aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/effects/reverb.c
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/effects/reverb.c')
-rw-r--r--Alc/effects/reverb.c2090
1 files changed, 0 insertions, 2090 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c
deleted file mode 100644
index 8ebc089e..00000000
--- a/Alc/effects/reverb.c
+++ /dev/null
@@ -1,2090 +0,0 @@
-/**
- * Ambisonic reverb engine for the OpenAL cross platform audio library
- * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
-#include "config.h"
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-
-#include "alMain.h"
-#include "alu.h"
-#include "alAuxEffectSlot.h"
-#include "alListener.h"
-#include "alError.h"
-#include "filters/defs.h"
-
-/* This is a user config option for modifying the overall output of the reverb
- * effect.
- */
-ALfloat ReverbBoost = 1.0f;
-
-/* This is the maximum number of samples processed for each inner loop
- * iteration. */
-#define MAX_UPDATE_SAMPLES 256
-
-/* The number of samples used for cross-faded delay lines. This can be used
- * to balance the compensation for abrupt line changes and attenuation due to
- * minimally lengthed recursive lines. Try to keep this below the device
- * update size.
- */
-#define FADE_SAMPLES 128
-
-/* The number of spatialized lines or channels to process. Four channels allows
- * for a 3D A-Format response. NOTE: This can't be changed without taking care
- * of the conversion matrices, and a few places where the length arrays are
- * assumed to have 4 elements.
- */
-#define NUM_LINES 4
-
-
-/* The B-Format to A-Format conversion matrix. The arrangement of rows is
- * deliberately chosen to align the resulting lines to their spatial opposites
- * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
- * back left). It's not quite opposite, since the A-Format results in a
- * tetrahedron, but it's close enough. Should the model be extended to 8-lines
- * in the future, true opposites can be used.
- */
-static const aluMatrixf B2A = {{
- { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
- { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f },
- { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f }
-}};
-
-/* Converts A-Format to B-Format. */
-static const aluMatrixf A2B = {{
- { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f },
- { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f },
- { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f },
- { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f }
-}};
-
-static const ALfloat FadeStep = 1.0f / FADE_SAMPLES;
-
-/* The all-pass and delay lines have a variable length dependent on the
- * effect's density parameter, which helps alter the perceived environment
- * size. The size-to-density conversion is a cubed scale:
- *
- * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
- *
- * The line lengths scale linearly with room size, so the inverse density
- * conversion is needed, taking the cube root of the re-scaled density to
- * calculate the line length multiplier:
- *
- * length_mult = max(5.0, cbrtf(density*DENSITY_SCALE));
- *
- * The density scale below will result in a max line multiplier of 50, for an
- * effective size range of 5m to 50m.
- */
-static const ALfloat DENSITY_SCALE = 125000.0f;
-
-/* All delay line lengths are specified in seconds.
- *
- * To approximate early reflections, we break them up into primary (those
- * arriving from the same direction as the source) and secondary (those
- * arriving from the opposite direction).
- *
- * The early taps decorrelate the 4-channel signal to approximate an average
- * room response for the primary reflections after the initial early delay.
- *
- * Given an average room dimension (d_a) and the speed of sound (c) we can
- * calculate the average reflection delay (r_a) regardless of listener and
- * source positions as:
- *
- * r_a = d_a / c
- * c = 343.3
- *
- * This can extended to finding the average difference (r_d) between the
- * maximum (r_1) and minimum (r_0) reflection delays:
- *
- * r_0 = 2 / 3 r_a
- * = r_a - r_d / 2
- * = r_d
- * r_1 = 4 / 3 r_a
- * = r_a + r_d / 2
- * = 2 r_d
- * r_d = 2 / 3 r_a
- * = r_1 - r_0
- *
- * As can be determined by integrating the 1D model with a source (s) and
- * listener (l) positioned across the dimension of length (d_a):
- *
- * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
- *
- * The initial taps (T_(i=0)^N) are then specified by taking a power series
- * that ranges between r_0 and half of r_1 less r_0:
- *
- * R_i = 2^(i / (2 N - 1)) r_d
- * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
- * = r_0 + T_i
- * T_i = R_i - r_0
- * = (2^(i / (2 N - 1)) - 1) r_d
- *
- * Assuming an average of 1m, we get the following taps:
- */
-static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] =
-{
- 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
-};
-
-/* The early all-pass filter lengths are based on the early tap lengths:
- *
- * A_i = R_i / a
- *
- * Where a is the approximate maximum all-pass cycle limit (20).
- */
-static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] =
-{
- 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
-};
-
-/* The early delay lines are used to transform the primary reflections into
- * the secondary reflections. The A-format is arranged in such a way that
- * the channels/lines are spatially opposite:
- *
- * C_i is opposite C_(N-i-1)
- *
- * The delays of the two opposing reflections (R_i and O_i) from a source
- * anywhere along a particular dimension always sum to twice its full delay:
- *
- * 2 r_a = R_i + O_i
- *
- * With that in mind we can determine the delay between the two reflections
- * and thus specify our early line lengths (L_(i=0)^N) using:
- *
- * O_i = 2 r_a - R_(N-i-1)
- * L_i = O_i - R_(N-i-1)
- * = 2 (r_a - R_(N-i-1))
- * = 2 (r_a - T_(N-i-1) - r_0)
- * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
- *
- * Using an average dimension of 1m, we get:
- */
-static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] =
-{
- 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
-};
-
-/* The late all-pass filter lengths are based on the late line lengths:
- *
- * A_i = (5 / 3) L_i / r_1
- */
-static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] =
-{
- 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
-};
-
-/* The late lines are used to approximate the decaying cycle of recursive
- * late reflections.
