diff options
Diffstat (limited to 'Alc/effects/reverb.c')
-rw-r--r-- | Alc/effects/reverb.c | 1841 |
1 files changed, 1841 insertions, 0 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c new file mode 100644 index 00000000..a13a5693 --- /dev/null +++ b/Alc/effects/reverb.c @@ -0,0 +1,1841 @@ +/** + * Reverb for the OpenAL cross platform audio library + * Copyright (C) 2008-2009 by Christopher Fitzgerald. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 02111-1307, USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> + +#include "alMain.h" +#include "alu.h" +#include "alAuxEffectSlot.h" +#include "alEffect.h" +#include "alFilter.h" +#include "alError.h" + + +typedef struct ALreverbStateFactory { + DERIVE_FROM_TYPE(ALeffectStateFactory); +} ALreverbStateFactory; + +static ALreverbStateFactory ReverbFactory; + + +typedef struct DelayLine +{ + // The delay lines use sample lengths that are powers of 2 to allow the + // use of bit-masking instead of a modulus for wrapping. + ALuint Mask; + ALfloat *Line; +} DelayLine; + +typedef struct ALreverbState { + DERIVE_FROM_TYPE(ALeffectState); + + ALboolean IsEax; + + // All delay lines are allocated as a single buffer to reduce memory + // fragmentation and management code. + ALfloat *SampleBuffer; + ALuint TotalSamples; + + // Master effect low-pass filter (2 chained 1-pole filters). + FILTER LpFilter; + + struct { + // Modulator delay line. + DelayLine Delay; + + // The vibrato time is tracked with an index over a modulus-wrapped + // range (in samples). + ALuint Index; + ALuint Range; + + // The depth of frequency change (also in samples) and its filter. + ALfloat Depth; + ALfloat Coeff; + ALfloat Filter; + } Mod; + + // Initial effect delay. + DelayLine Delay; + // The tap points for the initial delay. First tap goes to early + // reflections, the last to late reverb. + ALuint DelayTap[2]; + + struct { + // Output gain for early reflections. + ALfloat Gain; + + // Early reflections are done with 4 delay lines. + ALfloat Coeff[4]; + DelayLine Delay[4]; + ALuint Offset[4]; + + // The gain for each output channel based on 3D panning (only for the + // EAX path). + ALfloat PanGain[MaxChannels]; + } Early; + + // Decorrelator delay line. + DelayLine Decorrelator; + // There are actually 4 decorrelator taps, but the first occurs at the + // initial sample. + ALuint DecoTap[3]; + + struct { + // Output gain for late reverb. + ALfloat Gain; + + // Attenuation to compensate for the modal density and decay rate of + // the late lines. + ALfloat DensityGain; + + // The feed-back and feed-forward all-pass coefficient. + ALfloat ApFeedCoeff; + + // Mixing matrix coefficient. + ALfloat MixCoeff; + + // Late reverb has 4 parallel all-pass filters. + ALfloat ApCoeff[4]; + DelayLine ApDelay[4]; + ALuint ApOffset[4]; + + // In addition to 4 cyclical delay lines. + ALfloat Coeff[4]; + DelayLine Delay[4]; + ALuint Offset[4]; + + // The cyclical delay lines are 1-pole low-pass filtered. + ALfloat LpCoeff[4]; + ALfloat LpSample[4]; + + // The gain for each output channel based on 3D panning (only for the + // EAX path). + ALfloat PanGain[MaxChannels]; + } Late; + + struct { + // Attenuation to compensate for the modal density and decay rate of + // the echo line. + ALfloat DensityGain; + + // Echo delay and all-pass lines. + DelayLine Delay; + DelayLine ApDelay; + + ALfloat Coeff; + ALfloat ApFeedCoeff; + ALfloat ApCoeff; + + ALuint Offset; + ALuint ApOffset; + + // The echo line is 1-pole low-pass filtered. + ALfloat LpCoeff; + ALfloat LpSample; + + // Echo mixing coefficients. + ALfloat MixCoeff[2]; + } Echo; + + // The current read offset for all delay lines. + ALuint Offset; + + // The gain for each output channel (non-EAX path only; aliased from + // Late.PanGain) + ALfloat *Gain; + + /* Temporary storage used when processing, before deinterlacing. */ + ALfloat ReverbSamples[BUFFERSIZE][4]; + ALfloat EarlySamples[BUFFERSIZE][4]; +} ALreverbState; + +/* This is a user config option for modifying the overall output of the reverb + * effect. + */ +ALfloat ReverbBoost = 1.0f; + +/* Specifies whether to use a standard reverb effect in place of EAX reverb */ +ALboolean EmulateEAXReverb = AL_FALSE; + +/* This coefficient is used to define the maximum frequency range controlled + * by the modulation depth. The current value of 0.1 will allow it to swing + * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the + * sampler to stall on the downswing, and above 1 it will cause it to sample + * backwards. + */ +static const ALfloat MODULATION_DEPTH_COEFF = 0.1f; + +/* A filter is used to avoid the terrible distortion caused by changing + * modulation time and/or depth. To be consistent across different sample + * rates, the coefficient must be raised to a constant divided by the sample + * rate: coeff^(constant / rate). + */ +static const ALfloat MODULATION_FILTER_COEFF = 0.048f; +static const ALfloat MODULATION_FILTER_CONST = 100000.0f; + +// When diffusion is above 0, an all-pass filter is used to take the edge off +// the echo effect. It uses the following line length (in seconds). +static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f; + +// Input into the late reverb is decorrelated between four channels. Their +// timings are dependent on a fraction and multiplier. See the +// UpdateDecorrelator() routine for the calculations involved. +static const ALfloat DECO_FRACTION = 0.15f; +static const ALfloat DECO_MULTIPLIER = 2.0f; + +// All delay line lengths are specified in seconds. + +// The lengths of the early delay lines. +static const ALfloat EARLY_LINE_LENGTH[4] = +{ + 0.0015f, 0.0045f, 0.0135f, 0.0405f +}; + +// The lengths of the late all-pass delay lines. +static const ALfloat ALLPASS_LINE_LENGTH[4] = +{ + 0.0151f, 0.0167f, 0.0183f, 0.0200f, +}; + +// The lengths of the late cyclical delay lines. +static const ALfloat LATE_LINE_LENGTH[4] = +{ + 0.0211f, 0.0311f, 0.0461f, 0.0680f +}; + +// The late cyclical delay lines have a variable length dependent on the +// effect's density parameter (inverted for some reason) and this multiplier. +static const ALfloat LATE_LINE_MULTIPLIER = 4.0f; + + +// Basic delay line input/output routines. +static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset) +{ + return Delay->Line[offset&Delay->Mask]; +} + +static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in) +{ + Delay->Line[offset&Delay->Mask] = in; +} + +// Attenuated delay line output routine. +static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff) +{ + return coeff * Delay->Line[offset&Delay->Mask]; +} + +// Basic attenuated all-pass input/output routine. +static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff) +{ + ALfloat out, feed; + + out = DelayLineOut(Delay, outOffset); + feed = feedCoeff * in; + DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in); + + // The time-based attenuation is only