summaryrefslogtreecommitdiffstats
path: root/Alc/effects/reverb.c
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/effects/reverb.c')
-rw-r--r--Alc/effects/reverb.c1841
1 files changed, 1841 insertions, 0 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c
new file mode 100644
index 00000000..a13a5693
--- /dev/null
+++ b/Alc/effects/reverb.c
@@ -0,0 +1,1841 @@
+/**
+ * Reverb for the OpenAL cross platform audio library
+ * Copyright (C) 2008-2009 by Christopher Fitzgerald.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include "alMain.h"
+#include "alu.h"
+#include "alAuxEffectSlot.h"
+#include "alEffect.h"
+#include "alFilter.h"
+#include "alError.h"
+
+
+typedef struct ALreverbStateFactory {
+ DERIVE_FROM_TYPE(ALeffectStateFactory);
+} ALreverbStateFactory;
+
+static ALreverbStateFactory ReverbFactory;
+
+
+typedef struct DelayLine
+{
+ // The delay lines use sample lengths that are powers of 2 to allow the
+ // use of bit-masking instead of a modulus for wrapping.
+ ALuint Mask;
+ ALfloat *Line;
+} DelayLine;
+
+typedef struct ALreverbState {
+ DERIVE_FROM_TYPE(ALeffectState);
+
+ ALboolean IsEax;
+
+ // All delay lines are allocated as a single buffer to reduce memory
+ // fragmentation and management code.
+ ALfloat *SampleBuffer;
+ ALuint TotalSamples;
+
+ // Master effect low-pass filter (2 chained 1-pole filters).
+ FILTER LpFilter;
+
+ struct {
+ // Modulator delay line.
+ DelayLine Delay;
+
+ // The vibrato time is tracked with an index over a modulus-wrapped
+ // range (in samples).
+ ALuint Index;
+ ALuint Range;
+
+ // The depth of frequency change (also in samples) and its filter.
+ ALfloat Depth;
+ ALfloat Coeff;
+ ALfloat Filter;
+ } Mod;
+
+ // Initial effect delay.
+ DelayLine Delay;
+ // The tap points for the initial delay. First tap goes to early
+ // reflections, the last to late reverb.
+ ALuint DelayTap[2];
+
+ struct {
+ // Output gain for early reflections.
+ ALfloat Gain;
+
+ // Early reflections are done with 4 delay lines.
+ ALfloat Coeff[4];
+ DelayLine Delay[4];
+ ALuint Offset[4];
+
+ // The gain for each output channel based on 3D panning (only for the
+ // EAX path).
+ ALfloat PanGain[MaxChannels];
+ } Early;
+
+ // Decorrelator delay line.
+ DelayLine Decorrelator;
+ // There are actually 4 decorrelator taps, but the first occurs at the
+ // initial sample.
+ ALuint DecoTap[3];
+
+ struct {
+ // Output gain for late reverb.
+ ALfloat Gain;
+
+ // Attenuation to compensate for the modal density and decay rate of
+ // the late lines.
+ ALfloat DensityGain;
+
+ // The feed-back and feed-forward all-pass coefficient.
+ ALfloat ApFeedCoeff;
+
+ // Mixing matrix coefficient.
+ ALfloat MixCoeff;
+
+ // Late reverb has 4 parallel all-pass filters.
+ ALfloat ApCoeff[4];
+ DelayLine ApDelay[4];
+ ALuint ApOffset[4];
+
+ // In addition to 4 cyclical delay lines.
+ ALfloat Coeff[4];
+ DelayLine Delay[4];
+ ALuint Offset[4];
+
+ // The cyclical delay lines are 1-pole low-pass filtered.
+ ALfloat LpCoeff[4];
+ ALfloat LpSample[4];
+
+ // The gain for each output channel based on 3D panning (only for the
+ // EAX path).
+ ALfloat PanGain[MaxChannels];
+ } Late;
+
+ struct {
+ // Attenuation to compensate for the modal density and decay rate of
+ // the echo line.
+ ALfloat DensityGain;
+
+ // Echo delay and all-pass lines.
+ DelayLine Delay;
+ DelayLine ApDelay;
+
+ ALfloat Coeff;
+ ALfloat ApFeedCoeff;
+ ALfloat ApCoeff;
+
+ ALuint Offset;
+ ALuint ApOffset;
+
+ // The echo line is 1-pole low-pass filtered.
+ ALfloat LpCoeff;
+ ALfloat LpSample;
+
+ // Echo mixing coefficients.
+ ALfloat MixCoeff[2];
+ } Echo;
+
+ // The current read offset for all delay lines.
+ ALuint Offset;
+
+ // The gain for each output channel (non-EAX path only; aliased from
+ // Late.PanGain)
+ ALfloat *Gain;
+
+ /* Temporary storage used when processing, before deinterlacing. */
+ ALfloat ReverbSamples[BUFFERSIZE][4];
+ ALfloat EarlySamples[BUFFERSIZE][4];
+} ALreverbState;
+
+/* This is a user config option for modifying the overall output of the reverb
+ * effect.
+ */
+ALfloat ReverbBoost = 1.0f;
+
+/* Specifies whether to use a standard reverb effect in place of EAX reverb */
+ALboolean EmulateEAXReverb = AL_FALSE;
+
+/* This coefficient is used to define the maximum frequency range controlled
+ * by the modulation depth. The current value of 0.1 will allow it to swing
+ * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
+ * sampler to stall on the downswing, and above 1 it will cause it to sample
+ * backwards.
+ */
+static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
+
+/* A filter is used to avoid the terrible distortion caused by changing
+ * modulation time and/or depth. To be consistent across different sample
+ * rates, the coefficient must be raised to a constant divided by the sample
+ * rate: coeff^(constant / rate).
+ */
+static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
+static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
+
+// When diffusion is above 0, an all-pass filter is used to take the edge off
+// the echo effect. It uses the following line length (in seconds).
+static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
+
+// Input into the late reverb is decorrelated between four channels. Their
+// timings are dependent on a fraction and multiplier. See the
+// UpdateDecorrelator() routine for the calculations involved.
+static const ALfloat DECO_FRACTION = 0.15f;
+static const ALfloat DECO_MULTIPLIER = 2.0f;
+
+// All delay line lengths are specified in seconds.
+
+// The lengths of the early delay lines.
+static const ALfloat EARLY_LINE_LENGTH[4] =
+{
+ 0.0015f, 0.0045f, 0.0135f, 0.0405f
+};
+
+// The lengths of the late all-pass delay lines.