- *
- * Splitting the lines in half, we start with the shortest reflection paths
- * (L_(i=0)^(N/2)):
- *
- * L_i = 2^(i / (N - 1)) r_d
- *
- * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
- *
- * L_i = 2 r_a - L_(i-N/2)
- * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
- *
- * For our 1m average room, we get:
- */
-static const ALfloat LATE_LINE_LENGTHS[NUM_LINES] =
-{
- 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
-};
-
-
-typedef struct DelayLineI {
- /* The delay lines use interleaved samples, with the lengths being powers
- * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
- */
- ALsizei Mask;
- ALfloat (*Line)[NUM_LINES];
-} DelayLineI;
-
-typedef struct VecAllpass {
- DelayLineI Delay;
- ALfloat Coeff;
- ALsizei Offset[NUM_LINES][2];
-} VecAllpass;
-
-typedef struct T60Filter {
- /* Two filters are used to adjust the signal. One to control the low
- * frequencies, and one to control the high frequencies.
- */
- ALfloat MidGain[2];
- BiquadFilter HFFilter, LFFilter;
-} T60Filter;
-
-typedef struct EarlyReflections {
- /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
- * The spread from this filter also helps smooth out the reverb tail.
- */
- VecAllpass VecAp;
-
- /* An echo line is used to complete the second half of the early
- * reflections.
- */
- DelayLineI Delay;
- ALsizei Offset[NUM_LINES][2];
- ALfloat Coeff[NUM_LINES][2];
-
- /* The gain for each output channel based on 3D panning. */
- ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
- ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
-} EarlyReflections;
-
-typedef struct LateReverb {
- /* A recursive delay line is used fill in the reverb tail. */
- DelayLineI Delay;
- ALsizei Offset[NUM_LINES][2];
-
- /* Attenuation to compensate for the modal density and decay rate of the
- * late lines.
- */
- ALfloat DensityGain[2];
-
- /* T60 decay filters are used to simulate absorption. */
- T60Filter T60[NUM_LINES];
-
- /* A Gerzon vector all-pass filter is used to simulate diffusion. */
- VecAllpass VecAp;
-
- /* The gain for each output channel based on 3D panning. */
- ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
- ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS];
-} LateReverb;
-
-typedef struct ReverbState {
- DERIVE_FROM_TYPE(ALeffectState);
-
- /* All delay lines are allocated as a single buffer to reduce memory
- * fragmentation and management code.
- */
- ALfloat *SampleBuffer;
- ALuint TotalSamples;
-
- struct {
- /* Calculated parameters which indicate if cross-fading is needed after
- * an update.
- */
- ALfloat Density, Diffusion;
- ALfloat DecayTime, HFDecayTime, LFDecayTime;
- ALfloat HFReference, LFReference;
- } Params;
-
- /* Master effect filters */
- struct {
- BiquadFilter Lp;
- BiquadFilter Hp;
- } Filter[NUM_LINES];
-
- /* Core delay line (early reflections and late reverb tap from this). */
- DelayLineI Delay;
-
- /* Tap points for early reflection delay. */
- ALsizei EarlyDelayTap[NUM_LINES][2];
- ALfloat EarlyDelayCoeff[NUM_LINES][2];
-
- /* Tap points for late reverb feed and delay. */
- ALsizei LateFeedTap;
- ALsizei LateDelayTap[NUM_LINES][2];
-
- /* Coefficients for the all-pass and line scattering matrices. */
- ALfloat MixX;
- ALfloat MixY;
-
- EarlyReflections Early;
-
- LateReverb Late;
-
- /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */
- ALsizei FadeCount;
-
- /* Maximum number of samples to process at once. */
- ALsizei MaxUpdate[2];
-
- /* The current write offset for all delay lines. */
- ALsizei Offset;
-
- /* Temporary storage used when processing. */
- alignas(16) ALfloat TempSamples[NUM_LINES][MAX_UPDATE_SAMPLES];
- alignas(16) ALfloat MixSamples[NUM_LINES][MAX_UPDATE_SAMPLES];
-} ReverbState;
-
-static ALvoid ReverbState_Destruct(ReverbState *State);
-static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device);
-static ALvoid ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props);
-static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
-DECLARE_DEFAULT_ALLOCATORS(ReverbState)
-
-DEFINE_ALEFFECTSTATE_VTABLE(ReverbState);
-
-static void ReverbState_Construct(ReverbState *state)
-{
- ALsizei i, j;
-
- ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
- SET_VTABLE2(ReverbState, ALeffectState, state);
-
- state->TotalSamples = 0;
- state->SampleBuffer = NULL;
-