applied to the delay output to + // keep it from affecting the feed-back path (which is already controlled + // by the all-pass feed coefficient). + return (coeff * out) - feed; +} + +// Given an input sample, this function produces modulation for the late +// reverb. +static __inline ALfloat EAXModulation(ALreverbState *State, ALfloat in) +{ + ALfloat sinus, frac; + ALuint offset; + ALfloat out0, out1; + + // Calculate the sinus rythm (dependent on modulation time and the + // sampling rate). The center of the sinus is moved to reduce the delay + // of the effect when the time or depth are low. + sinus = 1.0f - cosf(F_PI*2.0f * State->Mod.Index / State->Mod.Range); + + // The depth determines the range over which to read the input samples + // from, so it must be filtered to reduce the distortion caused by even + // small parameter changes. + State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth, + State->Mod.Coeff); + + // Calculate the read offset and fraction between it and the next sample. + frac = (1.0f + (State->Mod.Filter * sinus)); + offset = fastf2u(frac); + frac -= offset; + + // Get the two samples crossed by the offset, and feed the delay line + // with the next input sample. + out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset); + out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1); + DelayLineIn(&State->Mod.Delay, State->Offset, in); + + // Step the modulation index forward, keeping it bound to its range. + State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range; + + // The output is obtained by linearly interpolating the two samples that + // were acquired above. + return lerp(out0, out1, frac); +} + +// Delay line output routine for early reflections. +static __inline ALfloat EarlyDelayLineOut(ALreverbState *State, ALuint index) +{ + return AttenuatedDelayLineOut(&State->Early.Delay[index], + State->Offset - State->Early.Offset[index], + State->Early.Coeff[index]); +} + +// Given an input sample, this function produces four-channel output for the +// early reflections. +static __inline ALvoid EarlyReflection(ALreverbState *State, ALfloat in, ALfloat *restrict out) +{ + ALfloat d[4], v, f[4]; + + // Obtain the decayed results of each early delay line. + d[0] = EarlyDelayLineOut(State, 0); + d[1] = EarlyDelayLineOut(State, 1); + d[2] = EarlyDelayLineOut(State, 2); + d[3] = EarlyDelayLineOut(State, 3); + + /* The following uses a lossless scattering junction from waveguide + * theory. It actually amounts to a householder mixing matrix, which + * will produce a maximally diffuse response, and means this can probably + * be considered a simple feed-back delay network (FDN). + * N + * --- + * \ + * v = 2/N / d_i + * --- + * i=1 + */ + v = (d[0] + d[1] + d[2] + d[3]) * 0.5f; + // The junction is loaded with the input here. + v += in; + + // Calculate the feed values for the delay lines. + f[0] = v - d[0]; + f[1] = v - d[1]; + f[2] = v - d[2]; + f[3] = v - d[3]; + + // Re-feed the delay lines. + DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]); + DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]); + DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]); + DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]); + + // Output the results of the junction for all four channels. + out[0] = State->Early.Gain * f[0]; + out[1] = State->Early.Gain * f[1]; + out[2] = State->Early.Gain * f[2]; + out[3] = State->Early.Gain * f[3]; +} + +// All-pass input/output routine for late reverb. +static __inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint index, ALfloat in) +{ + return AllpassInOut(&State->Late.ApDelay[index], + State->Offset - State->Late.ApOffset[index], + State->Offset, in, State->Late.ApFeedCoeff, + State->Late.ApCoeff[index]); +} + +// Delay line output routine for late reverb. +static __inline ALfloat LateDelayLineOut(ALreverbState *State, ALuint index) +{ + return AttenuatedDelayLineOut(&State->Late.Delay[index], + State->Offset - State->Late.Offset[index], + State->Late.Coeff[index]); +} + +// Low-pass filter input/output routine for late reverb. +static __inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in) +{ + in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]); + State->Late.LpSample[index] = in; + return in; +} + +// Given four decorrelated input samples, this function produces four-channel +// output for the late reverb. +static __inline ALvoid LateReverb(ALreverbState *State, const ALfloat *restrict in, ALfloat *restrict out) +{ + ALfloat d[4], f[4]; + + // Obtain the decayed results of the cyclical delay lines, and add the + // corresponding input channels. Then pass the results through the + // low-pass filters. + + // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back + // to 0. + d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2)); + d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0)); + d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3)); + d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1)); + + // To help increase diffusion, run each line through an all-pass filter. + // When there is no diffusion, the shortest all-pass filter will feed the + // shortest delay line. + d[0] = LateAllPassInOut(State, 0, d[0]); + d[1] = LateAllPassInOut(State, 1, d[1]); + d[2] = LateAllPassInOut(State, 2, d[2]); + d[3] = LateAllPassInOut(State, 3, d[3]); + + /* Late reverb is done with a modified feed-back delay network (FDN) + * topology. Four input lines are each fed through their own all-pass + * filter and then into the mixing matrix. The four outputs of the + * mixing matrix are then cycled back to the inputs. Each output feeds + * a different input to form a circlular feed cycle. + * + * The mixing matrix used is a 4D skew-symmetric rotation matrix derived + * using a single unitary rotational parameter: + * + * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 + * [ -a, d, c, -b ] + * [ -b, -c, d, a ] + * [ -c, b, -a, d ] + * + * The rotation is constructed from the effect's diffusion parameter, + * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y + * with differing signs, and d is the coefficient x. The matrix is thus: + * + * [ x, y, -y, y ] n = sqrt(matrix_order - 1) + * [ -y, x, y, y ] t = diffusion_parameter * atan(n) + * [ y, -y, x, y ] x = cos(t) + * [ -y, -y, -y, x ] y = sin(t) / n + * + * To reduce the number of multiplies, the x coefficient is applied with + * the cyclical delay line coefficients. Thus only the y coefficient is + * applied when mixing, and is modified to be: y / x. + */ + f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3])); + f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3])); + f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3])); + f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] )); + + // Output the results of the matrix for all four channels, attenuated by + // the late reverb gain (which is attenuated by the 'x' mix coefficient). + out[0] = State->Late.Gain * f[0]; + out[1] = State->Late.Gain * f[1]; + out[2] = State->Late.Gain * f[2]; + out[3] = State->Late.Gain * f[3]; + + // Re-feed the cyclical delay lines. + DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]); + DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]); + DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]); + DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]); +} + +// Given an input sample, this function mixes echo into the four-channel late +// reverb. +static __inline ALvoid EAXEcho(ALreverbState *State, ALfloat in, ALfloat *restrict late) +{ + ALfloat out, feed; + + // Get the latest attenuated echo sample for output. + feed = AttenuatedDelayLineOut(&State->Echo.Delay, + State->Offset - State->Echo.Offset, + State->Echo.Coeff); + + // Mix the output into the late reverb channels. + out = State->Echo.MixCoeff[0] * feed; + late[0] = (State->Echo.MixCoeff[1] * late[0]) + out; + late[1] = (State->Echo.MixCoeff[1] * late[1]) + out; + late[2] = (State->Echo.MixCoeff[1] * late[2]) + out; + late[3] = (State->Echo.MixCoeff[1] * late[3]) + out; + + // Mix the energy-attenuated input with the output and pass it through + // the echo low-pass filter. + feed += State->Echo.DensityGain * in; + feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff); + State->Echo.LpSample = feed; + + // Then the echo all-pass filter. + feed = AllpassInOut(&State->Echo.ApDelay, + State->Offset - State->Echo.ApOffset, + State->Offset, feed, State->Echo.ApFeedCoeff, + State->Echo.ApCoeff); + + // Feed the delay with the mixed and filtered sample. + DelayLineIn(&State->Echo.Delay, State->Offset, feed); +} + +// Perform the non-EAX reverb pass on a given input sample, resulting in +// four-channel output. +static __inline ALvoid VerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict out) +{ + ALfloat feed, late[4], taps[4]; + + // Low-pass filter the incoming sample. + in = lpFilter2P(&State->LpFilter, in); + + // Feed the initial delay line. + DelayLineIn(&State->Delay, State->Offset, in); + + // Calculate the early reflection from the first delay tap. + in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]); + EarlyReflection(State, in, out); + + // Feed the decorrelator from the energy-attenuated output of the second + // delay tap. + in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]); + feed = in * State->Late.DensityGain; + DelayLineIn(&State->Decorrelator, State->Offset, feed); + + // Calculate the late reverb from the decorrelator taps. + taps[0] = feed; + taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]); + taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]); + taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]); + LateReverb(State, taps, late); + + // Mix early reflections and late reverb. + out[0] += late[0]; + out[1] += late[1]; + out[2] += late[2]; + out[3] += late[3]; + + // Step all delays forward one sample. + State->Offset++; +} + +// Perform the EAX reverb pass on a given input sample, resulting in four- +// channel output. +static __inline ALvoid EAXVerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict early, ALfloat *restrict late) +{ + ALfloat feed, taps[4]; + + // Low-pass filter the incoming sample. + in = lpFilter2P(&State->LpFilter, in); + + // Perform any modulation on the input. + in = EAXModulation(State, in); + + // Feed the initial delay line. + DelayLineIn(&State->Delay, State->Offset, in); + + // Calculate the early reflection from the first delay tap. + in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]); + EarlyReflection(State, in, early); + + // Feed the decorrelator from the energy-attenuated output of the second + // delay tap. + in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]); + feed = in * State->Late.DensityGain; + DelayLineIn(&State->Decorrelator, State->Offset, feed); + + // Calculate the late reverb from the decorrelator taps. + taps[0] = feed; + taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]); + taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]); + taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]); + LateReverb(State, taps, late); + + // Calculate and mix in any echo. + EAXEcho(State, in, late); + + // Step all delays forward one sample. + State->Offset++; +} + +// This processes the standard reverb state, given the input samples and an +// output buffer. +static ALvoid ALreverbState_ProcessStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE]) +{ + ALfloat (*restrict out)[4] = State->ReverbSamples; + ALuint index, c; + + /* Process reverb for these samples. */ + for(index = 0;index < SamplesToDo;index++) + VerbPass(State, SamplesIn[index], out[index]); + + for(c = 0;c < MaxChannels;c++) + { + ALfloat gain = State->Gain[c]; + if(gain > 0.00001f) + { + for(index = 0;index < SamplesToDo;index++) + SamplesOut[c][index] += gain * out[index][c&3]; + } + } +} + +// This processes the EAX reverb state, given the input samples and an output +// buffer. +static ALvoid ALreverbState_ProcessEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE]) +{ + ALfloat (*restrict early)[4] = State->EarlySamples; + ALfloat (*restrict late)[4] = State->ReverbSamples; + ALuint index, c; + + /* Process reverb for these samples. */ + for(index = 0;index < SamplesToDo;index++) + EAXVerbPass(State, SamplesIn[index], early[index], late[index]); + + for(c = 0;c < MaxChannels;c++) + { + ALfloat earlyGain = State->Early.PanGain[c]; + ALfloat lateGain = State->Late.PanGain[c]; + + if(earlyGain > 0.00001f) + { + for(index = 0;index < SamplesToDo;index++) + SamplesOut[c][index] += earlyGain*early[index][c&3]; + } + if(lateGain > 0.00001f) + { + for(index = 0;index < SamplesToDo;index++) + SamplesOut[c][index] += lateGain*late[index][c&3]; + } + } +} + +static ALvoid ALreverbState_Process(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE]) +{ + if(State->IsEax) + ALreverbState_ProcessEax(State, SamplesToDo, SamplesIn, SamplesOut); + else + ALreverbState_ProcessStandard(State, SamplesToDo, SamplesIn, SamplesOut); +} + +// Given the allocated sample buffer, this function updates each delay line +// offset. +static __inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay) +{ + Delay->Line = &sampleBuffer[(ALintptrEXT)Delay->Line]; +} + +// Calculate the length of a delay line and store its mask and offset. +static ALuint CalcLineLength(ALfloat length, ALintptrEXT offset, ALuint frequency, DelayLine *Delay) +{ + ALuint samples; + + // All line lengths are powers of 2, calculated from their lengths, with + // an additional sample in case of rounding errors. + samples = NextPowerOf2(fastf2u(length * frequency) + 1); + // All lines share a single sample buffer. + Delay->Mask = samples - 1; + Delay->Line = (ALfloat*)offset; + // Return the sample count for accumulation. + return