag indicating whether or not to allocate the EAX-
+ * related delays (eaxFlag) and the sample rate (frequency). If an
+ * allocation failure occurs, it returns AL_FALSE.
+ */
+static ALboolean AllocLines(ALboolean eaxFlag, ALuint frequency, ALverbState *State)
+{
+ ALuint totalSamples, index;
+ ALfloat length;
+ ALfloat *newBuffer = NULL;
+
+ // All delay line lengths are calculated to accomodate the full range of
+ // lengths given their respective paramters.
+ totalSamples = 0;
+ if(eaxFlag)
+ {
+ /* The modulator's line length is calculated from the maximum
+ * modulation time and depth coefficient, and halfed for the low-to-
+ * high frequency swing. An additional sample is added to keep it
+ * stable when there is no modulation.
+ */
+ length = (AL_EAXREVERB_MAX_MODULATION_TIME * MODULATION_DEPTH_COEFF /
+ 2.0f) + (1.0f / frequency);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Mod.Delay);
+ }
+
+ // The initial delay is the sum of the reflections and late reverb
+ // delays.
+ if(eaxFlag)
+ length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
+ AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
+ else
+ length = AL_REVERB_MAX_REFLECTIONS_DELAY +
+ AL_REVERB_MAX_LATE_REVERB_DELAY;
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Delay);
+
+ // The early reflection lines.
+ for(index = 0;index < 4;index++)
+ totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
+ frequency, &State->Early.Delay[index]);
+
+ // The decorrelator line is calculated from the lowest reverb density (a
+ // parameter value of 1).
+ length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
+ LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Decorrelator);
+
+ // The late all-pass lines.
+ for(index = 0;index < 4;index++)
+ totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
+ frequency, &State->Late.ApDelay[index]);
+
+ // The late delay lines are calculated from the lowest reverb density.
+ for(index = 0;index < 4;index++)
+ {
+ length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Late.Delay[index]);
+ }
- // See VerbUpdate() for an explanation of the additional calculation
- // added to the master line length.
- samples = (ALuint)
- ((MASTER_LINE_LENGTH +
- (LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER) *
- (DECO_FRACTION * ((DECO_MULTIPLIER * DECO_MULTIPLIER *
- DECO_MULTIPLIER) - 1.0f)))) *
- frequency) + 1;
- length[0] = NextPowerOf2(samples);
- totalLength = length[0];
+ if(eaxFlag)
+ {
+ // The echo all-pass and delay lines.
+ totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
+ frequency, &State->Echo.ApDelay);
+ totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
+ frequency, &State->Echo.Delay);
+ }
+
+ if(totalSamples != State->TotalSamples)
+ {
+ newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
+ if(newBuffer == NULL)
+ return AL_FALSE;
+ State->SampleBuffer = newBuffer;
+ State->TotalSamples = totalSamples;
+ }
+
+ // Update all delays to reflect the new sample buffer.
+ RealizeLineOffset(State->SampleBuffer, &State->Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
for(index = 0;index < 4;index++)
{
- samples = (ALuint)(EARLY_LINE_LENGTH[index] * frequency) + 1;
- length[1 + index] = NextPowerOf2(samples);
- totalLength += length[1 + index];
+ RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
+ }
+ if(eaxFlag)
+ {
+ RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
+ RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
+ }
+
+ // Clear the sample buffer.
+ for(index = 0;index < State->TotalSamples;index++)
+ State->SampleBuffer[index] = 0.0f;
+
+ return AL_TRUE;
+}
+
+// Calculate a decay coefficient given the length of each cycle and the time
+// until the decay reaches -60 dB.
+static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
+{
+ return pow(10.0f, length / decayTime * -60.0f / 20.0f);
+}
+
+// Calculate a decay length from a coefficient and the time until the decay
+// reaches -60 dB.
+static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
+{
+ return log10(coeff) / -60.0 * 20.0f * decayTime;
+}
+
+// Calculate the high frequency parameter for the I3DL2 coefficient
+// calculation.
+static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency)
+{
+ return cos(2.0f * M_PI * hfRef / frequency);
+}
+
+/* Calculate the I3DL2 coefficient given the gain and frequency parameters.
+ * To allow for optimization when using multiple chained filters, the gain
+ * is not squared in this function. Callers using a single filter should
+ * square it to produce the correct coefficient. Those using multiple
+ * filters should find its N-1 root (where N is the number of chained
+ * filters).
+ */
+static __inline ALfloat CalcI3DL2Coeff(ALfloat g, ALfloat cw)
+{
+ ALfloat coeff;
+
+ coeff = 0.0f;
+ if(g < 0.9999f) // 1-epsilon
+ coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
+
+ return coeff;
+}
+
+// Calculate an attenuation to be applied to the input of any echo models to
+// compensate for modal density and decay time.
+static __inline ALfloat CalcDensityGain(ALfloat a)
+{
+ /* The energy of a signal can be obtained by finding the area under the
+ * squared signal. This takes the form of Sum(x_n^2), where x is the
+ * amplitude for the sample n.
+ *
+ * Decaying feedback matches exponential decay of the form Sum(a^n),
+ * where a is the attenuation coefficient, and n is the sample. The area
+ * under this decay curve can be calculated as: 1 / (1 - a).
+ *
+ * Modifying the above equation to find the squared area under the curve
+ * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
+ * calculated by inverting the square root of this approximation,
+ * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
+ */
+ return aluSqrt(1.0f - (a * a));
+}
+
+// Calculate the mixing matrix coefficients given a diffusion factor.
+static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
+{
+ ALfloat n, t;
+
+ // The matrix is of order 4, so n is sqrt (4 - 1).
+ n = aluSqrt(3.0f);
+ t = diffusion * atan(n);
+
+ // Calculate the first mixing matrix coefficient.
+ *x = cos(t);
+ // Calculate the second mixing matrix coefficient.
+ *y = sin(t) / n;
+}
+
+// Calculate the limited HF ratio for use with the late reverb low-pass
+// filters.