- state->Params.Density = AL_EAXREVERB_DEFAULT_DENSITY;
- state->Params.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION;
- state->Params.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME;
- state->Params.HFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_HFRATIO;
- state->Params.LFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_LFRATIO;
- state->Params.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE;
- state->Params.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE;
-
- for(i = 0;i < NUM_LINES;i++)
- {
- BiquadFilter_clear(&state->Filter[i].Lp);
- BiquadFilter_clear(&state->Filter[i].Hp);
- }
-
- state->Delay.Mask = 0;
- state->Delay.Line = NULL;
-
- for(i = 0;i < NUM_LINES;i++)
- {
- state->EarlyDelayTap[i][0] = 0;
- state->EarlyDelayTap[i][1] = 0;
- state->EarlyDelayCoeff[i][0] = 0.0f;
- state->EarlyDelayCoeff[i][1] = 0.0f;
- }
-
- state->LateFeedTap = 0;
-
- for(i = 0;i < NUM_LINES;i++)
- {
- state->LateDelayTap[i][0] = 0;
- state->LateDelayTap[i][1] = 0;
- }
-
- state->MixX = 0.0f;
- state->MixY = 0.0f;
-
- state->Early.VecAp.Delay.Mask = 0;
- state->Early.VecAp.Delay.Line = NULL;
- state->Early.VecAp.Coeff = 0.0f;
- state->Early.Delay.Mask = 0;
- state->Early.Delay.Line = NULL;
- for(i = 0;i < NUM_LINES;i++)
- {
- state->Early.VecAp.Offset[i][0] = 0;
- state->Early.VecAp.Offset[i][1] = 0;
- state->Early.Offset[i][0] = 0;
- state->Early.Offset[i][1] = 0;
- state->Early.Coeff[i][0] = 0.0f;
- state->Early.Coeff[i][1] = 0.0f;
- }
-
- state->Late.DensityGain[0] = 0.0f;
- state->Late.DensityGain[1] = 0.0f;
- state->Late.Delay.Mask = 0;
- state->Late.Delay.Line = NULL;
- state->Late.VecAp.Delay.Mask = 0;
- state->Late.VecAp.Delay.Line = NULL;
- state->Late.VecAp.Coeff = 0.0f;
- for(i = 0;i < NUM_LINES;i++)
- {
- state->Late.Offset[i][0] = 0;
- state->Late.Offset[i][1] = 0;
-
- state->Late.VecAp.Offset[i][0] = 0;
- state->Late.VecAp.Offset[i][1] = 0;
-
- state->Late.T60[i].MidGain[0] = 0.0f;
- state->Late.T60[i].MidGain[1] = 0.0f;
- BiquadFilter_clear(&state->Late.T60[i].HFFilter);
- BiquadFilter_clear(&state->Late.T60[i].LFFilter);
- }
-
- for(i = 0;i < NUM_LINES;i++)
- {
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- {
- state->Early.CurrentGain[i][j] = 0.0f;
- state->Early.PanGain[i][j] = 0.0f;
- state->Late.CurrentGain[i][j] = 0.0f;
- state->Late.PanGain[i][j] = 0.0f;
- }
- }
-
- state->FadeCount = 0;
- state->MaxUpdate[0] = MAX_UPDATE_SAMPLES;
- state->MaxUpdate[1] = MAX_UPDATE_SAMPLES;
- state->Offset = 0;
-}
-
-static ALvoid ReverbState_Destruct(ReverbState *State)
-{
- al_free(State->SampleBuffer);
- State->SampleBuffer = NULL;
-
- ALeffectState_Destruct(STATIC_CAST(ALeffectState,State));
-}
-
-/**************************************
- * Device Update *
- **************************************/
-
-static inline ALfloat CalcDelayLengthMult(ALfloat density)
-{
- return maxf(5.0f, cbrtf(density*DENSITY_SCALE));
-}
-
-/* Given the allocated sample buffer, this function updates each delay line
- * offset.
- */
-static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
-{
- union {
- ALfloat *f;
- ALfloat (*f4)[NUM_LINES];
- } u;
- u.f = &sampleBuffer[(ptrdiff_t)Delay->Line * NUM_LINES];
- Delay->Line = u.f4;
-}
-
-/* Calculate the length of a delay line and store its mask and offset. */
-static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency,
- const ALuint extra, DelayLineI *Delay)
-{
- ALuint samples;
-
- /* All line lengths are powers of 2, calculated from their lengths in
- * seconds, rounded up.
- */
- samples = float2int(ceilf(length*frequency));
- samples = NextPowerOf2(samples + extra);
-
- /* All lines share a single sample buffer. */
- Delay->Mask = samples - 1;
- Delay->Line = (ALfloat(*)[NUM_LINES])offset;
-
- /* Return the sample count for accumulation. */
- return samples;
-}
-
-/* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given the sample rate (frequency). If an allocation failure
- * occurs, it returns AL_FALSE.
- */
-static ALboolean AllocLines(const ALuint frequency, ReverbState *State)
-{
- ALuint totalSamples, i;
- ALfloat multiplier, length;
-
- /* All delay line lengths are calculated to accomodate the full range of
- * lengths given their respective paramters.
- */
- totalSamples = 0;
-
- /* Multiplier for the maximum density value, i.e. density=1, which is
- * actually the least density...