samples; +} + +/* Calculates the delay line metrics and allocates the shared sample buffer + * for all lines given the sample rate (frequency). If an allocation failure + * occurs, it returns AL_FALSE. + */ +static ALboolean AllocLines(ALuint frequency, ALreverbState *State) +{ + ALuint totalSamples, index; + ALfloat length; + ALfloat *newBuffer = NULL; + + // All delay line lengths are calculated to accomodate the full range of + // lengths given their respective paramters. + totalSamples = 0; + + /* The modulator's line length is calculated from the maximum modulation + * time and depth coefficient, and halfed for the low-to-high frequency + * swing. An additional sample is added to keep it stable when there is no + * modulation. + */ + length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f) + + (1.0f / frequency); + totalSamples += CalcLineLength(length, totalSamples, frequency, + &State->Mod.Delay); + + // The initial delay is the sum of the reflections and late reverb + // delays. + length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + + AL_EAXREVERB_MAX_LATE_REVERB_DELAY; + totalSamples += CalcLineLength(length, totalSamples, frequency, + &State->Delay); + + // The early reflection lines. + for(index = 0;index < 4;index++) + totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples, + frequency, &State->Early.Delay[index]); + + // The decorrelator line is calculated from the lowest reverb density (a + // parameter value of 1). + length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) * + LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER); + totalSamples += CalcLineLength(length, totalSamples, frequency, + &State->Decorrelator); + + // The late all-pass lines. + for(index = 0;index < 4;index++) + totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples, + frequency, &State->Late.ApDelay[index]); + + // The late delay lines are calculated from the lowest reverb density. + for(index = 0;index < 4;index++) + { + length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER); + totalSamples += CalcLineLength(length, totalSamples, frequency, + &State->Late.Delay[index]); + } + + // The echo all-pass and delay lines. + totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples, + frequency, &State->Echo.ApDelay); + totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples, + frequency, &State->Echo.Delay); + + if(totalSamples != State->TotalSamples) + { + TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples, totalSamples/(float)frequency); + newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples); + if(newBuffer == NULL) + return AL_FALSE; + State->SampleBuffer = newBuffer; + State->TotalSamples = totalSamples; + } + + // Update all delays to reflect the new sample buffer. + RealizeLineOffset(State->SampleBuffer, &State->Delay); + RealizeLineOffset(State->SampleBuffer, &State->Decorrelator); + for(index = 0;index < 4;index++) + { + RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]); + RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]); + RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]); + } + RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay); + RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay); + RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay); + + // Clear the sample buffer. + for(index = 0;index < State->TotalSamples;index++) + State->SampleBuffer[index] = 0.0f; + + return AL_TRUE; +} + +// This updates the device-dependant EAX reverb state. This is called on +// initialization and any time the device parameters (eg. playback frequency, +// format) have been changed. +static ALboolean ALreverbState_DeviceUpdate(ALreverbState *State, ALCdevice *Device) +{ + ALuint frequency = Device->Frequency, index; + + // Allocate the delay lines. + if(!AllocLines(frequency, State)) + return AL_FALSE; + + // Calculate the modulation filter coefficient. Notice that the exponent + // is calculated given the current sample rate. This ensures that the + // resulting filter response over time is consistent across all sample + // rates. + State->Mod.Coeff = powf(MODULATION_FILTER_COEFF, + MODULATION_FILTER_CONST / frequency); + + // The early reflection and late all-pass filter line lengths are static, + // so their offsets only need to be calculated once. + for(index = 0;index < 4;index++) + { + State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * + frequency); + State->Late.ApOffset[index] = fastf2u(ALLPASS_LINE_LENGTH[index] * + frequency); + } + + // The echo all-pass filter line length is static, so its offset only + // needs to be calculated once. + State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency); + + return AL_TRUE; +} + +// Calculate a decay coefficient given the length of each cycle and the time +// until the decay reaches -60 dB. +static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime) +{ + return powf(0.001f/*-60 dB*/, length/decayTime); +} + +// Calculate a decay length from a coefficient and the time until the decay +// reaches -60 dB. +static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime) +{ + return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/; +} + +// Calculate the high frequency parameter for the I3DL2 coefficient +// calculation. +static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency) +{ + return cosf(F_PI*2.0f * hfRef / frequency); +} + +// Calculate an attenuation to be applied to the input of any echo models to +// compensate for modal density and decay time. +static __inline ALfloat CalcDensityGain(ALfloat a) +{ + /* The energy of a signal can be obtained by finding the area under the + * squared signal. This takes the form of Sum(x_n^2), where x is the + * amplitude for the sample n. + * + * Decaying feedback matches exponential decay of the form Sum(a^n), + * where a is the attenuation coefficient, and n is the sample. The area + * under this decay curve can be calculated as: 1 / (1 - a). + * + * Modifying the above equation to find the squared area under the curve + * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be + * calculated by inverting the square root of this approximation, + * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). + */ + return sqrtf(1.0f - (a * a)); +} + +// Calculate the mixing matrix coefficients given a diffusion factor. +static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y) +{ + ALfloat n, t; + + // The matrix is of order 4, so n is sqrt (4 - 1). + n = sqrtf(3.0f); + t = diffusion * atanf(n); + + // Calculate the first mixing matrix coefficient. + *x = cosf(t); + // Calculate the second mixing matrix coefficient. + *y = sinf(t) / n; +} + +// Calculate the limited HF ratio for use with the late reverb low-pass +// filters. +static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime) +{ + ALfloat limitRatio; + + /* Find the attenuation due to air absorption in dB (converting