+static const ALfloat ALLPASS_LINE_LENGTH[4] =
+{
+ 0.0151f, 0.0167f, 0.0183f, 0.0200f,
+};
+
+// The lengths of the late cyclical delay lines.
+static const ALfloat LATE_LINE_LENGTH[4] =
+{
+ 0.0211f, 0.0311f, 0.0461f, 0.0680f
+};
+
+// The late cyclical delay lines have a variable length dependent on the
+// effect's density parameter (inverted for some reason) and this multiplier.
+static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
+
+
+// Basic delay line input/output routines.
+static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
+{
+ return Delay->Line[offset&Delay->Mask];
+}
+
+static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
+{
+ Delay->Line[offset&Delay->Mask] = in;
+}
+
+// Attenuated delay line output routine.
+static __inline ALfloat AttenuatedDelayLineOut(DelayLine *Delay, ALuint offset, ALfloat coeff)
+{
+ return coeff * Delay->Line[offset&Delay->Mask];
+}
+
+// Basic attenuated all-pass input/output routine.
+static __inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
+{
+ ALfloat out, feed;
+
+ out = DelayLineOut(Delay, outOffset);
+ feed = feedCoeff * in;
+ DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
+
+ // The time-based attenuation is only applied to the delay output to
+ // keep it from affecting the feed-back path (which is already controlled
+ // by the all-pass feed coefficient).
+ return (coeff * out) - feed;
+}
+
+// Given an input sample, this function produces modulation for the late
+// reverb.
+static __inline ALfloat EAXModulation(ALreverbState *State, ALfloat in)
+{
+ ALfloat sinus, frac;
+ ALuint offset;
+ ALfloat out0, out1;
+
+ // Calculate the sinus rythm (dependent on modulation time and the
+ // sampling rate). The center of the sinus is moved to reduce the delay
+ // of the effect when the time or depth are low.
+ sinus = 1.0f - cosf(F_PI*2.0f * State->Mod.Index / State->Mod.Range);
+
+ // The depth determines the range over which to read the input samples
+ // from, so it must be filtered to reduce the distortion caused by even
+ // small parameter changes.
+ State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth,
+ State->Mod.Coeff);
+
+ // Calculate the read offset and fraction between it and the next sample.
+ frac = (1.0f + (State->Mod.Filter * sinus));
+ offset = fastf2u(frac);
+ frac -= offset;
+
+ // Get the two samples crossed by the offset, and feed the delay line
+ // with the next input sample.
+ out0 = DelayLineOut(&State->Mod.Delay, State->Offset - offset);
+ out1 = DelayLineOut(&State->Mod.Delay, State->Offset - offset - 1);
+ DelayLineIn(&State->Mod.Delay, State->Offset, in);
+
+ // Step the modulation index forward, keeping it bound to its range.
+ State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
+
+ // The output is obtained by linearly interpolating the two samples that
+ // were acquired above.
+ return lerp(out0, out1, frac);
+}
+
+// Delay line output routine for early reflections.
+static __inline ALfloat EarlyDelayLineOut(ALreverbState *State, ALuint index)
+{
+ return AttenuatedDelayLineOut(&State->Early.Delay[index],
+ State->Offset - State->Early.Offset[index],
+ State->Early.Coeff[index]);
+}
+
+// Given an input sample, this function produces four-channel output for the
+// early reflections.
+static __inline ALvoid EarlyReflection(ALreverbState *State, ALfloat in, ALfloat *restrict out)
+{
+ ALfloat d[4], v, f[4];
+
+ // Obtain the decayed results of each early delay line.
+ d[0] = EarlyDelayLineOut(State, 0);
+ d[1] = EarlyDelayLineOut(State, 1);
+ d[2] = EarlyDelayLineOut(State, 2);
+ d[3] = EarlyDelayLineOut(State, 3);
+
+ /* The following uses a lossless scattering junction from waveguide
+ * theory. It actually amounts to a householder mixing matrix, which
+ * will produce a maximally diffuse response, and means this can probably
+ * be considered a simple feed-back delay network (FDN).
+ * N
+ * ---
+ * \
+ * v = 2/N / d_i
+ * ---
+ * i=1
+ */
+ v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
+ // The junction is loaded with the input here.
+ v += in;
+
+ // Calculate the feed values for the delay lines.
+ f[0] = v - d[0];
+ f[1] = v - d[1];
+ f[2] = v - d[2];
+ f[3] = v - d[3];
+
+ // Re-feed the delay lines.
+ DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
+ DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
+ DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
+ DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
+
+ // Output the results of the junction for all four channels.
+ out[0] = State->Early.Gain * f[0];
+ out[1] = State->Early.Gain * f[1];
+ out[2] = State->Early.Gain * f[2];
+ out[3] = State->Early.Gain * f[3];
+}
+
+// All-pass input/output routine for late reverb.
+static __inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint index, ALfloat in)
+{
+ return AllpassInOut(&State->Late.ApDelay[index],
+ State->Offset - State->Late.ApOffset[index],
+ State->Offset, in, State->Late.ApFeedCoeff,
+ State->Late.ApCoeff[index]);
+}
+
+// Delay line output routine for late reverb.
+static __inline ALfloat LateDelayLineOut(ALreverbState *State, ALuint index)
+{
+ return AttenuatedDelayLineOut(&State->Late.Delay[index],
+ State->Offset - State->Late.Offset[index],
+ State->Late.Coeff[index]);
+}
+
+// Low-pass filter input/output routine for late reverb.
+static __inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
+{
+ in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]);
+ State->Late.LpSample[index] = in;
+ return in;
+}
+
+// Given four decorrelated input samples, this function produces four-channel
+// output for the late reverb.
+static __inline ALvoid LateReverb(ALreverbState *State, const ALfloat *restrict in, ALfloat *restrict out)
+{
+ ALfloat d[4], f[4];
+
+ // Obtain the decayed results of the cyclical delay lines, and add the
+ // corresponding input channels. Then pass the results through the
+ // low-pass filters.
+
+ // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
+ // to 0.
+ d[0] = LateLowPassInOut(State, 2, in[2] + LateDelayLineOut(State, 2));
+ d[1] = LateLowPassInOut(State, 0, in[0] + LateDelayLineOut(State, 0));
+ d[2] = LateLowPassInOut(State, 3, in[3] + LateDelayLineOut(State, 3));
+ d[3] = LateLowPassInOut(State, 1, in[1] + LateDelayLineOut(State, 1));
+
+ // To help increase diffusion, run each line through an all-pass filter.
+ // When there is no diffusion, the shortest all-pass filter will feed the
+ // shortest delay line.
