diff options
Diffstat (limited to 'Alc/effects/autowah.c')
-rw-r--r-- | Alc/effects/autowah.c | 142 |
1 files changed, 71 insertions, 71 deletions
diff --git a/Alc/effects/autowah.c b/Alc/effects/autowah.c index 29ec02af..785fdb28 100644 --- a/Alc/effects/autowah.c +++ b/Alc/effects/autowah.c @@ -28,16 +28,11 @@ #include "alAuxEffectSlot.h" -/* You can tweak the octave of this dynamic filter just changing next macro - * guitar - (default) 2.0f - * bass - 4.0f - */ -#define OCTAVE 2.0f - - -/* We use a lfo with a custom low-pass filter to generate autowah - * effect and a high-pass filter to avoid distortion and aliasing. - * By adding the two filters up, we obtain a dynamic bandpass filter. +/* Auto-wah is simply a low-pass filter with a cutoff frequency that shifts up + * or down depending on the input signal, and a resonant peak at the cutoff. + * + * Currently, we assume a cutoff frequency range of 500hz (no amplitude) to + * 3khz (peak gain). Peak gain is assumed to be in normalized scale. */ typedef struct ALautowahState { @@ -47,49 +42,42 @@ typedef struct ALautowahState { ALfloat Gain[MaxChannels]; /* Effect parameters */ - ALfloat AttackTime; - ALfloat ReleaseTime; + ALfloat AttackRate; + ALfloat ReleaseRate; ALfloat Resonance; ALfloat PeakGain; - ALuint Frequency; + ALfloat GainCtrl; + ALfloat Frequency; /* Samples processing */ - ALuint lfo; - ALfilterState low_pass; - ALfilterState high_pass; + ALfilterState LowPass; } ALautowahState; static ALvoid ALautowahState_Destruct(ALautowahState *UNUSED(state)) { } -static ALboolean ALautowahState_deviceUpdate(ALautowahState *UNUSED(state), ALCdevice *UNUSED(device)) +static ALboolean ALautowahState_deviceUpdate(ALautowahState *state, ALCdevice *device) { + state->Frequency = device->Frequency; return AL_TRUE; } -static ALvoid ALautowahState_update(ALautowahState *state, ALCdevice *Device, const ALeffectslot *Slot) +static ALvoid ALautowahState_update(ALautowahState *state, ALCdevice *device, const ALeffectslot *slot) { - const ALfloat cutoff = LOWPASSFREQREF / (Device->Frequency * 4.0f); - const ALfloat bandwidth = (cutoff / 2.0f) / (cutoff * 0.67f); + ALfloat attackTime, releaseTime; ALfloat gain; - /* computing high-pass filter coefficients */ - ALfilterState_setParams(&state->high_pass, ALfilterType_HighPass, 1.0f, - cutoff, bandwidth); + attackTime = slot->EffectProps.Autowah.AttackTime * state->Frequency; + releaseTime = slot->EffectProps.Autowah.ReleaseTime * state->Frequency; - state->AttackTime = Slot->EffectProps.Autowah.AttackTime; - state->ReleaseTime = Slot->EffectProps.Autowah.ReleaseTime; - state->Frequency = Device->Frequency; - state->PeakGain = Slot->EffectProps.Autowah.PeakGain; - state->Resonance = Slot->EffectProps.Autowah.Resonance; + state->AttackRate = 1.0f / attackTime; + state->ReleaseRate = 1.0f / releaseTime; + state->PeakGain = slot->EffectProps.Autowah.PeakGain; + state->Resonance = slot->EffectProps.Autowah.Resonance; - state->lfo = 0; - - ALfilterState_clear(&state->low_pass); - - gain = sqrtf(1.0f / Device->NumChan) * Slot->Gain; - SetGains(Device, gain, state->Gain); + gain = sqrtf(1.0f / device->NumChan) * slot->Gain; + SetGains(device, gain, state->Gain); } static ALvoid ALautowahState_process(ALautowahState *state, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[BUFFERSIZE]) @@ -101,46 +89,53 @@ static ALvoid ALautowahState_process(ALautowahState *state, ALuint SamplesToDo, { ALfloat temps[64]; ALuint td = minu(SamplesToDo-base, 64); + ALfloat gain = state->GainCtrl; for(it = 0;it < td;it++) { ALfloat smp = SamplesIn[it+base]; - ALfloat frequency, omega, alpha, peak; - - /* lfo for low-pass shaking */ - if((state->lfo++) % 30 == 0) - { - /* Using custom low-pass filter coefficients, to handle the resonance and peak-gain properties. */ - frequency = (1.0f + cosf(state->lfo * (1.0f / lerp(1.0f, 4.0f, state->AttackTime * state->ReleaseTime)) * F_2PI / state->Frequency)) / OCTAVE; - frequency = expf((frequency - 1.0f) * 6.0f); - - /* computing cutoff frequency and peak gain */ - omega = F_PI * frequency; - alpha = sinf(omega) / (16.0f * (state->Resonance / AL_AUTOWAH_MAX_RESONANCE)); - peak = lerp(1.0f, 10.0f, state->PeakGain / AL_AUTOWAH_MAX_PEAK_GAIN); - - /* computing low-pass filter coefficients */ - state->low_pass.b[0] = (1.0f - cosf(omega)) / 2.0f; - state->low_pass.b[1] = 1.0f - cosf(omega); - state->low_pass.b[2] = (1.0f - cosf(omega)) / 2.0f; - state->low_pass.a[0] = 1.0f + alpha / peak; - state->low_pass.a[1] = -2.0f * cosf(omega); - state->low_pass.a[2] = 1.0f - alpha / peak; - - state->low_pass.b[2] /= state->low_pass.a[0]; - state->low_pass.b[1] /= state->low_pass.a[0]; - state->low_pass.b[0] /= state->low_pass.a[0]; - state->low_pass.a[2] /= state->low_pass.a[0]; - state->low_pass.a[1] /= state->low_pass.a[0]; - state->low_pass.a[0] /= state->low_pass.a[0]; - } - - /* do high-pass filter */ - smp = ALfilterState_processSingle(&state->high_pass, smp); - - /* do low-pass filter */ - temps[it] = ALfilterState_processSingle(&state->low_pass, smp); + ALfloat alpha, w0; + ALfloat amplitude; + ALfloat cutoff; + + /* Similar to compressor, we get the current amplitude of the + * incoming signal, and attack or release to reach it. */ + amplitude = fabs(smp); + if(amplitude > gain) + gain = minf(gain+state->AttackRate, amplitude); + else if(amplitude < gain) + gain = maxf(gain-state->ReleaseRate, amplitude); + gain = maxf(gain, GAIN_SILENCE_THRESHOLD); + + /* FIXME: What range does the filter cover? */ + cutoff = lerp(500.0f, 3000.0f, minf(gain / state->PeakGain, 1.0f)); + + /* The code below is like calling ALfilterState_setParams with + * ALfilterType_LowPass. However, instead of passing a bandwidth, + * we use the resonance property for Q. This also inlines the call. + */ + w0 = F_2PI * cutoff / state->Frequency; + + /* FIXME: Resonance controls the resonant peak, or Q. How? Not sure + * that Q = resonance*0.1. */ + alpha = sinf(w0) / (2.0f * state->Resonance*0.1f); + state->LowPass.b[0] = (1.0f - cosf(w0)) / 2.0f; + state->LowPass.b[1] = 1.0f - cosf(w0); + state->LowPass.b[2] = (1.0f - cosf(w0)) / 2.0f; + state->LowPass.a[0] = 1.0f + alpha; + state->LowPass.a[1] = -2.0f * cosf(w0); + state->LowPass.a[2] = 1.0f - alpha; + + state->LowPass.b[2] /= state->LowPass.a[0]; + state->LowPass.b[1] /= state->LowPass.a[0]; + state->LowPass.b[0] /= state->LowPass.a[0]; + state->LowPass.a[2] /= state->LowPass.a[0]; + state->LowPass.a[1] /= state->LowPass.a[0]; + state->LowPass.a[0] /= state->LowPass.a[0]; + + temps[it] = ALfilterState_processSingle(&state->LowPass, smp); } + state->GainCtrl = gain; for(kt = 0;kt < MaxChannels;kt++) { @@ -176,8 +171,13 @@ static ALeffectState *ALautowahStateFactory_create(ALautowahStateFactory *UNUSED if(!state) return NULL; SET_VTABLE2(ALautowahState, ALeffectState, state); - ALfilterState_clear(&state->low_pass); - ALfilterState_clear(&state->high_pass); + state->AttackRate = 0.0f; + state->ReleaseRate = 0.0f; + state->Resonance = 0.0f; + state->PeakGain = 1.0f; + state->GainCtrl = 1.0f; + + ALfilterState_clear(&state->LowPass); return STATIC_CAST(ALeffectState, state); } |