- */
- multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY);
-
- /* The main delay length includes the maximum early reflection delay, the
- * largest early tap width, the maximum late reverb delay, and the
- * largest late tap width. Finally, it must also be extended by the
- * update size (MAX_UPDATE_SAMPLES) for block processing.
- */
- length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier +
- AL_EAXREVERB_MAX_LATE_REVERB_DELAY +
- (LATE_LINE_LENGTHS[NUM_LINES-1] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
- &State->Delay);
-
- /* The early vector all-pass line. */
- length = EARLY_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->Early.VecAp.Delay);
-
- /* The early reflection line. */
- length = EARLY_LINE_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->Early.Delay);
-
- /* The late vector all-pass line. */
- length = LATE_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->Late.VecAp.Delay);
-
- /* The late delay lines are calculated from the largest maximum density
- * line length.
- */
- length = LATE_LINE_LENGTHS[NUM_LINES-1] * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->Late.Delay);
-
- if(totalSamples != State->TotalSamples)
- {
- ALfloat *newBuffer;
-
- TRACE("New reverb buffer length: %ux4 samples\n", totalSamples);
- newBuffer = al_calloc(16, sizeof(ALfloat[NUM_LINES]) * totalSamples);
- if(!newBuffer) return AL_FALSE;
-
- al_free(State->SampleBuffer);
- State->SampleBuffer = newBuffer;
- State->TotalSamples = totalSamples;
- }
-
- /* Update all delays to reflect the new sample buffer. */
- RealizeLineOffset(State->SampleBuffer, &State->Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Early.VecAp.Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Early.Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Late.VecAp.Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Late.Delay);
-
- /* Clear the sample buffer. */
- for(i = 0;i < State->TotalSamples;i++)
- State->SampleBuffer[i] = 0.0f;
-
- return AL_TRUE;
-}
-
-static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device)
-{
- ALuint frequency = Device->Frequency;
- ALfloat multiplier;
- ALsizei i, j;
-
- /* Allocate the delay lines. */
- if(!AllocLines(frequency, State))
- return AL_FALSE;
-
- multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY);
-
- /* The late feed taps are set a fixed position past the latest delay tap. */
- State->LateFeedTap = float2int((AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
- EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier) *
- frequency);
-
- /* Clear filters and gain coefficients since the delay lines were all just
- * cleared (if not reallocated).
- */
- for(i = 0;i < NUM_LINES;i++)
- {
- BiquadFilter_clear(&State->Filter[i].Lp);
- BiquadFilter_clear(&State->Filter[i].Hp);
- }
-
- for(i = 0;i < NUM_LINES;i++)
- {
- State->EarlyDelayCoeff[i][0] = 0.0f;
- State->EarlyDelayCoeff[i][1] = 0.0f;
- }
-
- for(i = 0;i < NUM_LINES;i++)
- {
- State->Early.Coeff[i][0] = 0.0f;
- State->Early.Coeff[i][1] = 0.0f;
- }
-
- State->Late.DensityGain[0] = 0.0f;
- State->Late.DensityGain[1] = 0.0f;
- for(i = 0;i < NUM_LINES;i++)
- {
- State->Late.T60[i].MidGain[0] = 0.0f;
- State->Late.T60[i].MidGain[1] = 0.0f;
- BiquadFilter_clear(&State->Late.T60[i].HFFilter);
- BiquadFilter_clear(&State->Late.T60[i].LFFilter);
- }
-
- for(i = 0;i < NUM_LINES;i++)
- {
- for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
- {
- State->Early.CurrentGain[i][j] = 0.0f;
- State->Early.PanGain[i][j] = 0.0f;
- State->Late.CurrentGain[i][j] = 0.0f;
- State->Late.PanGain[i][j] = 0.0f;
- }
- }
-
- /* Reset counters and offset base. */
- State->FadeCount = 0;
- State->MaxUpdate[0] = MAX_UPDATE_SAMPLES;
- State->MaxUpdate[1] = MAX_UPDATE_SAMPLES;
- State->Offset = 0;
-
- return AL_TRUE;
-}
-
-/**************************************
- * Effect Update *
- **************************************/
-
-/* Calculate a decay coefficient given the length of each cycle and the time
- * until the decay reaches -60 dB.
- */
-static inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
-{
- return powf(REVERB_DECAY_GAIN, length/decayTime);
-}
-
-/* Calculate a decay length from a coefficient and the time until the decay
- * reaches -60 dB.
- */
-static inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
-{
- return log10f(coeff) * decayTime / log10f(REVERB_DECAY_GAIN);
-}
-
-/* Calculate an attenuation to be applied to the input of any echo models to
- * compensate for modal density and decay time.
- */
-static inline ALfloat CalcDensityGain(const ALfloat a)
-{
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the area under the squared curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return sqrtf(1.0f - a*a);
-}
-
-/* Calculate the scattering matrix coefficients given a diffusion factor. */
-static inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
-{
- ALfloat n, t;
-
- /* The matrix is of order 4, so n is sqrt(4 - 1). */
- n = sqrtf(3.0f);
- t = diffusion * atanf(n);
-
- /* Calculate the first mixing matrix coefficient. */
- *x = cosf(t);
- /* Calculate the second mixing matrix coefficient. */
- *y = sinf(t) / n;
-}
-
-/* Calculate the limited HF ratio for use with the late reverb low-pass
- * filters.