+ d[0] = LateAllPassInOut(State, 0, d[0]);
+ d[1] = LateAllPassInOut(State, 1, d[1]);
+ d[2] = LateAllPassInOut(State, 2, d[2]);
+ d[3] = LateAllPassInOut(State, 3, d[3]);
+
+ /* Late reverb is done with a modified feed-back delay network (FDN)
+ * topology. Four input lines are each fed through their own all-pass
+ * filter and then into the mixing matrix. The four outputs of the
+ * mixing matrix are then cycled back to the inputs. Each output feeds
+ * a different input to form a circlular feed cycle.
+ *
+ * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
+ * using a single unitary rotational parameter:
+ *
+ * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
+ * [ -a, d, c, -b ]
+ * [ -b, -c, d, a ]
+ * [ -c, b, -a, d ]
+ *
+ * The rotation is constructed from the effect's diffusion parameter,
+ * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
+ * with differing signs, and d is the coefficient x. The matrix is thus:
+ *
+ * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
+ * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
+ * [ y, -y, x, y ] x = cos(t)
+ * [ -y, -y, -y, x ] y = sin(t) / n
+ *
+ * To reduce the number of multiplies, the x coefficient is applied with
+ * the cyclical delay line coefficients. Thus only the y coefficient is
+ * applied when mixing, and is modified to be: y / x.
+ */
+ f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
+ f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
+ f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
+ f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
+
+ // Output the results of the matrix for all four channels, attenuated by
+ // the late reverb gain (which is attenuated by the 'x' mix coefficient).
+ out[0] = State->Late.Gain * f[0];
+ out[1] = State->Late.Gain * f[1];
+ out[2] = State->Late.Gain * f[2];
+ out[3] = State->Late.Gain * f[3];
+
+ // Re-feed the cyclical delay lines.
+ DelayLineIn(&State->Late.Delay[0], State->Offset, f[0]);
+ DelayLineIn(&State->Late.Delay[1], State->Offset, f[1]);
+ DelayLineIn(&State->Late.Delay[2], State->Offset, f[2]);
+ DelayLineIn(&State->Late.Delay[3], State->Offset, f[3]);
+}
+
+// Given an input sample, this function mixes echo into the four-channel late
+// reverb.
+static __inline ALvoid EAXEcho(ALreverbState *State, ALfloat in, ALfloat *restrict late)
+{
+ ALfloat out, feed;
+
+ // Get the latest attenuated echo sample for output.
+ feed = AttenuatedDelayLineOut(&State->Echo.Delay,
+ State->Offset - State->Echo.Offset,
+ State->Echo.Coeff);
+
+ // Mix the output into the late reverb channels.
+ out = State->Echo.MixCoeff[0] * feed;
+ late[0] = (State->Echo.MixCoeff[1] * late[0]) + out;
+ late[1] = (State->Echo.MixCoeff[1] * late[1]) + out;
+ late[2] = (State->Echo.MixCoeff[1] * late[2]) + out;
+ late[3] = (State->Echo.MixCoeff[1] * late[3]) + out;
+
+ // Mix the energy-attenuated input with the output and pass it through
+ // the echo low-pass filter.
+ feed += State->Echo.DensityGain * in;
+ feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
+ State->Echo.LpSample = feed;
+
+ // Then the echo all-pass filter.
+ feed = AllpassInOut(&State->Echo.ApDelay,
+ State->Offset - State->Echo.ApOffset,
+ State->Offset, feed, State->Echo.ApFeedCoeff,
+ State->Echo.ApCoeff);
+
+ // Feed the delay with the mixed and filtered sample.
+ DelayLineIn(&State->Echo.Delay, State->Offset, feed);
+}
+
+// Perform the non-EAX reverb pass on a given input sample, resulting in
+// four-channel output.
+static __inline ALvoid VerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict out)
+{
+ ALfloat feed, late[4], taps[4];
+
+ // Low-pass filter the incoming sample.
+ in = lpFilter2P(&State->LpFilter, in);
+
+ // Feed the initial delay line.
+ DelayLineIn(&State->Delay, State->Offset, in);
+
+ // Calculate the early reflection from the first delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
+ EarlyReflection(State, in, out);
+
+ // Feed the decorrelator from the energy-attenuated output of the second
+ // delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
+ feed = in * State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, State->Offset, feed);
+
+ // Calculate the late reverb from the decorrelator taps.
+ taps[0] = feed;
+ taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
+ taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
+ taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
+ LateReverb(State, taps, late);
+
+ // Mix early reflections and late reverb.
+ out[0] += late[0];
+ out[1] += late[1];
+ out[2] += late[2];
+ out[3] += late[3];
+
+ // Step all delays forward one sample.
+ State->Offset++;
+}
+
+// Perform the EAX reverb pass on a given input sample, resulting in four-
+// channel output.
+static __inline ALvoid EAXVerbPass(ALreverbState *State, ALfloat in, ALfloat *restrict early, ALfloat *restrict late)
+{
+ ALfloat feed, taps[4];
+
+ // Low-pass filter the incoming sample.
+ in = lpFilter2P(&State->LpFilter, in);
+
+ // Perform any modulation on the input.
+ in = EAXModulation(State, in);
+
+ // Feed the initial delay line.
+ DelayLineIn(&State->Delay, State->Offset, in);
+
+ // Calculate the early reflection from the first delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[0]);
+ EarlyReflection(State, in, early);
+
+ // Feed the decorrelator from the energy-attenuated output of the second
+ // delay tap.
+ in = DelayLineOut(&State->Delay, State->Offset - State->DelayTap[1]);
+ feed = in * State->Late.DensityGain;
+ DelayLineIn(&State->Decorrelator, State->Offset, feed);
+
+ // Calculate the late reverb from the decorrelator taps.
+ taps[0] = feed;
+ taps[1] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[0]);
+ taps[2] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[1]);
+ taps[3] = DelayLineOut(&State->Decorrelator, State->Offset - State->DecoTap[2]);
+ LateReverb(State, taps, late);
+
+ // Calculate and mix in any echo.
+ EAXEcho(State, in, late);
+
+ // Step all delays forward one sample.
+ State->Offset++;
+}
+
+// This processes the standard reverb state, given the input samples and an
+// output buffer.