delay + * time to meters using the speed of sound). Then reversing the decay + * equation, solve for HF ratio. The delay length is cancelled out of + * the equation, so it can be calculated once for all lines. + */ + limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * + SPEEDOFSOUNDMETRESPERSEC); + /* Using the limit calculated above, apply the upper bound to the HF + * ratio. Also need to limit the result to a minimum of 0.1, just like the + * HF ratio parameter. */ + return clampf(limitRatio, 0.1f, hfRatio); +} + +// Calculate the coefficient for a HF (and eventually LF) decay damping +// filter. +static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw) +{ + ALfloat coeff, g; + + // Eventually this should boost the high frequencies when the ratio + // exceeds 1. + coeff = 0.0f; + if (hfRatio < 1.0f) + { + // Calculate the low-pass coefficient by dividing the HF decay + // coefficient by the full decay coefficient. + g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff; + + // Damping is done with a 1-pole filter, so g needs to be squared. + g *= g; + coeff = lpCoeffCalc(g, cw); + + // Very low decay times will produce minimal output, so apply an + // upper bound to the coefficient. + coeff = minf(coeff, 0.98f); + } + return coeff; +} + +// Update the EAX modulation index, range, and depth. Keep in mind that this +// kind of vibrato is additive and not multiplicative as one may expect. The +// downswing will sound stronger than the upswing. +static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State) +{ + ALuint range; + + /* Modulation is calculated in two parts. + * + * The modulation time effects the sinus applied to the change in + * frequency. An index out of the current time range (both in samples) + * is incremented each sample. The range is bound to a reasonable + * minimum (1 sample) and when the timing changes, the index is rescaled + * to the new range (to keep the sinus consistent). + */ + range = maxu(fastf2u(modTime*frequency), 1); + State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range / + State->Mod.Range); + State->Mod.Range = range; + + /* The modulation depth effects the amount of frequency change over the + * range of the sinus. It needs to be scaled by the modulation time so + * that a given depth produces a consistent change in frequency over all + * ranges of time. Since the depth is applied to a sinus value, it needs + * to be halfed once for the sinus range and again for the sinus swing + * in time (half of it is spent decreasing the frequency, half is spent + * increasing it). + */ + State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f / + 2.0f * frequency; +} + +// Update the offsets for the initial effect delay line. +static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALreverbState *State) +{ + // Calculate the initial delay taps. + State->DelayTap[0] = fastf2u(earlyDelay * frequency); + State->DelayTap[1] = fastf2u((earlyDelay + lateDelay) * frequency); +} + +// Update the early reflections gain and line coefficients. +static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALreverbState *State) +{ + ALuint index; + + // Calculate the early reflections gain (from the master effect gain, and + // reflections gain parameters) with a constant attenuation of 0.5. + State->Early.Gain = 0.5f * reverbGain * earlyGain; + + // Calculate the gain (coefficient) for each early delay line using the + // late delay time. This expands the early reflections to the start of + // the late reverb. + for(index = 0;index < 4;index++) + State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index], + lateDelay); +} + +// Update the offsets for the decorrelator line. +static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALreverbState *State) +{ + ALuint index; + ALfloat length; + + /* The late reverb inputs are decorrelated to smooth the reverb tail and + * reduce harsh echos. The first tap occurs immediately, while the + * remaining taps are delayed by multiples of a fraction of the smallest + * cyclical delay time. + * + * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay + */ + for(index = 0;index < 3;index++) + { + length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)index)) * + LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER)); + State->DecoTap[index] = fastf2u(length * frequency); + } +} + +// Update the late reverb gains, line lengths, and line coefficients. +static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State) +{ + ALfloat length; + ALuint index; + + /* Calculate the late reverb gain (from the master effect gain, and late + * reverb gain parameters). Since the output is tapped prior to the + * application of the next delay line coefficients, this gain needs to be + * attenuated by the 'x' mixing matrix coefficient as well. + */ + State->Late.Gain = reverbGain * lateGain * xMix; + + /* To compensate for changes in modal density and decay time of the late + * reverb signal, the input is attenuated based on the maximal energy of + * the outgoing signal. This approximation is used to keep the apparent + * energy of the signal equal for all ranges of density and decay time. + * + * The average length of the cyclcical delay lines is used to calculate + * the attenuation coefficient. + */ + length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] + + LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f; + length *= 1.0f + (density * LATE_LINE_MULTIPLIER); + State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length, + decayTime)); + + // Calculate the all-pass feed-back and feed-forward coefficient. + State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f); + + for(index = 0;index < 4;index++) + { + // Calculate the gain (coefficient) for each all-pass line. + State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index], + decayTime); + + // Calculate the length (in seconds) of each cyclical delay line. + length = LATE_LINE_LENGTH[index] * (1.0f + (density * + LATE_LINE_MULTIPLIER)); + + // Calculate the delay offset for each cyclical delay line. + State->Late.Offset[index] = fastf2u(length * frequency); + + // Calculate the gain (coefficient) for each cyclical line. + State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime); + + // Calculate the damping coefficient for each low-pass filter. + State->Late.LpCoeff[index] = + CalcDampingCoeff(hfRatio, length, decayTime, + State->Late.Coeff[index], cw); + + // Attenuate the cyclical line coefficients by the mixing coefficient + // (x). + State->Late.Coeff[index] *= xMix; + } +} + +// Update the echo gain, line offset, line coefficients, and mixing +// coefficients. +static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State) +{ + // Update the offset and coefficient for the echo delay line. + State->Echo.Offset = fastf2u(echoTime * frequency); + + // Calculate the decay coefficient for