- */
-static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
- const ALfloat decayTime, const ALfloat SpeedOfSound)
-{
- ALfloat limitRatio;
-
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound);
-
- /* Using the limit calculated above, apply the upper bound to the HF ratio.
- */
- return minf(limitRatio, hfRatio);
-}
-
-
-/* Calculates the 3-band T60 damping coefficients for a particular delay line
- * of specified length, using a combination of two shelf filter sections given
- * decay times for each band split at two reference frequencies.
- */
-static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime,
- const ALfloat mfDecayTime, const ALfloat hfDecayTime,
- const ALfloat lf0norm, const ALfloat hf0norm,
- T60Filter *filter)
-{
- ALfloat lfGain = CalcDecayCoeff(length, lfDecayTime);
- ALfloat mfGain = CalcDecayCoeff(length, mfDecayTime);
- ALfloat hfGain = CalcDecayCoeff(length, hfDecayTime);
-
- filter->MidGain[1] = mfGain;
- BiquadFilter_setParams(&filter->LFFilter, BiquadType_LowShelf, lfGain/mfGain, lf0norm,
- calc_rcpQ_from_slope(lfGain/mfGain, 1.0f));
- BiquadFilter_setParams(&filter->HFFilter, BiquadType_HighShelf, hfGain/mfGain, hf0norm,
- calc_rcpQ_from_slope(hfGain/mfGain, 1.0f));
-}
-
-/* Update the offsets for the main effect delay line. */
-static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State)
-{
- ALfloat multiplier, length;
- ALuint i;
-
- multiplier = CalcDelayLengthMult(density);
-
- /* Early reflection taps are decorrelated by means of an average room
- * reflection approximation described above the definition of the taps.
- * This approximation is linear and so the above density multiplier can
- * be applied to adjust the width of the taps. A single-band decay
- * coefficient is applied to simulate initial attenuation and absorption.
- *
- * Late reverb taps are based on the late line lengths to allow a zero-
- * delay path and offsets that would continue the propagation naturally
- * into the late lines.
- */
- for(i = 0;i < NUM_LINES;i++)
- {
- length = earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier;
- State->EarlyDelayTap[i][1] = float2int(length * frequency);
-
- length = EARLY_TAP_LENGTHS[i]*multiplier;
- State->EarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
-
- length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier;
- State->LateDelayTap[i][1] = State->LateFeedTap + float2int(length * frequency);
- }
-}
-
-/* Update the early reflection line lengths and gain coefficients. */
-static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early)
-{
- ALfloat multiplier, length;
- ALsizei i;
-
- multiplier = CalcDelayLengthMult(density);
-
- /* Calculate the all-pass feed-back/forward coefficient. */
- Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
-
- for(i = 0;i < NUM_LINES;i++)
- {
- /* Calculate the length (in seconds) of each all-pass line. */
- length = EARLY_ALLPASS_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each all-pass line. */
- Early->VecAp.Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the length (in seconds) of each delay line. */
- length = EARLY_LINE_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each delay line. */
- Early->Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the gain (coefficient) for each line. */
- Early->Coeff[i][1] = CalcDecayCoeff(length, decayTime);
- }
-}
-
-/* Update the late reverb line lengths and T60 coefficients. */
-static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late)
-{
- /* Scaling factor to convert the normalized reference frequencies from
- * representing 0...freq to 0...max_reference.
- */
- const ALfloat norm_weight_factor = (ALfloat)frequency / AL_EAXREVERB_MAX_HFREFERENCE;
- ALfloat multiplier, length, bandWeights[3];
- ALsizei i;
-
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the delay lines is used to calculate the
- * attenuation coefficient.
- */
- multiplier = CalcDelayLengthMult(density);
- length = (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] +
- LATE_LINE_LENGTHS[2] + LATE_LINE_LENGTHS[3]) / 4.0f * multiplier;
- length += (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] +
- LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f * multiplier;
- /* The density gain calculation uses an average decay time weighted by
- * approximate bandwidth. This attempts to compensate for losses of energy
- * that reduce decay time due to scattering into highly attenuated bands.
- */
- bandWeights[0] = lf0norm*norm_weight_factor;
- bandWeights[1] = hf0norm*norm_weight_factor - lf0norm*norm_weight_factor;
- bandWeights[2] = 1.0f - hf0norm*norm_weight_factor;
- Late->DensityGain[1] = CalcDensityGain(
- CalcDecayCoeff(length,
- bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
- )
- );
-
- /* Calculate the all-pass feed-back/forward coefficient. */
- Late->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f);
-
- for(i = 0;i < NUM_LINES;i++)
- {
- /* Calculate the length (in seconds) of each all-pass line. */
- length = LATE_ALLPASS_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each all-pass line. */
- Late->VecAp.Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the length (in seconds) of each delay line. */
- length = LATE_LINE_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each delay line. */
- Late->Offset[i][1] = float2int(length*frequency + 0.5f);
-
- /* Approximate the absorption that the vector all-pass would exhibit
- * given the current diffusion so we don't have to process a full T60
- * filter for each of its four lines.