+static ALvoid ALreverbState_ProcessStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE])
+{
+ ALfloat (*restrict out)[4] = State->ReverbSamples;
+ ALuint index, c;
+
+ /* Process reverb for these samples. */
+ for(index = 0;index < SamplesToDo;index++)
+ VerbPass(State, SamplesIn[index], out[index]);
+
+ for(c = 0;c < MaxChannels;c++)
+ {
+ ALfloat gain = State->Gain[c];
+ if(gain > 0.00001f)
+ {
+ for(index = 0;index < SamplesToDo;index++)
+ SamplesOut[c][index] += gain * out[index][c&3];
+ }
+ }
+}
+
+// This processes the EAX reverb state, given the input samples and an output
+// buffer.
+static ALvoid ALreverbState_ProcessEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE])
+{
+ ALfloat (*restrict early)[4] = State->EarlySamples;
+ ALfloat (*restrict late)[4] = State->ReverbSamples;
+ ALuint index, c;
+
+ /* Process reverb for these samples. */
+ for(index = 0;index < SamplesToDo;index++)
+ EAXVerbPass(State, SamplesIn[index], early[index], late[index]);
+
+ for(c = 0;c < MaxChannels;c++)
+ {
+ ALfloat earlyGain = State->Early.PanGain[c];
+ ALfloat lateGain = State->Late.PanGain[c];
+
+ if(earlyGain > 0.00001f)
+ {
+ for(index = 0;index < SamplesToDo;index++)
+ SamplesOut[c][index] += earlyGain*early[index][c&3];
+ }
+ if(lateGain > 0.00001f)
+ {
+ for(index = 0;index < SamplesToDo;index++)
+ SamplesOut[c][index] += lateGain*late[index][c&3];
+ }
+ }
+}
+
+static ALvoid ALreverbState_Process(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE])
+{
+ if(State->IsEax)
+ ALreverbState_ProcessEax(State, SamplesToDo, SamplesIn, SamplesOut);
+ else
+ ALreverbState_ProcessStandard(State, SamplesToDo, SamplesIn, SamplesOut);
+}
+
+// Given the allocated sample buffer, this function updates each delay line
+// offset.
+static __inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
+{
+ Delay->Line = &sampleBuffer[(ALintptrEXT)Delay->Line];
+}
+
+// Calculate the length of a delay line and store its mask and offset.
+static ALuint CalcLineLength(ALfloat length, ALintptrEXT offset, ALuint frequency, DelayLine *Delay)
+{
+ ALuint samples;
+
+ // All line lengths are powers of 2, calculated from their lengths, with
+ // an additional sample in case of rounding errors.
+ samples = NextPowerOf2(fastf2u(length * frequency) + 1);
+ // All lines share a single sample buffer.
+ Delay->Mask = samples - 1;
+ Delay->Line = (ALfloat*)offset;
+ // Return the sample count for accumulation.
+ return samples;
+}
+
+/* Calculates the delay line metrics and allocates the shared sample buffer
+ * for all lines given the sample rate (frequency). If an allocation failure
+ * occurs, it returns AL_FALSE.
+ */
+static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
+{
+ ALuint totalSamples, index;
+ ALfloat length;
+ ALfloat *newBuffer = NULL;
+
+ // All delay line lengths are calculated to accomodate the full range of
+ // lengths given their respective paramters.
+ totalSamples = 0;
+
+ /* The modulator's line length is calculated from the maximum modulation
+ * time and depth coefficient, and halfed for the low-to-high frequency
+ * swing. An additional sample is added to keep it stable when there is no
+ * modulation.
+ */
+ length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f) +
+ (1.0f / frequency);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Mod.Delay);
+
+ // The initial delay is the sum of the reflections and late reverb
+ // delays.
+ length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
+ AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Delay);
+
+ // The early reflection lines.
+ for(index = 0;index < 4;index++)
+ totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
+ frequency, &State->Early.Delay[index]);
+
+ // The decorrelator line is calculated from the lowest reverb density (a
+ // parameter value of 1).
+ length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
+ LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Decorrelator);
+
+ // The late all-pass lines.
+ for(index = 0;index < 4;index++)
+ totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
+ frequency, &State->Late.ApDelay[index]);
+
+ // The late delay lines are calculated from the lowest reverb density.
+ for(index = 0;index < 4;index++)
+ {
+ length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
+ totalSamples += CalcLineLength(length, totalSamples, frequency,
+ &State->Late.Delay[index]);
+ }
+
+ // The echo all-pass and delay lines.
+ totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
+ frequency, &State->Echo.ApDelay);
+ totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
+ frequency, &State->Echo.Delay);
+
+ if(totalSamples != State->TotalSamples)
+ {
+ TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples, totalSamples/(float)frequency);
+ newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
+ if(newBuffer == NULL)
+ return AL_FALSE;
+ State->SampleBuffer = newBuffer;
+ State->TotalSamples = totalSamples;
+ }
+
+ // Update all delays to reflect the new sample buffer.
+ RealizeLineOffset(State->SampleBuffer, &State->Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
+ for(index = 0;index < 4;index++)
+ {
+ RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
+ RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
+ }
+ RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
+ RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
+ RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
+
+ // Clear the sample buffer.
+ for(index = 0;index < State->TotalSamples;index++)
+ State->SampleBuffer[index] = 0.0f;
+
+ return AL_TRUE;
+}
+
+// This updates the device-dependant EAX reverb state. This is called on
+// initialization and any time the device parameters (eg. playback frequency,
+// format) have been changed.
+static ALboolean ALreverbState_DeviceUpdate(ALreverbState *State, ALCdevice *Device)
+{
+ ALuint frequency = Device->Frequency, index;
+
+ // Allocate the delay lines.
+ if(!AllocLines(frequency, State))
+ return AL_FALSE;
+
+ // Calculate the modulation filter coefficient. Notice that the exponent
+ // is calculated given the current sample rate. This ensures that the
+ // resulting filter response over time is consistent across all sample
+ // rates.
+ State->Mod.Coeff = powf(MODULATION_FILTER_COEFF,
+ MODULATION_FILTER_CONST / frequency);
+
+ // The early reflection and late all-pass filter line lengths are static,
+ // so their offsets only need to be calculated once.
+ for(index = 0;index < 4;index++)
+ {
+ State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] *
+ frequency);
+ State->Late.ApOffset[index] = fastf2u(ALLPASS_LINE_LENGTH[index] *
+ frequency);
+ }
+
+ // The echo all-pass filter line length is static, so its offset only
+ // needs to be calculated once.
+ State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency);
+
+ return AL_TRUE;
+}
+
+// Calculate a decay coefficient given the length of each cycle and the time
+// until the decay reaches -60 dB.
+static __inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
+{
+ return powf(0.001f/*-60 dB*/, length/decayTime);
+}
+
+// Calculate a decay length from a coefficient and the time until the decay
+// reaches -60 dB.