the echo line. + State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime); + + // Calculate the energy-based attenuation coefficient for the echo delay + // line. + State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff); + + // Calculate the echo all-pass feed coefficient. + State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f); + + // Calculate the echo all-pass attenuation coefficient. + State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime); + + // Calculate the damping coefficient for each low-pass filter. + State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime, + State->Echo.Coeff, cw); + + /* Calculate the echo mixing coefficients. The first is applied to the + * echo itself. The second is used to attenuate the late reverb when + * echo depth is high and diffusion is low, so the echo is slightly + * stronger than the decorrelated echos in the reverb tail. + */ + State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth; + State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion)); +} + +// Update the early and late 3D panning gains. +static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALreverbState *State) +{ + ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1], + ReflectionsPan[2] }; + ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1], + LateReverbPan[2] }; + ALfloat ambientGain; + ALfloat dirGain; + ALfloat length; + ALuint index; + + Gain *= ReverbBoost; + + /* Attenuate reverb according to its coverage (dirGain=0 will give + * Gain*ambientGain, and dirGain=1 will give Gain). */ + ambientGain = minf(sqrtf(2.0f/Device->NumChan), 1.0f); + + length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2]; + if(length > 1.0f) + { + length = 1.0f / sqrtf(length); + earlyPan[0] *= length; + earlyPan[1] *= length; + earlyPan[2] *= length; + } + length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2]; + if(length > 1.0f) + { + length = 1.0f / sqrtf(length); + latePan[0] *= length; + latePan[1] *= length; + latePan[2] *= length; + } + + dirGain = sqrtf(earlyPan[0]*earlyPan[0] + earlyPan[2]*earlyPan[2]); + for(index = 0;index < MaxChannels;index++) + State->Early.PanGain[index] = 0.0f; + ComputeAngleGains(Device, atan2f(earlyPan[0], earlyPan[2]), (1.0f-dirGain)*F_PI, + lerp(ambientGain, 1.0f, dirGain) * Gain, State->Early.PanGain); + + dirGain = sqrtf(latePan[0]*latePan[0] + latePan[2]*latePan[2]); + for(index = 0;index < MaxChannels;index++) + State->Late.PanGain[index] = 0.0f; + ComputeAngleGains(Device, atan2f(latePan[0], latePan[2]), (1.0f-dirGain)*F_PI, + lerp(ambientGain, 1.0f, dirGain) * Gain, State->Late.PanGain); +} + +// This updates the EAX reverb state. This is called any time the EAX reverb +// effect is loaded into a slot. +static ALvoid ALreverbState_Update(ALreverbState *State, ALCdevice *Device, const ALeffectslot *Slot) +{ + ALuint frequency = Device->Frequency; + ALfloat cw, x, y, hfRatio; + + if(Slot->effect.type == AL_EFFECT_EAXREVERB && !EmulateEAXReverb) + State->IsEax = AL_TRUE; + else if(Slot->effect.type == AL_EFFECT_REVERB || EmulateEAXReverb) + State->IsEax = AL_FALSE; + + // Calculate the master low-pass filter (from the master effect HF gain). + if(State->IsEax) + cw = CalcI3DL2HFreq(Slot->effect.Reverb.HFReference, frequency); + else + cw = CalcI3DL2HFreq(LOWPASSFREQREF, frequency); + // This is done with 2 chained 1-pole filters, so no need to square g. + State->LpFilter.coeff = lpCoeffCalc(Slot->effect.Reverb.GainHF, cw); + + if(State->IsEax) + { + // Update the modulator line. + UpdateModulator(Slot->effect.Reverb.ModulationTime, + Slot->effect.Reverb.ModulationDepth, + frequency, State); + } + + // Update the initial effect delay. + UpdateDelayLine(Slot->effect.Reverb.ReflectionsDelay, + Slot->effect.Reverb.LateReverbDelay, + frequency, State); + + // Update the early lines. + UpdateEarlyLines(Slot->effect.Reverb.Gain, + Slot->effect.Reverb.ReflectionsGain, + Slot->effect.Reverb.LateReverbDelay, State); + + // Update the decorrelator. + UpdateDecorrelator(Slot->effect.Reverb.Density, frequency, State); + + // Get the mixing matrix coefficients (x and y). + CalcMatrixCoeffs(Slot->effect.Reverb.Diffusion, &x, &y); + // Then divide x into y to simplify the matrix calculation. + State->Late.MixCoeff = y / x; + + // If the HF limit parameter is flagged, calculate an appropriate limit + // based on the air absorption parameter. + hfRatio = Slot->effect.Reverb.DecayHFRatio; + if(Slot->effect.Reverb.DecayHFLimit && + Slot->effect.Reverb.AirAbsorptionGainHF < 1.0f) + hfRatio = CalcLimitedHfRatio(hfRatio, + Slot->effect.Reverb.AirAbsorptionGainHF, + Slot->effect.Reverb.DecayTime); + + // Update the late lines. + UpdateLateLines(Slot->effect.Reverb.Gain, Slot->effect.Reverb.LateReverbGain, + x, Slot->effect.Reverb.Density, Slot->effect.Reverb.DecayTime, + Slot->effect.Reverb.Diffusion, hfRatio, cw, frequency, State); + + if(State->IsEax) + { + // Update the echo line. + UpdateEchoLine(Slot->effect.Reverb.Gain, Slot->effect.Reverb.LateReverbGain, + Slot->effect.Reverb.EchoTime, Slot->effect.Reverb.DecayTime, + Slot->effect.Reverb.Diffusion, Slot->effect.Reverb.EchoDepth, + hfRatio, cw, frequency, State); + + // Update early and late 3D panning. + Update3DPanning(Device, Slot->effect.Reverb.ReflectionsPan, + Slot->effect.Reverb.LateReverbPan, Slot->Gain, State); + } + else + { + ALfloat gain = Slot->Gain; + ALuint index; + + /* Update channel gains */ + gain *= sqrtf(2.0f/Device->NumChan) * ReverbBoost; + for(index = 0;index < MaxChannels;index++) + State->Gain[index] = 0.0f; + for(index = 0;index < Device->NumChan;index++) + { + enum Channel chan = Device->Speaker2Chan[index]; + State->Gain[chan] = gain; + } + } +} + +// This destroys the reverb state. It should be called only when the effect +// slot has a different (or no) effect loaded over the reverb effect. +static ALvoid ALreverbState_Destruct(ALreverbState *State) +{ + free(State->SampleBuffer); + State->SampleBuffer = NULL; +} + +static ALeffectStateFactory *ALreverbState_getCreator(void) +{ + return STATIC_CAST(ALeffectStateFactory, &ReverbFactory); +} + +DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState); + + +static ALeffectState *ALreverbStateFactory_create(void) +{ + ALreverbState *state; + ALuint index; + + state = malloc(sizeof(ALreverbState)); + if(!state) return NULL; + SET_VTABLE2(ALreverbState, ALeffectState, state); + + state->TotalSamples = 0; + state->SampleBuffer = NULL; + + state->LpFilter.coeff = 0.0f; + state->LpFilter.history[0] = 0.0f; + state->LpFilter.history[1] = 0.0f; + + state->Mod.Delay.Mask = 0; + state->Mod.Delay.Line = NULL; + state->Mod.Index = 0; + state->Mod.Range = 1; + state->Mod.Depth = 0.0f; + state->Mod.Coeff = 0.0f; + state->Mod.Filter = 0.0f; + + state->Delay.Mask = 0; + state->Delay.Line = NULL; + state->DelayTap[0] = 0; + state->DelayTap[1] = 0; + + state->Early.Gain = 0.0f; + for(index = 0;index < 4;index++) + { + state->Early.Coeff[index] = 0.0f; + state->Early.Delay[index].Mask = 0; + state->Early.Delay[index].Line = NULL; + state->Early.Offset[index] = 0; + } + + state->Decorrelator.Mask = 0; + state->Decorrelator.Line = NULL; + state->DecoTap[0] = 0; + state->DecoTap[1] = 0; + state->DecoTap[2] = 0; + + state->Late.Gain = 0.0f; + state->Late.DensityGain = 0.0f; + state->Late.ApFeedCoeff = 0.0f; + state->Late.MixCoeff = 0.0f; + for(index = 0;index < 4;index++) + { + state->Late.ApCoeff[index] = 0.0f; + state->Late.ApDelay[index].Mask = 0; + state->Late.ApDelay[index].Line = NULL; + state->Late.ApOffset[index] = 0; + + state->Late.Coeff[index] = 0.0f; + state->Late.Delay[index].Mask = 0; + state->Late.Delay[index].Line = NULL; + state->Late.Offset[index] = 0; + + state->Late.LpCoeff[index] = 0.0f; + state->Late.LpSample[index] = 0.0f; + } + + for(index = 0;index < MaxChannels;index++) + { + state->Early.PanGain[index] = 0.0f; + state->Late.PanGain[index] = 0.0f; + } + + state->Echo.DensityGain = 0.0f; + state->Echo.Delay.Mask = 0; + state->Echo.Delay.Line = NULL; + state->Echo.ApDelay.Mask = 0; + state->Echo.ApDelay.Line = NULL; + state->Echo.Coeff = 0.0f; + state->Echo.ApFeedCoeff = 0.0f; + state->Echo.ApCoeff = 0.0f; + state->Echo.Offset = 0; + state->Echo.ApOffset = 0; + state->Echo.LpCoeff = 0.0f; + state->Echo.LpSample = 0.0f; + state->Echo.MixCoeff[0] = 0.0f; + state->Echo.MixCoeff[1] = 0.0f; + + state->Offset = 0; + + state->Gain = state->Late.PanGain; + + return STATIC_CAST(ALeffectState, state); +} + +static ALvoid ALreverbStateFactory_destroy(ALeffectState *effect) +{ + ALreverbState *state = STATIC_UPCAST(ALreverbState, ALeffectState, effect); + ALreverbState_Destruct(state); + free(state); +} + +DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory); + + +static void init_reverb_factory(void) +{ + SET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory, &ReverbFactory); +} + +ALeffectStateFactory *ALreverbStateFactory_getFactory(void) +{ + static pthread_once_t once = PTHREAD_ONCE_INIT; + pthread_once(&once, init_reverb_factory); + return STATIC_CAST(ALeffectStateFactory, &ReverbFactory); +} + + +void eaxreverb_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) +{ + switch(param) + { + case AL_EAXREVERB_DECAY_HFLIMIT: + if(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT) + effect->Reverb.DecayHFLimit = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void eaxreverb_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) +{ + eaxreverb_SetParami(effect, context, param, vals[0]); +} +void eaxreverb_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) +{ + switch(param) + { + case AL_EAXREVERB_DENSITY: + if(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY) + effect->Reverb.Density = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_DIFFUSION: + if(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION) + effect->Reverb.Diffusion = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_GAIN: + if(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN) + effect->Reverb.Gain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_GAINHF: + if(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF) + effect->Reverb.GainHF = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_GAINLF: + if(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF) + effect->Reverb.GainLF = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_DECAY_TIME: + if(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME) + effect->Reverb.DecayTime = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_DECAY_HFRATIO: + if(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO) + effect->Reverb.DecayHFRatio = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_DECAY_LFRATIO: + if(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO) + effect->Reverb.DecayLFRatio = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_REFLECTIONS_GAIN: + if(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN) + effect->Reverb.ReflectionsGain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_REFLECTIONS_DELAY: + if(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY) + effect->Reverb.ReflectionsDelay = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_LATE_REVERB_GAIN: + if(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN) + effect->Reverb.LateReverbGain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_LATE_REVERB_DELAY: + if(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY) + effect->Reverb.LateReverbDelay = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: + if(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF) + effect->Reverb.AirAbsorptionGainHF = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_ECHO_TIME: + if(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME) + effect->Reverb.EchoTime = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_ECHO_DEPTH: + if(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH) + effect->Reverb.EchoDepth = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_MODULATION_TIME: + if(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME) + effect->Reverb.ModulationTime = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_MODULATION_DEPTH: + if(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH) + effect->Reverb.ModulationDepth = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_HFREFERENCE: + if(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE) + effect->Reverb.HFReference = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_LFREFERENCE: + if(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE) + effect->Reverb.LFReference = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: + if(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR) + effect->Reverb.RoomRolloffFactor = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void eaxreverb_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) +{ + switch(param) + { + case AL_EAXREVERB_REFLECTIONS_PAN: + if(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])) + { + LockContext(context); + effect->Reverb.ReflectionsPan[0] = vals[0]; + effect->Reverb.ReflectionsPan[1] = vals[1]; + effect->Reverb.ReflectionsPan[2] = vals[2]; + UnlockContext(context); + } + else + alSetError(context, AL_INVALID_VALUE); + break; + case AL_EAXREVERB_LATE_REVERB_PAN: + if(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])) + { + LockContext(context); + effect->Reverb.LateReverbPan[0] = vals[0]; + effect->Reverb.LateReverbPan[1] = vals[1]; + effect->Reverb.LateReverbPan[2] = vals[2]; + UnlockContext(context); + } + else + alSetError(context, AL_INVALID_VALUE); + break; + + default: + eaxreverb_SetParamf(effect, context, param, vals[0]); + break; + } +} + +void eaxreverb_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) +{ + switch(param) + { + case AL_EAXREVERB_DECAY_HFLIMIT: + *val = effect->Reverb.DecayHFLimit; + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void eaxreverb_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) +{ + eaxreverb_GetParami(effect, context, param, vals); +} +void eaxreverb_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) +{ + switch(param) + { + case AL_EAXREVERB_DENSITY: + *val = effect->Reverb.Density; + break; + + case AL_EAXREVERB_DIFFUSION: + *val = effect->Reverb.Diffusion; + break; + + case AL_EAXREVERB_GAIN: + *val = effect->Reverb.Gain; + break; + + case AL_EAXREVERB_GAINHF: + *val = effect->Reverb.GainHF; + break; + + case AL_EAXREVERB_GAINLF: + *val = effect->Reverb.GainLF; + break; + + case AL_EAXREVERB_DECAY_TIME: + *val = effect->Reverb.DecayTime; + break; + + case AL_EAXREVERB_DECAY_HFRATIO: + *val = effect->Reverb.DecayHFRatio; + break; + + case AL_EAXREVERB_DECAY_LFRATIO: + *val = effect->Reverb.DecayLFRatio; + break; + + case AL_EAXREVERB_REFLECTIONS_GAIN: + *val = effect->Reverb.ReflectionsGain; + break; + + case AL_EAXREVERB_REFLECTIONS_DELAY: + *val = effect->Reverb.ReflectionsDelay; + break; + + case AL_EAXREVERB_LATE_REVERB_GAIN: + *val = effect->Reverb.LateReverbGain; + break; + + case AL_EAXREVERB_LATE_REVERB_DELAY: + *val = effect->Reverb.LateReverbDelay; + break; + + case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: + *val = effect->Reverb.AirAbsorptionGainHF; + break; + + case AL_EAXREVERB_ECHO_TIME: + *val = effect->Reverb.EchoTime; + break; + + case AL_EAXREVERB_ECHO_DEPTH: + *val = effect->Reverb.EchoDepth; + break; + + case AL_EAXREVERB_MODULATION_TIME: + *val = effect->Reverb.ModulationTime; + break; + + case AL_EAXREVERB_MODULATION_DEPTH: + *val = effect->Reverb.ModulationDepth; + break; + + case AL_EAXREVERB_HFREFERENCE: + *val = effect->Reverb.HFReference; + break; + + case AL_EAXREVERB_LFREFERENCE: + *val = effect->Reverb.LFReference; + break; + + case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: + *val = effect->Reverb.RoomRolloffFactor; + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void eaxreverb_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) +{ + switch(param) + { + case AL_EAXREVERB_REFLECTIONS_PAN: + LockContext(context); + vals[0] = effect->Reverb.ReflectionsPan[0]; + vals[1] = effect->Reverb.ReflectionsPan[1]; + vals[2] = effect->Reverb.ReflectionsPan[2]; + UnlockContext(context); + break; + case AL_EAXREVERB_LATE_REVERB_PAN: + LockContext(context); + vals[0] = effect->Reverb.LateReverbPan[0]; + vals[1] = effect->Reverb.LateReverbPan[1]; + vals[2] = effect->Reverb.LateReverbPan[2]; + UnlockContext(context); + break; + + default: + eaxreverb_GetParamf(effect, context, param, vals); + break; + } +} + + +void reverb_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) +{ + switch(param) + { + case AL_REVERB_DECAY_HFLIMIT: + if(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT) + effect->Reverb.DecayHFLimit = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void reverb_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) +{ + reverb_SetParami(effect, context, param, vals[0]); +} +void reverb_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) +{ + switch(param) + { + case AL_REVERB_DENSITY: + if(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY) + effect->Reverb.Density = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_DIFFUSION: + if(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION) + effect->Reverb.Diffusion = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_GAIN: + if(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN) + effect->Reverb.Gain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_GAINHF: + if(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF) + effect->Reverb.GainHF = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_DECAY_TIME: + if(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME) + effect->Reverb.DecayTime = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_DECAY_HFRATIO: + if(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO) + effect->Reverb.DecayHFRatio = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_REFLECTIONS_GAIN: + if(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN) + effect->Reverb.ReflectionsGain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_REFLECTIONS_DELAY: + if(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY) + effect->Reverb.ReflectionsDelay = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_LATE_REVERB_GAIN: + if(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN) + effect->Reverb.LateReverbGain = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_LATE_REVERB_DELAY: + if(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY) + effect->Reverb.LateReverbDelay = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_AIR_ABSORPTION_GAINHF: + if(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF) + effect->Reverb.AirAbsorptionGainHF = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + case AL_REVERB_ROOM_ROLLOFF_FACTOR: + if(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR) + effect->Reverb.RoomRolloffFactor = val; + else + alSetError(context, AL_INVALID_VALUE); + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void reverb_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) +{ + reverb_SetParamf(effect, context, param, vals[0]); +} + +void reverb_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) +{ + switch(param) + { + case AL_REVERB_DECAY_HFLIMIT: + *val = effect->Reverb.DecayHFLimit; + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void reverb_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) +{ + reverb_GetParami(effect, context, param, vals); +} +void reverb_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) +{ + switch(param) + { + case AL_REVERB_DENSITY: + *val = effect->Reverb.Density; + break; + + case AL_REVERB_DIFFUSION: + *val = effect->Reverb.Diffusion; + break; + + case AL_REVERB_GAIN: + *val = effect->Reverb.Gain; + break; + + case AL_REVERB_GAINHF: + *val = effect->Reverb.GainHF; + break; + + case AL_REVERB_DECAY_TIME: + *val = effect->Reverb.DecayTime; + break; + + case AL_REVERB_DECAY_HFRATIO: + *val = effect->Reverb.DecayHFRatio; + break; + + case AL_REVERB_REFLECTIONS_GAIN: + *val = effect->Reverb.ReflectionsGain; + break; + + case AL_REVERB_REFLECTIONS_DELAY: + *val = effect->Reverb.ReflectionsDelay; + break; + + case AL_REVERB_LATE_REVERB_GAIN: + *val = effect->Reverb.LateReverbGain; + break; + + case AL_REVERB_LATE_REVERB_DELAY: + *val = effect->Reverb.LateReverbDelay; + break; + + case AL_REVERB_AIR_ABSORPTION_GAINHF: + *val = effect->Reverb.AirAbsorptionGainHF; + break; + + case AL_REVERB_ROOM_ROLLOFF_FACTOR: + *val = effect->Reverb.RoomRolloffFactor; + break; + + default: + alSetError(context, AL_INVALID_ENUM); + break; + } +} +void reverb_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) +{ + reverb_GetParamf(effect, context, param, vals); +} |