- */
- length += lerp(LATE_ALLPASS_LENGTHS[i],
- (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] +
- LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f,
- diffusion) * multiplier;
-
- /* Calculate the T60 damping coefficients for each line. */
- CalcT60DampingCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime,
- lf0norm, hf0norm, &Late->T60[i]);
- }
-}
-
-/* Creates a transform matrix given a reverb vector. The vector pans the reverb
- * reflections toward the given direction, using its magnitude (up to 1) as a
- * focal strength. This function results in a B-Format transformation matrix
- * that spatially focuses the signal in the desired direction.
- */
-static aluMatrixf GetTransformFromVector(const ALfloat *vec)
-{
- aluMatrixf focus;
- ALfloat norm[3];
- ALfloat mag;
-
- /* Normalize the panning vector according to the N3D scale, which has an
- * extra sqrt(3) term on the directional components. Converting from OpenAL
- * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
- * that the reverb panning vectors use left-handed coordinates, unlike the
- * rest of OpenAL which use right-handed. This is fixed by negating Z,
- * which cancels out with the B-Format Z negation.
- */
- mag = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- if(mag > 1.0f)
- {
- norm[0] = vec[0] / mag * -SQRTF_3;
- norm[1] = vec[1] / mag * SQRTF_3;
- norm[2] = vec[2] / mag * SQRTF_3;
- mag = 1.0f;
- }
- else
- {
- /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
- * term. There's no need to renormalize the magnitude since it would
- * just be reapplied in the matrix.
- */
- norm[0] = vec[0] * -SQRTF_3;
- norm[1] = vec[1] * SQRTF_3;
- norm[2] = vec[2] * SQRTF_3;
- }
-
- aluMatrixfSet(&focus,
- 1.0f, 0.0f, 0.0f, 0.0f,
- norm[0], 1.0f-mag, 0.0f, 0.0f,
- norm[1], 0.0f, 1.0f-mag, 0.0f,
- norm[2], 0.0f, 0.0f, 1.0f-mag
- );
-
- return focus;
-}
-
-/* Update the early and late 3D panning gains. */
-static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State)
-{
- aluMatrixf transform, rot;
- ALsizei i;
-
- STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer;
- STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels;
-
- /* Note: _res is transposed. */
-#define MATRIX_MULT(_res, _m1, _m2) do { \
- int row, col; \
- for(col = 0;col < 4;col++) \
- { \
- for(row = 0;row < 4;row++) \
- _res.m[col][row] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \
- _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \
- } \
-} while(0)
- /* Create a matrix that first converts A-Format to B-Format, then
- * transforms the B-Format signal according to the panning vector.
- */
- rot = GetTransformFromVector(ReflectionsPan);
- MATRIX_MULT(transform, rot, A2B);
- memset(&State->Early.PanGain, 0, sizeof(State->Early.PanGain));
- for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
- ComputePanGains(&Device->FOAOut, transform.m[i], earlyGain,
- State->Early.PanGain[i]);
-
- rot = GetTransformFromVector(LateReverbPan);
- MATRIX_MULT(transform, rot, A2B);
- memset(&State->Late.PanGain, 0, sizeof(State->Late.PanGain));
- for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
- ComputePanGains(&Device->FOAOut, transform.m[i], lateGain,
- State->Late.PanGain[i]);
-#undef MATRIX_MULT
-}
-
-static void ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props)
-{
- const ALCdevice *Device = Context->Device;
- const ALlistener *Listener = Context->Listener;
- ALuint frequency = Device->Frequency;
- ALfloat lf0norm, hf0norm, hfRatio;
- ALfloat lfDecayTime, hfDecayTime;
- ALfloat gain, gainlf, gainhf;
- ALsizei i;
-
- /* Calculate the master filters */
- hf0norm = minf(props->Reverb.HFReference / frequency, 0.49f);
- /* Restrict the filter gains from going below -60dB to keep the filter from
- * killing most of the signal.
- */
- gainhf = maxf(props->Reverb.GainHF, 0.001f);
- BiquadFilter_setParams(&State->Filter[0].Lp, BiquadType_HighShelf, gainhf, hf0norm,
- calc_rcpQ_from_slope(gainhf, 1.0f));
- lf0norm = minf(props->Reverb.LFReference / frequency, 0.49f);
- gainlf = maxf(props->Reverb.GainLF, 0.001f);
- BiquadFilter_setParams(&State->Filter[0].Hp, BiquadType_LowShelf, gainlf, lf0norm,
- calc_rcpQ_from_slope(gainlf, 1.0f));
- for(i = 1;i < NUM_LINES;i++)
- {
- BiquadFilter_copyParams(&State->Filter[i].Lp, &State->Filter[0].Lp);
- BiquadFilter_copyParams(&State->Filter[i].Hp, &State->Filter[0].Hp);
- }
-
- /* Update the main effect delay and associated taps. */
- UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
- props->Reverb.Density, props->Reverb.DecayTime, frequency,
- State);
-
- /* Update the early lines. */
- UpdateEarlyLines(props->Reverb.Density, props->Reverb.Diffusion,
- props->Reverb.DecayTime, frequency, &State->Early);
-
- /* Get the mixing matrix coefficients. */
- CalcMatrixCoeffs(props->Reverb.Diffusion, &State->MixX, &State->MixY);
-
- /* If the HF limit parameter is flagged, calculate an appropriate limit
- * based on the air absorption parameter.