+static __inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
+{
+ return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/;
+}
+
+// Calculate the high frequency parameter for the I3DL2 coefficient
+// calculation.
+static __inline ALfloat CalcI3DL2HFreq(ALfloat hfRef, ALuint frequency)
+{
+ return cosf(F_PI*2.0f * hfRef / frequency);
+}
+
+// Calculate an attenuation to be applied to the input of any echo models to
+// compensate for modal density and decay time.
+static __inline ALfloat CalcDensityGain(ALfloat a)
+{
+ /* The energy of a signal can be obtained by finding the area under the
+ * squared signal. This takes the form of Sum(x_n^2), where x is the
+ * amplitude for the sample n.
+ *
+ * Decaying feedback matches exponential decay of the form Sum(a^n),
+ * where a is the attenuation coefficient, and n is the sample. The area
+ * under this decay curve can be calculated as: 1 / (1 - a).
+ *
+ * Modifying the above equation to find the squared area under the curve
+ * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
+ * calculated by inverting the square root of this approximation,
+ * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
+ */
+ return sqrtf(1.0f - (a * a));
+}
+
+// Calculate the mixing matrix coefficients given a diffusion factor.
+static __inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
+{
+ ALfloat n, t;
+
+ // The matrix is of order 4, so n is sqrt (4 - 1).
+ n = sqrtf(3.0f);
+ t = diffusion * atanf(n);
+
+ // Calculate the first mixing matrix coefficient.
+ *x = cosf(t);
+ // Calculate the second mixing matrix coefficient.
+ *y = sinf(t) / n;
+}
+
+// Calculate the limited HF ratio for use with the late reverb low-pass
+// filters.
+static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
+{
+ ALfloat limitRatio;
+
+ /* Find the attenuation due to air absorption in dB (converting delay
+ * time to meters using the speed of sound). Then reversing the decay
+ * equation, solve for HF ratio. The delay length is cancelled out of
+ * the equation, so it can be calculated once for all lines.
+ */
+ limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
+ SPEEDOFSOUNDMETRESPERSEC);
+ /* Using the limit calculated above, apply the upper bound to the HF
+ * ratio. Also need to limit the result to a minimum of 0.1, just like the
+ * HF ratio parameter. */
+ return clampf(limitRatio, 0.1f, hfRatio);
+}
+
+// Calculate the coefficient for a HF (and eventually LF) decay damping
+// filter.
+static __inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
+{
+ ALfloat coeff, g;
+
+ // Eventually this should boost the high frequencies when the ratio
+ // exceeds 1.
+ coeff = 0.0f;
+ if (hfRatio < 1.0f)
+ {
+ // Calculate the low-pass coefficient by dividing the HF decay
+ // coefficient by the full decay coefficient.
+ g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
+
+ // Damping is done with a 1-pole filter, so g needs to be squared.
+ g *= g;
+ coeff = lpCoeffCalc(g, cw);
+
+ // Very low decay times will produce minimal output, so apply an
+ // upper bound to the coefficient.
+ coeff = minf(coeff, 0.98f);
+ }
+ return coeff;
+}
+
+// Update the EAX modulation index, range, and depth. Keep in mind that this
+// kind of vibrato is additive and not multiplicative as one may expect. The
+// downswing will sound stronger than the upswing.
+static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State)
+{
+ ALuint range;
+
+ /* Modulation is calculated in two parts.
+ *
+ * The modulation time effects the sinus applied to the change in
+ * frequency. An index out of the current time range (both in samples)
+ * is incremented each sample. The range is bound to a reasonable
+ * minimum (1 sample) and when the timing changes, the index is rescaled
+ * to the new range (to keep the sinus consistent).
+ */
+ range = maxu(fastf2u(modTime*frequency), 1);
+ State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range /
+ State->Mod.Range);
+ State->Mod.Range = range;
+
+ /* The modulation depth effects the amount of frequency change over the
+ * range of the sinus. It needs to be scaled by the modulation time so
+ * that a given depth produces a consistent change in frequency over all
+ * ranges of time. Since the depth is applied to a sinus value, it needs
+ * to be halfed once for the sinus range and again for the sinus swing
+ * in time (half of it is spent decreasing the frequency, half is spent
+ * increasing it).
+ */
+ State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
+ 2.0f * frequency;
+}
+
+// Update the offsets for the initial effect delay line.
+static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALreverbState *State)
+{
+ // Calculate the initial delay taps.
+ State->DelayTap[0] = fastf2u(earlyDelay * frequency);
+ State->DelayTap[1] = fastf2u((earlyDelay + lateDelay) * frequency);
+}
+
+// Update the early reflections gain and line coefficients.
+static ALvoid UpdateEarlyLines(ALfloat reverbGain, ALfloat earlyGain, ALfloat lateDelay, ALreverbState *State)
+{
+ ALuint index;
+
+ // Calculate the early reflections gain (from the master effect gain, and
+ // reflections gain parameters) with a constant attenuation of 0.5.
+ State->Early.Gain = 0.5f * reverbGain * earlyGain;
+
+ // Calculate the gain (coefficient) for each early delay line using the
+ // late delay time. This expands the early reflections to the start of
+ // the late reverb.
+ for(index = 0;index < 4;index++)
+ State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
+ lateDelay);
+}
+
+// Update the offsets for the decorrelator line.
+static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALreverbState *State)
+{
+ ALuint index;
+ ALfloat length;
+
+ /* The late reverb inputs are decorrelated to smooth the reverb tail and
+ * reduce harsh echos. The first tap occurs immediately, while the
+ * remaining taps are delayed by multiples of a fraction of the smallest
+ * cyclical delay time.
+ *
+ * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
+ */
+ for(index = 0;index < 3;index++)
+ {
+ length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)index)) *
+ LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
+ State->DecoTap[index] = fastf2u(length * frequency);
+ }
+}
+
+// Update the late reverb gains, line lengths, and line coefficients.
+static ALvoid UpdateLateLines(ALfloat reverbGain, ALfloat lateGain, ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
+{
+ ALfloat length;
+ ALuint index;
+
+ /* Calculate the late reverb gain (from the master effect gain, and late
+ * reverb gain parameters). Since the output is tapped prior to the
+ * application of the next delay line coefficients, this gain needs to be
+ * attenuated by the 'x' mixing matrix coefficient as well.
+ */
+ State->Late.Gain = reverbGain * lateGain * xMix;
+
+ /* To compensate for changes in modal density and decay time of the late
+ * reverb signal, the input is attenuated based on the maximal energy of
+ * the outgoing signal. This approximation is used to keep the apparent
+ * energy of the signal equal for all ranges of density and decay time.