+static __inline ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
+{
+ ALfloat limitRatio;
+
+ /* Find the attenuation due to air absorption in dB (converting delay
+ * time to meters using the speed of sound). Then reversing the decay
+ * equation, solve for HF ratio. The delay length is cancelled out of
+ * the equation, so it can be calculated once for all lines.
+ */
+ limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
+ SPEEDOFSOUNDMETRESPERSEC);
+ // Need to limit the result to a minimum of 0.1, just like the HF ratio
+ // parameter.
+ limitRatio = __max(limitRatio, 0.1f);
+
+ // Using the limit calculated above, apply the upper bound to the HF
+ // ratio.
+ return __min(hfRatio, limitRatio);
+}
+
+// Calculate the coefficient for a HF (and eventually LF) decay damping
+// filter.
+static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
+{
+ ALfloat coeff, g;
+
+ // Eventually this should boost the high frequencies when the ratio
+ // exceeds 1.
+ coeff = 0.0f;
+ if (hfRatio < 1.0f)
+ {
+ // Calculate the low-pass coefficient by dividing the HF decay
+ // coefficient by the full decay coefficient.
+ g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
+ g = __max(g, 0.1f);
+
+ // Damping is done with a 1-pole filter, so g needs to be squared.
+ g *= g;
+ coeff = CalcI3DL2Coeff(g, cw);
+
+ // Very low decay times will produce minimal output, so apply an
+ // upper bound to the coefficient.
+ coeff = __min(coeff, 0.98f);
+ }
+ return coeff;
+}
+
+// Update the EAX modulation index, range, and depth. Keep in mind that this
+// kind of vibrato is additive and not multiplicative as one may expect. The
+// downswing will sound stronger than the upswing.
+static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALverbState *State)
+{
+ ALfloat length;
+
+ /* Modulation is calculated in two parts.
+ *
+ * The modulation time effects the sinus applied to the change in
+ * frequency. An index out of the current time range (both in samples)
+ * is incremented each sample. The range is bound to a reasonable
+ * minimum (1 sample) and when the timing changes, the index is rescaled
+ * to the new range (to keep the sinus consistent).
+ */
+ length = modTime * frequency;
+ if (length >= 1.0f) {
+ State->Mod.Index = (ALuint)(State->Mod.Index * length /
+ State->Mod.Range);
+ State->Mod.Range = (ALuint)length;
+ } else {
+ State->Mod.Index = 0;
+ State->Mod.Range = 1;
}
+
+ /* The modulation depth effects the amount of frequency change over the
+ * range of the sinus. It needs to be scaled by the modulation time so
+ * that a given depth produces a consistent change in frequency over all
+ * ranges of time. Since the depth is applied to a sinus value, it needs
+ * to be halfed once for the sinus range and again for the sinus swing
+ * in time (half of it is spent decreasing the frequency, half is spent
+ * increasing it).
+ */
+ State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
+ 2.0f * frequency;
+}
+
+// Update the offsets for the initial effect delay line.
+static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALverbState *State)
+{
+ // Calculate the initial delay taps.
+ State->DelayTap[0] = (ALuint)(earlyDelay * frequency);
+ State->DelayTap[1] = (ALuint)((earlyDelay + lateDelay) * frequency);
+}
+
+// Update the early reflections gain and line coefficients.
+static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALverbState *State)
+{
+ ALuint index;
+
+ // Calculate the early reflections gain (from the master effect gain, and
+ // reflections gain parameters) with a constant attenuation of 0.5.
+ State->Early.Gain = 0.5f * reverbGain * earlyGain;
+
+ // Calculate the gain (coefficient) for each early delay line using the
+ // late delay time. This expands the early reflections to the start of
+ // the late reverb.
for(index = 0;index < 4;index++)
+ State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
+ lateDelay);
+}
+
+// Update the offsets for the decorrelator line.
+static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALverbState *State)
+{
+ ALuint index;
+ ALfloat length;
+
+ /* The late reverb inputs are decorrelated to smooth the reverb tail and
+ * reduce harsh echos. The first tap occurs immediately, while the
+ * remaining taps are delayed by multiples of a fraction of the smallest
+ * cyclical delay time.
+ *
+ * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
+ */
+ for(index = 0;index < 3;index++)
{
- samples = (ALuint)(ALLPASS_LINE_LENGTH[index] * frequency) + 1;
- length[5 + index] = NextPowerOf2(samples);
- totalLength += length[5 + index];
+ length = (DECO_FRACTION * pow(DECO_MULTIPLIER, (ALfloat)index)) *
+ LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
+ State->DecoTap[index] = (ALuint)(length * frequency);
}
+}
+
+// Update the late reverb gains, line lengths, and line coefficients.
+static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
+{
+ ALfloat length;
+ ALuint index;
+
+ /* Calculate the late reverb gain (from the master effect gain, and late
+ * reverb gain parameters). Since the output is tapped prior to the
+ * application of the next delay line coefficients, this gain needs to be
+ * attenuated by the 'x' mixing matrix coefficient as well.
+ */
+ State->Late.Gain = reverbGain * lateGain * xMix;
+
+ /* To compensate for changes in modal density and decay time of the late
+ * reverb signal, the input is attenuated based on the maximal energy of
+ * the outgoing signal. This approximation is used to keep the apparent
+ * energy of the signal equal for all ranges of density and decay time.
+ *
+ * The average length of the cyclcical delay lines is used to calculate
+ * the attenuation coefficient.
+ */
+ length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
+ LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
+ length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
+ State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length,
+ decayTime));
+
+ // Calculate the all-pass feed-back and feed-forward coefficient.
+ State->Late.ApFeedCoeff = 0.5f * pow(diffusion, 2.0f);
+
for(index = 0;index < 4;index++)
{
- samples = (ALuint)(LATE_LINE_LENGTH[index] *
- (1.0f + LATE_LINE_MULTIPLIER) * frequency) + 1;
- length[9 + index] = NextPowerOf2(samples);
- totalLength += length[9 + index];
+ // Calculate the gain (coefficient) for each all-pass line.
+ State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index],
+ decayTime);
+
+ // Calculate the length (in seconds) of each cyclical delay line.