- */
- hfRatio = props->Reverb.DecayHFRatio;
- if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
- props->Reverb.DecayTime, Listener->Params.ReverbSpeedOfSound
- );
-
- /* Calculate the LF/HF decay times. */
- lfDecayTime = clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
- hfDecayTime = clampf(props->Reverb.DecayTime * hfRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME);
-
- /* Update the late lines. */
- UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion,
- lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm,
- frequency, &State->Late
- );
-
- /* Update early and late 3D panning. */
- gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost;
- Update3DPanning(Device, props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
- props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain,
- State);
-
- /* Calculate the max update size from the smallest relevant delay. */
- State->MaxUpdate[1] = mini(MAX_UPDATE_SAMPLES,
- mini(State->Early.Offset[0][1], State->Late.Offset[0][1])
- );
-
- /* Determine if delay-line cross-fading is required. Density is essentially
- * a master control for the feedback delays, so changes the offsets of many
- * delay lines.
- */
- if(State->Params.Density != props->Reverb.Density ||
- /* Diffusion and decay times influences the decay rate (gain) of the
- * late reverb T60 filter.
- */
- State->Params.Diffusion != props->Reverb.Diffusion ||
- State->Params.DecayTime != props->Reverb.DecayTime ||
- State->Params.HFDecayTime != hfDecayTime ||
- State->Params.LFDecayTime != lfDecayTime ||
- /* HF/LF References control the weighting used to calculate the density
- * gain.
- */
- State->Params.HFReference != props->Reverb.HFReference ||
- State->Params.LFReference != props->Reverb.LFReference)
- State->FadeCount = 0;
- State->Params.Density = props->Reverb.Density;
- State->Params.Diffusion = props->Reverb.Diffusion;
- State->Params.DecayTime = props->Reverb.DecayTime;
- State->Params.HFDecayTime = hfDecayTime;
- State->Params.LFDecayTime = lfDecayTime;
- State->Params.HFReference = props->Reverb.HFReference;
- State->Params.LFReference = props->Reverb.LFReference;
-}
-
-
-/**************************************
- * Effect Processing *
- **************************************/
-
-/* Basic delay line input/output routines. */
-static inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c)
-{
- return Delay->Line[offset&Delay->Mask][c];
-}
-
-/* Cross-faded delay line output routine. Instead of interpolating the
- * offsets, this interpolates (cross-fades) the outputs at each offset.
- */
-static inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0,
- const ALsizei off1, const ALsizei c,
- const ALfloat sc0, const ALfloat sc1)
-{
- return Delay->Line[off0&Delay->Mask][c]*sc0 +
- Delay->Line[off1&Delay->Mask][c]*sc1;
-}
-
-
-static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c,
- const ALfloat *restrict in, ALsizei count)
-{
- ALsizei i;
- for(i = 0;i < count;i++)
- Delay->Line[(offset++)&Delay->Mask][c] = *(in++);
-}
-
-/* Applies a scattering matrix to the 4-line (vector) input. This is used
- * for both the below vector all-pass model and to perform modal feed-back
- * delay network (FDN) mixing.
- *
- * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
- * matrix with a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding:
- *
- * 1 = x^2 + 3 y^2
- *
- * Where a, b, and c are the coefficient y with differing signs, and d is the
- * coefficient x. The final matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * Any square orthogonal matrix with an order that is a power of two will
- * work (where ^T is transpose, ^-1 is inverse):
- *
- * M^T = M^-1
- *
- * Using that knowledge, finding an appropriate matrix can be accomplished
- * naively by searching all combinations of:
- *
- * M = D + S - S^T
- *
- * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
- * whose combination of signs are being iterated.
- */
-static inline void VectorPartialScatter(ALfloat *restrict out, const ALfloat *restrict in,
- const ALfloat xCoeff, const ALfloat yCoeff)
-{
- out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]);
- out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]);
- out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]);
- out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] );
-}
-#define VectorScatterDelayIn(delay, o, in, xcoeff, ycoeff) \
- VectorPartialScatter((delay)->Line[(o)&(delay)->Mask], in, xcoeff, ycoeff)
-
-/* Utilizes the above, but reverses the input channels. */
-static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
- const ALfloat xCoeff, const ALfloat yCoeff,
- const ALfloat (*restrict in)[MAX_UPDATE_SAMPLES],
- const ALsizei count)
-{
- const DelayLineI delay = *Delay;
- ALsizei i, j;
-
- for(i = 0;i < count;++i)
- {
- ALfloat f[NUM_LINES];
- for(j = 0;j < NUM_LINES;j++)
- f[NUM_LINES-1-j] = in[j][i];
-
- VectorScatterDelayIn(&delay, offset++, f, xCoeff, yCoeff);
- }
-}
-
-/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
- * filter to the 4-line input.