+ *
+ * The average length of the cyclcical delay lines is used to calculate
+ * the attenuation coefficient.
+ */
+ length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
+ LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
+ length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
+ State->Late.DensityGain = CalcDensityGain(CalcDecayCoeff(length,
+ decayTime));
+
+ // Calculate the all-pass feed-back and feed-forward coefficient.
+ State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
+
+ for(index = 0;index < 4;index++)
+ {
+ // Calculate the gain (coefficient) for each all-pass line.
+ State->Late.ApCoeff[index] = CalcDecayCoeff(ALLPASS_LINE_LENGTH[index],
+ decayTime);
+
+ // Calculate the length (in seconds) of each cyclical delay line.
+ length = LATE_LINE_LENGTH[index] * (1.0f + (density *
+ LATE_LINE_MULTIPLIER));
+
+ // Calculate the delay offset for each cyclical delay line.
+ State->Late.Offset[index] = fastf2u(length * frequency);
+
+ // Calculate the gain (coefficient) for each cyclical line.
+ State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
+
+ // Calculate the damping coefficient for each low-pass filter.
+ State->Late.LpCoeff[index] =
+ CalcDampingCoeff(hfRatio, length, decayTime,
+ State->Late.Coeff[index], cw);
+
+ // Attenuate the cyclical line coefficients by the mixing coefficient
+ // (x).
+ State->Late.Coeff[index] *= xMix;
+ }
+}
+
+// Update the echo gain, line offset, line coefficients, and mixing
+// coefficients.
+static ALvoid UpdateEchoLine(ALfloat reverbGain, ALfloat lateGain, ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
+{
+ // Update the offset and coefficient for the echo delay line.
+ State->Echo.Offset = fastf2u(echoTime * frequency);
+
+ // Calculate the decay coefficient for the echo line.
+ State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
+
+ // Calculate the energy-based attenuation coefficient for the echo delay
+ // line.
+ State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
+
+ // Calculate the echo all-pass feed coefficient.
+ State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
+
+ // Calculate the echo all-pass attenuation coefficient.
+ State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
+
+ // Calculate the damping coefficient for each low-pass filter.
+ State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
+ State->Echo.Coeff, cw);
+
+ /* Calculate the echo mixing coefficients. The first is applied to the
+ * echo itself. The second is used to attenuate the late reverb when
+ * echo depth is high and diffusion is low, so the echo is slightly
+ * stronger than the decorrelated echos in the reverb tail.
+ */
+ State->Echo.MixCoeff[0] = reverbGain * lateGain * echoDepth;
+ State->Echo.MixCoeff[1] = 1.0f - (echoDepth * 0.5f * (1.0f - diffusion));
+}
+
+// Update the early and late 3D panning gains.
+static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALreverbState *State)
+{
+ ALfloat earlyPan[3] = { ReflectionsPan[0], ReflectionsPan[1],
+ ReflectionsPan[2] };
+ ALfloat latePan[3] = { LateReverbPan[0], LateReverbPan[1],
+ LateReverbPan[2] };
+ ALfloat ambientGain;
+ ALfloat dirGain;
+ ALfloat length;
+ ALuint index;
+
+ Gain *= ReverbBoost;
+
+ /* Attenuate reverb according to its coverage (dirGain=0 will give
+ * Gain*ambientGain, and dirGain=1 will give Gain). */
+ ambientGain = minf(sqrtf(2.0f/Device->NumChan), 1.0f);
+
+ length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
+ if(length > 1.0f)
+ {
+ length = 1.0f / sqrtf(length);
+ earlyPan[0] *= length;
+ earlyPan[1] *= length;
+ earlyPan[2] *= length;
+ }
+ length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
+ if(length > 1.0f)
+ {
+ length = 1.0f / sqrtf(length);
+ latePan[0] *= length;
+ latePan[1] *= length;
+ latePan[2] *= length;
+ }
+
+ dirGain = sqrtf(earlyPan[0]*earlyPan[0] + earlyPan[2]*earlyPan[2]);
+ for(index = 0;index < MaxChannels;index++)
+ State->Early.PanGain[index] = 0.0f;
+ ComputeAngleGains(Device, atan2f(earlyPan[0], earlyPan[2]), (1.0f-dirGain)*F_PI,
+ lerp(ambientGain, 1.0f, dirGain) * Gain, State->Early.PanGain);
+
+ dirGain = sqrtf(latePan[0]*latePan[0] + latePan[2]*latePan[2]);
+ for(index = 0;index < MaxChannels;index++)
+ State->Late.PanGain[index] = 0.0f;
+ ComputeAngleGains(Device, atan2f(latePan[0], latePan[2]), (1.0f-dirGain)*F_PI,
+ lerp(ambientGain, 1.0f, dirGain) * Gain, State->Late.PanGain);
+}
+
+// This updates the EAX reverb state. This is called any time the EAX reverb
+// effect is loaded into a slot.
+static ALvoid ALreverbState_Update(ALreverbState *State, ALCdevice *Device, const ALeffectslot *Slot)
+{
+ ALuint frequency = Device->Frequency;
+ ALfloat cw, x, y, hfRatio;
+
+ if(Slot->effect.type == AL_EFFECT_EAXREVERB && !EmulateEAXReverb)
+ State->IsEax = AL_TRUE;
+ else if(Slot->effect.type == AL_EFFECT_REVERB || EmulateEAXReverb)
+ State->IsEax = AL_FALSE;
+
+ // Calculate the master low-pass filter (from the master effect HF gain).
+ if(State->IsEax)
+ cw = CalcI3DL2HFreq(Slot->effect.Reverb.HFReference, frequency);
+ else
+ cw = CalcI3DL2HFreq(LOWPASSFREQREF, frequency);
+ // This is done with 2 chained 1-pole filters, so no need to square g.
+ State->LpFilter.coeff = lpCoeffCalc(Slot->effect.Reverb.GainHF, cw);
+
+ if(State->IsEax)
+ {
+ // Update the modulator line.
+ UpdateModulator(Slot->effect.Reverb.ModulationTime,
+ Slot->effect.Reverb.ModulationDepth,
+ frequency, State);
+ }
+
+ // Update the initial effect delay.
+ UpdateDelayLine(Slot->effect.Reverb.ReflectionsDelay,
+ Slot->effect.Reverb.LateReverbDelay,
+ frequency, State);
+
+ // Update the early lines.
+ UpdateEarlyLines(Slot->effect.Reverb.Gain,
+ Slot->effect.Reverb.ReflectionsGain,
+ Slot->effect.Reverb.LateReverbDelay, State);
+
+ // Update the decorrelator.