+ length = LATE_LINE_LENGTH[index] * (1.0f + (density *
+ LATE_LINE_MULTIPLIER));
+
+ // Calculate the delay offset for each cyclical delay line.
+ State->Late.Offset[index] = (ALuint)(length * frequency);
+
+ // Calculate the gain (coefficient) for each cyclical line.
+ State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
+
+ // Calculate the damping coefficient for each low-pass filter.
+ State->Late.LpCoeff[index] =
+ CalcDampingCoeff(hfRatio, length, decayTime,
+ State->Late.Coeff[index], cw);
+
+ // Attenuate the cyclical line coefficients by the mixing coefficient
+ // (x).
+ State->Late.Coeff[index] *= xMix;
+ }
+}
+
+// Update the echo gain, line offset, line coefficients, and mixing
+// coefficients.
+static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALverbState *State)
+{
+ // Calculate the energy-based attenuation coefficient for the echo delay
+ // line.
+ State->Echo.DensityGain = CalcDensityGain(CalcDecayCoeff(echoTime,
+ decayTime));
+
+ // Update the offset and coefficient for the echo delay line.
+ State->Echo.Offset = (ALuint)(echoTime * frequency);
+
+ // Calculate the decay coefficient for the echo line.
+ State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
+
+ // Calculate the echo all-pass feed coefficient.
+ State->Echo.ApFeedCoeff = 0.5f * pow(diffusion, 2.0f);
+
+ // Calculate the echo all-pass attenuation coefficient.
+ State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
+
+ // Calculate the damping coefficient for each low-pass filter.
+ State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
+ State->Echo.Coeff, cw);
+
+ /* Calculate the echo mixing coefficients. The first is applied to the
+ * echo itself. The second is used to attenuate the late reverb when
+ * echo depth is high and diffusion is low, so the echo is slightly
+ * stronger than the decorrelated echos in the reverb tail.
+ */
+ State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth;
+ State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion));
+}
+
+// Update the early and late 3D panning gains.
+static ALvoid Update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat *PanningLUT, ALverbState *State)
+{
+ ALfloat length;
+ ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1],
+ ReflectionsPan[2] };
+ ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1],
+ LateReverbPan[2] };
+ ALint pos;
+ ALfloat *speakerGain, dirGain, ambientGain;
+ ALuint index;
+
+ // Calculate the 3D-panning gains for the early reflections and late
+ // reverb.
+ length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
+ if(length > 1.0f)
+ {
+ length = 1.0f / aluSqrt(length);
+ earlyPan[0] *= length;
+ earlyPan[1] *= length;
+ earlyPan[2] *= length;
+ }
+ length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
+ if(length > 1.0f)
+ {
+ length = 1.0f / aluSqrt(length);
+ latePan[0] *= length;
+ latePan[1] *= length;
+ latePan[2] *= length;
}
- return totalLength;
+ /* This code applies directional reverb just like the mixer applies
+ * directional sources. It diffuses the sound toward all speakers as the
+ * magnitude of the panning vector drops, which is only a rough
+ * approximation of the expansion of sound across the speakers from the
+ * panning direction.
+ */
+ pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
+ speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
+ dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
+ ambientGain = (1.0 - dirGain);
+ for(index = 0;index < OUTPUTCHANNELS;index++)
+ State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
+
+ pos = aluCart2LUTpos(latePan[2], latePan[0]);
+ speakerGain = &PanningLUT[OUTPUTCHANNELS * pos];
+ dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
+ ambientGain = (1.0 - dirGain);
+ for(index = 0;index < OUTPUTCHANNELS;index++)
+ State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
}
// Basic delay line input/output routines.
@@ -177,16 +667,75 @@ static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
Delay->Line[offset&Delay->Mask] = in;
}
+// Attenuated delay line output routine.
+static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff)
+{
+ return coeff * Delay->Line[offset&Delay->Mask];
+}
+
+// Basic attenuated all-pass input/output routine.
+static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
+{
+ ALfloat out, feed;
+
+ out = DelayLineOut(Delay, outOffset);
+ feed = feedCoeff * in;
+ DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
+
+ // The time-based attenuation is only applied to the delay output to
+ // keep it from affecting the feed-back path (which is already controlled
+ // by the all-pass feed coefficient).
+ return (coeff * out) - feed;
+}
+
+// Given an input sample, this function produces modulation for the late
+// reverb.
+static __inline ALfloat EAXModulation(ALverbState *State, ALfloat in)
+{
+ ALfloat sinus, frac;
+ ALuint offset;
+ ALfloat out0, out1;
+
+ // Calculate the sinus rythm (dependent on modulation time and the
+ // sampling rate). The center of the sinus is moved to reduce the delay
+ // of the effect when the time or depth are low.
+ sinus = 1.0f + sin(2.0f * M_PI * State->Mod.Index / State->Mod.Range);
+
+ // The depth determines the range over which to read the input samples
+ // from, so it must be filtered to reduce the distortion caused by even
+ // small parameter changes.
+ State->Mod.Filter += (State->Mod.Depth - State->Mod.Filter) *
+ State->Mod.Coeff;
+
+ // Calculate the read offset and fraction between it and the next sample.
+ frac = (1.0f + (State->Mod.Filter * sinus));
+ offset = (ALuint)frac;
+ frac -= offset;
+
+ // Get the two samples crossed by the offset, and feed the delay line
+ // with the next input sample.
+ out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset);
+ out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1);
+ DelayLineIn(&State->Mod.Delay, State->Offset, in);
+
+ // Step the modulation index forward, keeping it bound to its range.
+ State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
+
+ // The output is obtained by linearly interpolating the two samples that
+ // were acquired above.
+ return out0 + ((out1 - out0) * frac);
+}
+
// Delay line output routine for early reflections.
static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
{
- return State->Early.Coeff[index] *
- DelayLineOut(&State->Early.Delay[index],
- State->Offset - State->Early.Offset[index]);
+ return AttenuatedDelayLineOut(&State->Early.Delay[index],
+ State->Offset - State->Early.Offset[index],
+ State->Early.Coeff[index]);
}
-// Given an input sample, this function produces stereo output for early
-// reflections.
+// Given an input sample, this function produces four-channel output for the
+// early reflections.
static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
{
ALfloat d[4], v, f[4];
@@ -200,7 +749,7 @@ static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *
/* The following uses a lossless scattering junction from waveguide
* theory. It actually amounts to a householder mixing matrix, which
* will produce a maximally diffuse response, and means this can probably
- * be considered a simple feedback delay network (FDN).
+ * be considered a simple feed-back delay network (FDN).
* N
* ---
* \
@@ -218,13 +767,13 @@ static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *
f[2] = v - d[2];
f[3] = v - d[3];
- // Refeed the delay lines.
+ // Re-feed the delay lines.
DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
- // Output the results of the junction for all four lines.
+ // Output the results of the junction for all four channels.
out[0] = State->Early.Gain * f[0];
out[1] = State->Early.Gain * f[1];
out[2] = State->Early.Gain * f[2];
@@ -234,23 +783,18 @@ static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *
// All-pass input/output routine for late reverb.
static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
{
- ALfloat out;
-
- out = State->Late.ApCoeff[index] *
- DelayLineOut(&State->Late.ApDelay[index],
- State->Offset - State->Late.ApOffset[index]);
- out -= (State->Late.ApFeedCoeff * in);
- DelayLineIn(&State->Late.ApDelay[index], State->Offset,
- (State->Late.ApFeedCoeff * out) + in);
- return out;
+ return AllpassInOut(&State->Late.ApDelay[index],
+ State->Offset - State->Late.ApOffset[index],
+ State->Offset, in, State->Late.ApFeedCoeff,
+ State->Late.ApCoeff[index]);
}
// Delay line output routine for late reverb.
static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
{
- return State->Late.Coeff[index] *
- DelayLineOut(&State->Late.Delay[index],
- State->Offset - State->Late.Offset[index]);
+ return AttenuatedDelayLineOut(&State->Late.Delay[index],
+ State->Offset - State->Late.Offset[index],
+ State->Late.Coeff[index]);
}
// Low-pass filter input/output routine for late reverb.
@@ -261,33 +805,32 @@ static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALflo
return State->Late.LpSample[index];
}
-// Given four decorrelated input samples, this function produces stereo
-// output for late reverb.
+// Given four decorrelated input samples, this function produces four-channel
+// output for the late reverb.
static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
{
ALfloat d[4], f[4];
// Obtain the decayed results of the cyclical delay lines, and add the
- // corresponding input channels attenuated by density. Then pass the
- // results through the low-pass filters.
- d[0] = LateLowPassInOut(State, 0, (State->Late.DensityGain * in[0]) +
- LateDelayLineOut(State, 0));
- d[1] = LateLowPassInOut(State, 1, (State->Late.DensityGain * in[1]) +
- LateDelayLineOut(State, 1));
- d[2] = LateLowPassInOut(State, 2, (State->Late.DensityGain * in[2]) +
- LateDelayLineOut(State, 2));
- d[3] = LateLowPassInOut(State, 3, (State->Late.DensityGain * in[3]) +
- LateDelayLineOut(State, 3));
+ // corresponding input channels. Then pass the results through the
+ // low-pass filters.
+
+ // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
+ // to 0.
+ d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2));
+ d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0));
+ d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3));
+ d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1));
// To help increase diffusion, run each line through an all-pass filter.
- // The order of the all-pass filters is selected so that the shortest
- // all-pass filter will feed the shortest delay line.
- d[0] = LateAllPassInOut(State, 1, d[0]);
- d[1] = LateAllPassInOut(State, 3, d[1]);
- d[2] = LateAllPassInOut(State, 0, d[2]);
- d[3] = LateAllPassInOut(State, 2, d[3]);
-
- /* Late reverb is done with a modified feedback delay network (FDN)
+ // When there is no diffusion, the shortest all-pass filter will feed the
+ // shortest delay line.
+ d[0] = LateAllPassInOut(State, 0, d[0]);
+ d[1] = LateAllPassInOut(State, 1, d[1]);
+ d[2] = LateAllPassInOut(State, 2, d[2]);
+ d[3] = LateAllPassInOut(State, 3, d[3]);
+
+ /* Late reverb is done with a modified feed-back delay network (FDN)
* topology. Four input lines are each fed through their own all-pass
* filter and then into the mixing matrix. The four outputs of the
* mixing matrix are then cycled back to the inputs. Each output feeds
@@ -305,10 +848,10 @@ static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
* yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
* with differing signs, and d is the coefficient x. The matrix is thus:
*
- * [ x, y, -y, y ] x = 1 - (0.5 diffusion^3)
- * [ -y, x, y, y ] y = sqrt((1 - x^2) / 3)
- * [ y, -y, x, y ]
- * [ -y, -y, -y, x ]
+ * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
+ * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
+ * [ y, -y, x, y ] x = cos(t)
+ * [ -y, -y, -y, x ] y = sin(t) / n
*
* To reduce the number of multiplies, the x coefficient is applied with
* the cyclical delay line coefficients. Thus only the y coefficient is
@@ -319,52 +862,129 @@ static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
- // Output the results of the matrix for all four cyclical delay lines,
- // attenuated by the late reverb gain (which is attenuated by the 'x'
- // mix coefficient).
+ // Output the results of the matrix for all four channels, attenuated by
+ // the late reverb gain (which is attenuated by the 'x' mix coefficient).
out[0] = State->Late.Gain * f[0];
out[1] = State->Late.Gain * f[1];
out[2] = State->Late.Gain * f[2];
out[3] = State->Late.Gain * f[3];
- // The delay lines are fed circularly in the order:
- // 0 -> 1 -> 3 -> 2 -> 0 ...
- DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
- DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
- DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
- DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
+ // Re-feed the cyclical delay lines.
+ DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]);
+ DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]);
+ DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]);
+ DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]);
+}
+
+// Given an input sample, this function mixes echo into the four-channel late
+// reverb.