+ UpdateDecorrelator(Slot->effect.Reverb.Density, frequency, State);
+
+ // Get the mixing matrix coefficients (x and y).
+ CalcMatrixCoeffs(Slot->effect.Reverb.Diffusion, &x, &y);
+ // Then divide x into y to simplify the matrix calculation.
+ State->Late.MixCoeff = y / x;
+
+ // If the HF limit parameter is flagged, calculate an appropriate limit
+ // based on the air absorption parameter.
+ hfRatio = Slot->effect.Reverb.DecayHFRatio;
+ if(Slot->effect.Reverb.DecayHFLimit &&
+ Slot->effect.Reverb.AirAbsorptionGainHF < 1.0f)
+ hfRatio = CalcLimitedHfRatio(hfRatio,
+ Slot->effect.Reverb.AirAbsorptionGainHF,
+ Slot->effect.Reverb.DecayTime);
+
+ // Update the late lines.
+ UpdateLateLines(Slot->effect.Reverb.Gain, Slot->effect.Reverb.LateReverbGain,
+ x, Slot->effect.Reverb.Density, Slot->effect.Reverb.DecayTime,
+ Slot->effect.Reverb.Diffusion, hfRatio, cw, frequency, State);
+
+ if(State->IsEax)
+ {
+ // Update the echo line.
+ UpdateEchoLine(Slot->effect.Reverb.Gain, Slot->effect.Reverb.LateReverbGain,
+ Slot->effect.Reverb.EchoTime, Slot->effect.Reverb.DecayTime,
+ Slot->effect.Reverb.Diffusion, Slot->effect.Reverb.EchoDepth,
+ hfRatio, cw, frequency, State);
+
+ // Update early and late 3D panning.
+ Update3DPanning(Device, Slot->effect.Reverb.ReflectionsPan,
+ Slot->effect.Reverb.LateReverbPan, Slot->Gain, State);
+ }
+ else
+ {
+ ALfloat gain = Slot->Gain;
+ ALuint index;
+
+ /* Update channel gains */
+ gain *= sqrtf(2.0f/Device->NumChan) * ReverbBoost;
+ for(index = 0;index < MaxChannels;index++)
+ State->Gain[index] = 0.0f;
+ for(index = 0;index < Device->NumChan;index++)
+ {
+ enum Channel chan = Device->Speaker2Chan[index];
+ State->Gain[chan] = gain;
+ }
+ }
+}
+
+// This destroys the reverb state. It should be called only when the effect
+// slot has a different (or no) effect loaded over the reverb effect.
+static ALvoid ALreverbState_Destruct(ALreverbState *State)
+{
+ free(State->SampleBuffer);
+ State->SampleBuffer = NULL;
+}
+
+static ALeffectStateFactory *ALreverbState_getCreator(void)
+{
+ return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
+}
+
+DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState);
+
+
+static ALeffectState *ALreverbStateFactory_create(void)
+{
+ ALreverbState *state;
+ ALuint index;
+
+ state = malloc(sizeof(ALreverbState));
+ if(!state) return NULL;
+ SET_VTABLE2(ALreverbState, ALeffectState, state);
+
+ state->TotalSamples = 0;
+ state->SampleBuffer = NULL;
+
+ state->LpFilter.coeff = 0.0f;
+ state->LpFilter.history[0] = 0.0f;
+ state->LpFilter.history[1] = 0.0f;
+
+ state->Mod.Delay.Mask = 0;
+ state->Mod.Delay.Line = NULL;
+ state->Mod.Index = 0;
+ state->Mod.Range = 1;
+ state->Mod.Depth = 0.0f;
+ state->Mod.Coeff = 0.0f;
+ state->Mod.Filter = 0.0f;
+
+ state->Delay.Mask = 0;
+ state->Delay.Line = NULL;
+ state->DelayTap[0] = 0;
+ state->DelayTap[1] = 0;
+
+ state->Early.Gain = 0.0f;
+ for(index = 0;index < 4;index++)
+ {
+ state->Early.Coeff[index] = 0.0f;
+ state->Early.Delay[index].Mask = 0;
+ state->Early.Delay[index].Line = NULL;
+ state->Early.Offset[index] = 0;
+ }
+
+ state->Decorrelator.Mask = 0;
+ state->Decorrelator.Line = NULL;
+ state->DecoTap[0] = 0;
+ state->DecoTap[1] = 0;
+ state->DecoTap[2] = 0;
+
+ state->Late.Gain = 0.0f;
+ state->Late.DensityGain = 0.0f;
+ state->Late.ApFeedCoeff = 0.0f;
+ state->Late.MixCoeff = 0.0f;
+ for(index = 0;index < 4;index++)
+ {
+ state->Late.ApCoeff[index] = 0.0f;
+ state->Late.ApDelay[index].Mask = 0;
+ state->Late.ApDelay[index].Line = NULL;
+ state->Late.ApOffset[index] = 0;
+
+ state->Late.Coeff[index] = 0.0f;
+ state->Late.Delay[index].Mask = 0;
+ state->Late.Delay[index].Line = NULL;
+ state->Late.Offset[index] = 0;
+
+ state->Late.LpCoeff[index] = 0.0f;
+ state->Late.LpSample[index] = 0.0f;
+ }
+
+ for(index = 0;index < MaxChannels;index++)
+ {
+ state->Early.PanGain[index] = 0.0f;
+ state->Late.PanGain[index] = 0.0f;
+ }
+
+ state->Echo.DensityGain = 0.0f;
+ state->Echo.Delay.Mask = 0;
+ state->Echo.Delay.Line = NULL;
+ state->Echo.ApDelay.Mask = 0;
+ state->Echo.ApDelay.Line = NULL;
+ state->Echo.Coeff = 0.0f;
+ state->Echo.ApFeedCoeff = 0.0f;
+ state->Echo.ApCoeff = 0.0f;
+ state->Echo.Offset = 0;
+ state->Echo.ApOffset = 0;
+ state->Echo.LpCoeff = 0.0f;
+ state->Echo.LpSample = 0.0f;
+ state->Echo.MixCoeff[0] = 0.0f;
+ state->Echo.MixCoeff[1] = 0.0f;
+
+ state->Offset = 0;
+
+ state->Gain = state->Late.PanGain;
+
+ return STATIC_CAST(ALeffectState, state);
+}
+
+static ALvoid ALreverbStateFactory_destroy(ALeffectState *effect)
+{
+ ALreverbState *state = STATIC_UPCAST(ALreverbState, ALeffectState, effect);
+ ALreverbState_Destruct(state);
+ free(state);
+}
+
+DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory);
+
+
+static void init_reverb_factory(void)
+{
+ SET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory, &ReverbFactory);
+}
+
+ALeffectStateFactory *ALreverbStateFactory_getFactory(void)
+{
+ static pthread_once_t once = PTHREAD_ONCE_INIT;
+ pthread_once(&once, init_reverb_factory);
+ return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
+}
+
+
+void eaxreverb_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ if(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT)
+ effect->Reverb.DecayHFLimit = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void eaxreverb_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
+{
+ eaxreverb_SetParami(effect, context, param, vals[0]);
+}
+void eaxreverb_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ if(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY)
+ effect->Reverb.Density = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ if(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION)
+ effect->Reverb.Diffusion = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ if(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN)
+ effect->Reverb.Gain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ if(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF)
+ effect->Reverb.GainHF = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ if(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF)
+ effect->Reverb.GainLF = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ if(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME)
+ effect->Reverb.DecayTime = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ if(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO)
+ effect->Reverb.DecayHFRatio = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ if(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO)
+ effect->Reverb.DecayLFRatio = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ if(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN)
+ effect->Reverb.ReflectionsGain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ if(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY)
+ effect->Reverb.ReflectionsDelay = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ if(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN)
+ effect->Reverb.LateReverbGain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ if(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY)
+ effect->Reverb.LateReverbDelay = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ if(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF)
+ effect->Reverb.AirAbsorptionGainHF = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ if(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME)
+ effect->Reverb.EchoTime = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ if(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH)
+ effect->Reverb.EchoDepth = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ if(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME)