+static __inline ALvoid EAXEcho(ALverbState *State, ALfloat in, ALfloat *late)
+{
+ ALfloat out, feed;
+
+ // Get the latest attenuated echo sample for output.
+ feed = AttenuatedDelayLineOut(&State->Echo.Delay,
+ State->Offset - State->Echo.Offset,
+ State->Echo.Coeff);
+
+ // Mix the output into the late reverb channels.
+ out = State->Echo.MixCoeff[0] * feed;
+ late[0] = (State->Echo.MixCoeff[1] * late[0]) + out;
+ late[1] = (State->Echo.MixCoeff[1] * late[1]) + out;
+ late[2] = (State->Echo.MixCoeff[1] * late[2]) + out;
+ late[3] = (State->Echo.MixCoeff[1] * late[3]) + out;
+
+ // Mix the energy-attenuated input with the output and pass it through
+ // the echo low-pass filter.
+ feed += State->Echo.DensityGain * in;
+ feed += ((State->Echo.LpSample - feed) * State->Echo.LpCoeff);
+ State->Echo.LpSample = feed;
+
+ // Then the echo all-pass filter.
+ feed = AllpassInOut(&State->Echo.ApDelay,
+ State->Offset - State->Echo.ApOffset,
+ State->Offset, feed, State->Echo.ApFeedCoeff,
+ State->Echo.ApCoeff);
+
+ // Feed the delay with the mixed and filtered sample.
+ DelayLineIn(&State->Echo.Delay, State->Offset, feed);
+}
+
+// Perform the non-EAX reverb pass on a given input sample, resulting in
+// four-channel output.
+static __inline ALvoid VerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
+{
+ ALfloat taps[4];
+
+ // Low-pass filter the incoming sample.
+ in = lpFilter2P(&State->LpFilter, 0, in);
+
+ // Feed the initial delay line.
+ DelayLineIn(&State->Delay, State->Offset, in);
+
+ // Calculate the early reflection from the first delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
+ EarlyReflection(State, in, early);
+
+ // Feed the decorrelator from the energy-attenuated output of the second
+ // delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
+ in *= State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, State->Offset, in);
+
+ // Calculate the late reverb from the decorrelator taps.
+ taps[0] = in;
+ taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
+ taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
+ taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
+ LateReverb(State, taps, late);
+
+ // Step all delays forward one sample.
+ State->Offset++;
}
-// Process the reverb for a given input sample, resulting in separate four-
-// channel output for both early reflections and late reverb.
-static __inline ALvoid ReverbInOut(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
+// Perform the EAX reverb pass on a given input sample, resulting in four-
+// channel output.
+static __inline ALvoid EAXVerbPass(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
{
ALfloat taps[4];
// Low-pass filter the incoming sample.
in = lpFilter2P(&State->LpFilter, 0, in);
+ // Perform any modulation on the input.
+ in = EAXModulation(State, in);
+
// Feed the initial delay line.
DelayLineIn(&State->Delay, State->Offset, in);
// Calculate the early reflection from the first delay tap.
- in = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
EarlyReflection(State, in, early);
- // Calculate the late reverb from the last four delay taps.
- taps[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
- taps[1] = DelayLineOut(&State->Delay, State->Offset - State->Tap[2]);
- taps[2] = DelayLineOut(&State->Delay, State->Offset - State->Tap[3]);
- taps[3] = DelayLineOut(&State->Delay, State->Offset - State->Tap[4]);
+ // Feed the decorrelator from the energy-attenuated output of the second
+ // delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
+ in *= State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, State->Offset, in);
+
+ // Calculate the late reverb from the decorrelator taps.
+ taps[0] = in;
+ taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
+ taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
+ taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
LateReverb(State, taps, late);
+ // Calculate and mix in any echo.
+ EAXEcho(State, in, late);
+
// Step all delays forward one sample.
State->Offset++;
}
// This destroys the reverb state. It should be called only when the effect
// slot has a different (or no) effect loaded over the reverb effect.
-ALvoid VerbDestroy(ALeffectState *effect)
+static ALvoid VerbDestroy(ALeffectState *effect)
{
ALverbState *State = (ALverbState*)effect;
if(State)
@@ -377,283 +997,174 @@ ALvoid VerbDestroy(ALeffectState *effect)
// This updates the device-dependant reverb state. This is called on
// initialization and any time the device parameters (eg. playback frequency,
-// format) have been changed.
-ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
+// or format) have been changed.
+static ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
{
ALverbState *State = (ALverbState*)effect;
- ALuint length[13], totalLength;
- ALuint index;
+ ALuint frequency = Device->Frequency, index;
- totalLength = CalcLengths(length, Device->Frequency);
- if(totalLength != State->TotalLength)
+ // Allocate the delay lines.
+ if(!AllocLines(AL_FALSE, frequency, State))
{
- void *temp;
-
- temp = realloc(State->SampleBuffer, totalLength * sizeof(ALfloat));
- if(!temp)
- {
- alSetError(AL_OUT_OF_MEMORY);
- return AL_FALSE;
- }
- State->TotalLength = totalLength;
- State->SampleBuffer = temp;
-
- // All lines share a single sample buffer
- State->Delay.Mask = length[0] - 1;
- State->Delay.Line = &State->SampleBuffer[0];
- totalLength = length[0];
- for(index = 0;index < 4;index++)
- {
- State->Early.Delay[index].Mask = length[1 + index] - 1;
- State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
- totalLength += length[1 + index];
- }
- for(index = 0;index < 4;index++)
- {
- State->Late.ApDelay[index].Mask = length[5 + index] - 1;
- State->Late.ApDelay[index].Line = &State->SampleBuffer[totalLength];
- totalLength += length[5 + index];
- }
- for(index = 0;index < 4;index++)
- {
- State->Late.Delay[index].Mask = length[9 + index] - 1;
- State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
- totalLength += length[9 + index];
- }
+ alSetError(AL_OUT_OF_MEMORY);
+ return AL_FALSE;
}
+ // The early reflection and late all-pass filter line lengths are static,
+ // so their offsets only need to be calculated once.
for(index = 0;index < 4;index++)
{
State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
- Device->Frequency);
+ frequency);
State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
- Device->Frequency);
+ frequency);
}
- for(index = 0;index < State->TotalLength;index++)
- State->SampleBuffer[index] = 0.0f;
-
return AL_TRUE;
}
-// This updates the reverb state. This is called any time the reverb effect
-// is loaded into a slot.
-ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
+// This updates the device-dependant EAX reverb state. This is called on
+// initialization and any time the device parameters (eg. playback frequency,
+// format) have been changed.
+static ALboolean EAXVerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
{
ALverbState *State = (ALverbState*)effect;
- ALuint frequency = Context->Device->Frequency;
- ALuint index;
- ALfloat length, mixCoeff, cw, g, coeff;
- ALfloat hfRatio = Effect->Reverb.DecayHFRatio;
-
- // Calculate the master low-pass filter (from the master effect HF gain).
- cw = cos(2.0*M_PI * Effect->Reverb.HFReference / frequency);
- g = __max(Effect->Reverb.GainHF, 0.0001f);
- State->LpFilter.coeff = 0.0f;
- if(g < 0.9999f) // 1-epsilon
- State->LpFilter.coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
+ ALuint frequency = Device->Frequency, index;
- // Calculate the initial delay taps.
- length = Effect->Reverb.ReflectionsDelay;
- State->Tap[0] = (ALuint)(length * frequency);
+ // Allocate the delay lines.
+ if(!AllocLines(AL_TRUE, frequency, State))
+ {
+ alSetError(AL_OUT_OF_MEMORY);
+ return AL_FALSE;
+ }
- length += Effect->Reverb.LateReverbDelay;
+ // Calculate the modulation filter coefficient. Notice that the exponent
+ // is calculated given the current sample rate. This ensures that the
+ // resulting filter response over time is consistent across all sample
+ // rates.
+ State->Mod.Coeff = pow(MODULATION_FILTER_COEFF, MODULATION_FILTER_CONST /
+ frequency);
- /* The four inputs to the late reverb are decorrelated to smooth the
- * initial reverb and reduce harsh echos. The timings are calculated as
- * multiples of a fraction of the smallest cyclical delay time. This
- * result is then adjusted so that the first tap occurs immediately (all
- * taps are reduced by the shortest fraction).
- *
- * offset[index] = ((FRACTION MULTIPLIER^index) - 1) delay
- */
+ // The early reflection and late all-pass filter line lengths are static,
+ // so their offsets only need to be calculated once.
for(index = 0;index < 4;index++)
{
- length += LATE_LINE_LENGTH[0] *
- (1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER)) *
- (DECO_FRACTION * (pow(DECO_MULTIPLIER, (ALfloat)index) - 1.0f));
- State->Tap[1 + index] = (ALuint)(length * frequency);
+ State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
+ frequency);
+ State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
+ frequency);
}
- // Calculate the early reflections gain (from the master effect gain, and
- // reflections gain parameters).
- State->Early.Gain = Effect->Reverb.Gain * Effect->Reverb.ReflectionsGain;
+ // The echo all-pass filter line length is static, so its offset only
+ // needs to be calculated once.
+ State->Echo.ApOffset = (ALuint)(ECHO_ALLPASS_LENGTH * frequency);
- // Calculate the gain (coefficient) for each early delay line.
- for(index = 0;index < 4;index++)
- State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
- Effect->Reverb.LateReverbDelay *
- -60.0f / 20.0f);
+ return AL_TRUE;
+}
- // Calculate the first mixing matrix coefficient (x).
- mixCoeff = 1.0f - (0.5f * pow(Effect->Reverb.Diffusion, 3.0f));
+// This updates the reverb state. This is called any time the reverb effect
+// is loaded into a slot.
+static ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
+{
+ ALverbState *State = (ALverbState*)effect;
+ ALuint frequency = Context->Device->Frequency;
+ ALfloat cw, g, x, y, hfRatio;
- // Calculate the late reverb gain (from the master effect gain, and late
- // reverb gain parameters). Since the output is tapped prior to the
- // application of the delay line coefficients, this gain needs to be
- // attenuated by the 'x' mix coefficient from above.
- State->Late.Gain = Effect->Reverb.Gain * Effect->Reverb.LateReverbGain * mixCoeff;
+ // Calculate the master low-pass filter (from the master effect HF gain).
+ cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
+ g = __max(Effect->Reverb.GainHF, 0.0001f);
+ // This is done with 2 chained 1-pole filters, so no need to square g.
+ State->LpFilter.coeff = CalcI3DL2Coeff(g, cw);
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This is calculated as the ratio between a
- * reference value and the current approximation of energy for the output
- * signal.
- *
- * Reverb output matches exponential decay of the form Sum(a^n), where a
- * is the attenuation coefficient, and n is the sample ranging from 0 to
- * infinity. The signal energy can thus be approximated using the area
- * under this curve, calculated as: 1 / (1 - a).
- *
- * The reference energy is calculated from a signal at the lowest (effect
- * at 1.0) density with a decay time of one second.
- *
- * The coefficient is calculated as the average length of the cyclical
- * delay lines. This produces a better result than calculating the gain
- * for each line individually (most likely a side effect of diffusion).
- *
- * The final result is the square root of the ratio bound to a maximum
- * value of 1 (no amplification).
- */
- length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
- LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]);
- g = length * (1.0f + LATE_LINE_MULTIPLIER) * 0.25f;
- g = pow(10.0f, g * -60.0f / 20.0f);
- g = 1.0f / (1.0f - (g * g));
- length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER) * 0.25f;
- length = pow(10.0f, length / Effect->Reverb.DecayTime * -60.0f / 20.0f);
- length = 1.0f / (1.0f - (length * length));
- State->Late.DensityGain = __min(aluSqrt(g / length), 1.0f);
+ // Update the initial effect delay.
+ UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
+ Effect->Reverb.LateReverbDelay, frequency, State);
- // Calculate the all-pass feed-back and feed-forward coefficient.
- State->Late.ApFeedCoeff = 0.6f * pow(Effect->Reverb.Diffusion, 3.0f);
+ // Update the early lines.
+ UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
+ Effect->Reverb.LateReverbDelay, State);
- // Calculate the mixing matrix coefficient (y / x).
- g = aluSqrt((1.0f - (mixCoeff * mixCoeff)) / 3.0f);
- State->Late.MixCoeff = g / mixCoeff;
+ // Update the decorrelator.
+ UpdateDecorrelator(Effect->Reverb.Density, frequency, State);
- for(index = 0;index < 4;index++)
- {
- // Calculate the gain (coefficient) for each all-pass line.
- State->Late.ApCoeff[index] = pow(10.0f, ALLPASS_LINE_LENGTH[index] /
- Effect->Reverb.DecayTime *
- -60.0f / 20.0f);
- }
+ // Get the mixing matrix coefficients (x and y).
+ CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
+ // Then divide x into y to simplify the matrix calculation.
+ State->Late.MixCoeff = y / x;
// If the HF limit parameter is flagged, calculate an appropriate limit
// based on the air absorption parameter.
+ hfRatio = Effect->Reverb.DecayHFRatio;
if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
- {
- ALfloat limitRatio;
-
- // For each of the cyclical delays, find the attenuation due to air
- // absorption in dB (converting delay time to meters using the speed
- // of sound). Then reversing the decay equation, solve for HF ratio.
- // The delay length is cancelled out of the equation, so it can be
- // calculated once for all lines.
- limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
- SPEEDOFSOUNDMETRESPERSEC *
- Effect->Reverb.DecayTime / -60.0f * 20.0f);
- // Need to limit the result to a minimum of 0.1, just like the HF
- // ratio parameter.
- limitRatio = __max(limitRatio, 0.1f);
-
- // Using the limit calculated above, apply the upper bound to the
- // HF ratio.
- hfRatio = __min(hfRatio, limitRatio);
- }
+ hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
+ Effect->Reverb.DecayTime);
- // Calculate the low-pass filter frequency.
- cw = cos(2.0*M_PI * Effect->Reverb.HFReference / frequency);
+ // Update the late lines.
+ UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
+ x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
+ Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);
+}
- for(index = 0;index < 4;index++)
- {
- // Calculate the length (in seconds) of each cyclical delay line.
- length = LATE_LINE_LENGTH[index] * (1.0f + (Effect->Reverb.Density *
- LATE_LINE_MULTIPLIER));
- // Calculate the delay offset for the cyclical delay lines.
- State->Late.Offset[index] = (ALuint)(length * frequency);
+// This updates the EAX reverb state. This is called any time the EAX reverb
+// effect is loaded into a slot.
+static ALvoid EAXVerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
+{
+ ALverbState *State = (ALverbState*)effect;
+ ALuint frequency = Context->Device->Frequency;
+ ALfloat cw, g, x, y, hfRatio;
- // Calculate the gain (coefficient) for each cyclical line.
- State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
- -60.0f / 20.0f);
-
- // Eventually this should boost the high frequencies when the ratio
- // exceeds 1.
- coeff = 0.0f;
- if (hfRatio < 1.0f)
- {
- // Calculate the decay equation for each low-pass filter.
- g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
- -60.0f / 20.0f) / State->Late.Coeff[index];
- g = __max(g, 0.1f);
- g *= g;
-
- // Calculate the gain (coefficient) for each low-pass filter.
- if(g < 0.9999f) // 1-epsilon
- coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
-
- // Very low decay times will produce minimal output, so apply an
- // upper bound to the coefficient.
- coeff = __min(coeff, 0.98f);
- }
- State->Late.LpCoeff[index] = coeff;
+ // Calculate the master low-pass filter (from the master effect HF gain).
+ cw = CalcI3DL2HFreq(Effect->Reverb.HFReference, frequency);
+ g = __max(Effect->Reverb.GainHF, 0.0001f);
+ // This is done with 2 chained 1-pole filters, so no need to square g.
+ State->LpFilter.coeff = CalcI3DL2Coeff(g, cw);
- // Attenuate the cyclical line coefficients by the mixing coefficient
- // (x).
- State->Late.Coeff[index] *= mixCoeff;
- }
+ // Update the modulator line.
+ UpdateModulator(Effect->Reverb.ModulationTime,
+ Effect->Reverb.ModulationDepth, frequency, State);
- // Calculate the 3D-panning gains for the early reflections and late
- // reverb (for EAX mode).
- {
- ALfloat earlyPan[3] = { Effect->Reverb.ReflectionsPan[0], Effect->Reverb.ReflectionsPan[1], Effect->Reverb.ReflectionsPan[2] };
- ALfloat latePan[3] = { Effect->Reverb.LateReverbPan[0], Effect->Reverb.LateReverbPan[1], Effect->Reverb.LateReverbPan[2] };
- ALfloat *speakerGain, dirGain, ambientGain;
- ALfloat length;
- ALint pos;
-
- length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
- if(length > 1.0f)
- {
- length = 1.0f / aluSqrt(length);
- earlyPan[0] *= length;
- earlyPan[1] *= length;
- earlyPan[2] *= length;
- }
- length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
- if(length > 1.0f)
- {
- length = 1.0f / aluSqrt(length);
- latePan[0] *= length;
- latePan[1] *= length;
- latePan[2] *= length;
- }
-
- // This code applies directional reverb just like the mixer applies
- // directional sources. It diffuses the sound toward all speakers
- // as the magnitude of the panning vector drops, which is only an
- // approximation of the expansion of sound across the speakers from
- // the panning direction.
- pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
- speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
- dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
- ambientGain = (1.0 - dirGain);
- for(index = 0;index < OUTPUTCHANNELS;index++)
- State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
-
- pos = aluCart2LUTpos(latePan[2], latePan[0]);
- speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
- dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
- ambientGain = (1.0 - dirGain);
- for(index = 0;index < OUTPUTCHANNELS;index++)
- State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
- }
+ // Update the initial effect delay.
+ UpdateDelayLine(Effect->Reverb.ReflectionsDelay,
+ Effect->Reverb.LateReverbDelay, frequency, State);
+
+ // Update the early lines.
+ UpdateEarlyLines(Effect->Reverb.Gain, Effect->Reverb.ReflectionsGain,
+ Effect->Reverb.LateReverbDelay, State);
+
+ // Update the decorrelator.
+ UpdateDecorrelator(Effect->Reverb.Density, frequency, State);
+
+ // Get the mixing matrix coefficients (x and y).
+ CalcMatrixCoeffs(Effect->Reverb.Diffusion, &x, &y);
+ // Then divide x into y to simplify the matrix calculation.
+ State->Late.MixCoeff = y / x;
+
+ // If the HF limit parameter is flagged, calculate an appropriate limit
+ // based on the air absorption parameter.
+ hfRatio = Effect->Reverb.DecayHFRatio;
+ if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
+ hfRatio = CalcLimitedHfRatio(hfRatio, Effect->Reverb.AirAbsorptionGainHF,
+ Effect->Reverb.DecayTime);
+
+ // Update the late lines.
+ UpdateLateLines(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
+ x, Effect->Reverb.Density, Effect->Reverb.DecayTime,
+ Effect->Reverb.Diffusion, hfRatio, cw, frequency, State);
+
+ // Update the echo line.
+ UpdateEchoLine(Effect->Reverb.Gain, Effect->Reverb.LateReverbGain,
+ Effect->Reverb.EchoTime, Effect->Reverb.DecayTime,
+ Effect->Reverb.Diffusion, Effect->Reverb.EchoDepth,
+ hfRatio, cw, frequency, State);
+
+ // Update early and late 3D panning.
+ Update3DPanning(Effect->Reverb.ReflectionsPan, Effect->Reverb.LateReverbPan,
+ Context->PanningLUT, State);
}
// This processes the reverb state, given the input samples and an output
// buffer.
-ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
+static ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
@@ -663,7 +1174,7 @@ ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint Sampl
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
- ReverbInOut(State, SamplesIn[index], early, late);
+ VerbPass(State, SamplesIn[index], early, late);
// Mix early reflections and late reverb.
out[0] = (early[0] + late[0]) * gain;
@@ -685,7 +1196,7 @@ ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint Sampl
// This processes the EAX reverb state, given the input samples and an output
// buffer.
-ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
+static ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
{
ALverbState *State = (ALverbState*)effect;
ALuint index;
@@ -695,7 +1206,7 @@ ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint Sa
for(index = 0;index < SamplesToDo;index++)
{
// Process reverb for this sample.
- ReverbInOut(State, SamplesIn[index], early, late);
+ EAXVerbPass(State, SamplesIn[index], early, late);
// Unfortunately, while the number and configuration of gains for
// panning adjust according to OUTPUTCHANNELS, the output from the
@@ -746,20 +1257,25 @@ ALeffectState *VerbCreate(void)
State->state.Update = VerbUpdate;
State->state.Process = VerbProcess;
- State->TotalLength = 0;
+ State->TotalSamples = 0;
State->SampleBuffer = NULL;
State->LpFilter.coeff = 0.0f;
State->LpFilter.history[0] = 0.0f;
State->LpFilter.history[1] = 0.0f;
+
+ State->Mod.Delay.Mask = 0;
+ State->Mod.Delay.Line = NULL;
+ State->Mod.Index = 0;
+ State->Mod.Range = 1;
+ State->Mod.Depth = 0.0f;
+ State->Mod.Coeff = 0.0f;
+ State->Mod.Filter = 0.0f;
+
State->Delay.Mask = 0;
State->Delay.Line = NULL;
-
- State->Tap[0] = 0;
- State->Tap[1] = 0;
- State->Tap[2] = 0;
- State->Tap[3] = 0;
- State->Tap[4] = 0;
+ State->DelayTap[0] = 0;
+ State->DelayTap[1] = 0;
State->Early.Gain = 0.0f;
for(index = 0;index < 4;index++)
@@ -770,11 +1286,16 @@ ALeffectState *VerbCreate(void)
State->Early.Offset[index] = 0;
}
+ State->Decorrelator.Mask = 0;
+ State->Decorrelator.Line = NULL;
+ State->DecoTap[0] = 0;
+ State->DecoTap[1] = 0;
+ State->DecoTap[2] = 0;
+
State->Late.Gain = 0.0f;
State->Late.DensityGain = 0.0f;
State->Late.ApFeedCoeff = 0.0f;
State->Late.MixCoeff = 0.0f;
-
for(index = 0;index < 4;index++)
{
State->Late.ApCoeff[index] = 0.0f;
@@ -791,20 +1312,40 @@ ALeffectState *VerbCreate(void)
State->Late.LpSample[index] = 0.0f;
}
- // Panning is applied as an independent gain for each output channel.
for(index = 0;index < OUTPUTCHANNELS;index++)
{
State->Early.PanGain[index] = 0.0f;
State->Late.PanGain[index] = 0.0f;
}
+ State->Echo.DensityGain = 0.0f;
+ State->Echo.Delay.Mask = 0;
+ State->Echo.Delay.Line = NULL;
+ State->Echo.ApDelay.Mask = 0;
+ State->Echo.ApDelay.Line = NULL;
+ State->Echo.Coeff = 0.0f;
+ State->Echo.ApFeedCoeff = 0.0f;
+ State->Echo.ApCoeff = 0.0f;
+ State->Echo.Offset = 0;
+ State->Echo.ApOffset = 0;
+ State->Echo.LpCoeff = 0.0f;
+ State->Echo.LpSample = 0.0f;
+ State->Echo.MixCoeff[0] = 0.0f;
+ State->Echo.MixCoeff[1] = 1.0f;
+
State->Offset = 0;
+
return &State->state;
}
ALeffectState *EAXVerbCreate(void)
{
ALeffectState *State = VerbCreate();
- if(State) State->Process = EAXVerbProcess;
+ if(State)
+ {
+ State->DeviceUpdate = EAXVerbDeviceUpdate;
+ State->Update = EAXVerbUpdate;
+ State->Process = EAXVerbProcess;
+ }
return State;
}