+ effect->Reverb.ModulationTime = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ if(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH)
+ effect->Reverb.ModulationDepth = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ if(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE)
+ effect->Reverb.HFReference = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ if(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE)
+ effect->Reverb.LFReference = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ if(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR)
+ effect->Reverb.RoomRolloffFactor = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void eaxreverb_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ if(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))
+ {
+ LockContext(context);
+ effect->Reverb.ReflectionsPan[0] = vals[0];
+ effect->Reverb.ReflectionsPan[1] = vals[1];
+ effect->Reverb.ReflectionsPan[2] = vals[2];
+ UnlockContext(context);
+ }
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ if(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))
+ {
+ LockContext(context);
+ effect->Reverb.LateReverbPan[0] = vals[0];
+ effect->Reverb.LateReverbPan[1] = vals[1];
+ effect->Reverb.LateReverbPan[2] = vals[2];
+ UnlockContext(context);
+ }
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ default:
+ eaxreverb_SetParamf(effect, context, param, vals[0]);
+ break;
+ }
+}
+
+void eaxreverb_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ *val = effect->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void eaxreverb_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
+{
+ eaxreverb_GetParami(effect, context, param, vals);
+}
+void eaxreverb_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ *val = effect->Reverb.Density;
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ *val = effect->Reverb.Diffusion;
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ *val = effect->Reverb.Gain;
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ *val = effect->Reverb.GainHF;
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ *val = effect->Reverb.GainLF;
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ *val = effect->Reverb.DecayTime;
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ *val = effect->Reverb.DecayHFRatio;
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ *val = effect->Reverb.DecayLFRatio;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ *val = effect->Reverb.ReflectionsGain;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ *val = effect->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ *val = effect->Reverb.LateReverbGain;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ *val = effect->Reverb.LateReverbDelay;
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ *val = effect->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ *val = effect->Reverb.EchoTime;
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ *val = effect->Reverb.EchoDepth;
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ *val = effect->Reverb.ModulationTime;
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ *val = effect->Reverb.ModulationDepth;
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ *val = effect->Reverb.HFReference;
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ *val = effect->Reverb.LFReference;
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ *val = effect->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void eaxreverb_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ LockContext(context);
+ vals[0] = effect->Reverb.ReflectionsPan[0];
+ vals[1] = effect->Reverb.ReflectionsPan[1];
+ vals[2] = effect->Reverb.ReflectionsPan[2];
+ UnlockContext(context);
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ LockContext(context);
+ vals[0] = effect->Reverb.LateReverbPan[0];
+ vals[1] = effect->Reverb.LateReverbPan[1];
+ vals[2] = effect->Reverb.LateReverbPan[2];
+ UnlockContext(context);
+ break;
+
+ default:
+ eaxreverb_GetParamf(effect, context, param, vals);
+ break;
+ }
+}
+
+
+void reverb_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ if(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT)
+ effect->Reverb.DecayHFLimit = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void reverb_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
+{
+ reverb_SetParami(effect, context, param, vals[0]);
+}
+void reverb_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ if(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY)
+ effect->Reverb.Density = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ if(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION)
+ effect->Reverb.Diffusion = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_GAIN:
+ if(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN)
+ effect->Reverb.Gain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_GAINHF:
+ if(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF)
+ effect->Reverb.GainHF = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ if(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME)
+ effect->Reverb.DecayTime = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ if(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO)
+ effect->Reverb.DecayHFRatio = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ if(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN)
+ effect->Reverb.ReflectionsGain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ if(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY)
+ effect->Reverb.ReflectionsDelay = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ if(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN)
+ effect->Reverb.LateReverbGain = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ if(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY)
+ effect->Reverb.LateReverbDelay = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ if(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF)
+ effect->Reverb.AirAbsorptionGainHF = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ if(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR)
+ effect->Reverb.RoomRolloffFactor = val;
+ else
+ alSetError(context, AL_INVALID_VALUE);
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void reverb_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
+{
+ reverb_SetParamf(effect, context, param, vals[0]);
+}
+
+void reverb_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ *val = effect->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void reverb_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
+{
+ reverb_GetParami(effect, context, param, vals);
+}
+void reverb_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ *val = effect->Reverb.Density;
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ *val = effect->Reverb.Diffusion;
+ break;
+
+ case AL_REVERB_GAIN:
+ *val = effect->Reverb.Gain;
+ break;
+
+ case AL_REVERB_GAINHF:
+ *val = effect->Reverb.GainHF;
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ *val = effect->Reverb.DecayTime;
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ *val = effect->Reverb.DecayHFRatio;
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ *val = effect->Reverb.ReflectionsGain;
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ *val = effect->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ *val = effect->Reverb.LateReverbGain;
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ *val = effect->Reverb.LateReverbDelay;
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ *val = effect->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ *val = effect->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM);
+ break;
+ }
+}
+void reverb_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
+{
+ reverb_GetParamf(effect, context, param, vals);
+}