- *
- * It works by vectorizing a regular all-pass filter and replacing the delay
- * element with a scattering matrix (like the one above) and a diagonal
- * matrix of delay elements.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
-static void VectorAllpass_Unfaded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo,
- VecAllpass *Vap)
-{
- const DelayLineI delay = Vap->Delay;
- const ALfloat feedCoeff = Vap->Coeff;
- ALsizei vap_offset[NUM_LINES];
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- for(j = 0;j < NUM_LINES;j++)
- vap_offset[j] = offset-Vap->Offset[j][0];
- for(i = 0;i < todo;i++)
- {
- ALfloat f[NUM_LINES];
-
- for(j = 0;j < NUM_LINES;j++)
- {
- ALfloat input = samples[j][i];
- ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input;
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
-
- VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff);
- ++offset;
- }
-}
-static void VectorAllpass_Faded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade,
- ALsizei todo, VecAllpass *Vap)
-{
- const DelayLineI delay = Vap->Delay;
- const ALfloat feedCoeff = Vap->Coeff;
- ALsizei vap_offset[NUM_LINES][2];
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- fade *= 1.0f/FADE_SAMPLES;
- for(j = 0;j < NUM_LINES;j++)
- {
- vap_offset[j][0] = offset-Vap->Offset[j][0];
- vap_offset[j][1] = offset-Vap->Offset[j][1];
- }
- for(i = 0;i < todo;i++)
- {
- ALfloat f[NUM_LINES];
-
- for(j = 0;j < NUM_LINES;j++)
- {
- ALfloat input = samples[j][i];
- ALfloat out =
- FadedDelayLineOut(&delay, vap_offset[j][0]++, vap_offset[j][1]++, j,
- 1.0f-fade, fade
- ) - feedCoeff*input;
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
- fade += FadeStep;
-
- VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff);
- ++offset;
- }
-}
-
-/* This generates early reflections.
- *
- * This is done by obtaining the primary reflections (those arriving from the
- * same direction as the source) from the main delay line. These are
- * attenuated and all-pass filtered (based on the diffusion parameter).
- *
- * The early lines are then fed in reverse (according to the approximately
- * opposite spatial location of the A-Format lines) to create the secondary
- * reflections (those arriving from the opposite direction as the source).
- *
- * The early response is then completed by combining the primary reflections
- * with the delayed and attenuated output from the early lines.
- *
- * Finally, the early response is reversed, scattered (based on diffusion),
- * and fed into the late reverb section of the main delay line.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
-static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
- ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
-{
- ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
- const DelayLineI early_delay = State->Early.Delay;
- const DelayLineI main_delay = State->Delay;
- const ALfloat mixX = State->MixX;
- const ALfloat mixY = State->MixY;
- ALsizei late_feed_tap;
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- /* First, load decorrelated samples from the main delay line as the primary
- * reflections.
- */
- for(j = 0;j < NUM_LINES;j++)
- {
- ALsizei early_delay_tap = offset - State->EarlyDelayTap[j][0];
- ALfloat coeff = State->EarlyDelayCoeff[j][0];
- for(i = 0;i < todo;i++)
- temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff;
- }
-
- /* Apply a vector all-pass, to help color the initial reflections based on
- * the diffusion strength.
- */
- VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Early.VecAp);
-
- /* Apply a delay and bounce to generate secondary reflections, combine with
- * the primary reflections and write out the result for mixing.
- */
- for(j = 0;j < NUM_LINES;j++)
- {
- ALint early_feedb_tap = offset - State->Early.Offset[j][0];
- ALfloat early_feedb_coeff = State->Early.Coeff[j][0];
-
- for(i = 0;i < todo;i++)
- out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff +
- temps[j][i];
- }
- for(j = 0;j < NUM_LINES;j++)
- DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
-
- /* Also write the result back to the main delay line for the late reverb
- * stage to pick up at the appropriate time, appplying a scatter and
- * bounce to improve the initial diffusion in the late reverb.
- */
- late_feed_tap = offset - State->LateFeedTap;
- VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
-}
-static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
- const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
-{
- ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
- const DelayLineI early_delay = State->Early.Delay;
- const DelayLineI main_delay = State->Delay;
- const ALfloat mixX = State->MixX;
- const ALfloat mixY = State->MixY;
- ALsizei late_feed_tap;
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- for(j = 0;j < NUM_LINES;j++)
- {
- ALsizei early_delay_tap0 = offset - State->EarlyDelayTap[j][0];
- ALsizei early_delay_tap1 = offset - State->EarlyDelayTap[j][1];
- ALfloat oldCoeff = State->EarlyDelayCoeff[j][0];
- ALfloat oldCoeffStep = -oldCoeff / FADE_SAMPLES;
- ALfloat newCoeffStep = State->EarlyDelayCoeff[j][1] / FADE_SAMPLES;
- ALfloat fadeCount = fade;
-
- for(i = 0;i < todo;i++)
- {
- const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount;
- const ALfloat fade1 = newCoeffStep*fadeCount;
- temps[j][i] = FadedDelayLineOut(&main_delay,
- early_delay_tap0++, early_delay_tap1++, j, fade0, fade1
- );
- fadeCount += 1.0f;
- }
- }
-
- VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Early.VecAp);
-
- for(j = 0;j < NUM_LINES;j++)
- {
- ALint feedb_tap0 = offset - State->Early.Offset[j][0];
- ALint feedb_tap1 = offset - State->Early.Offset[j][1];
- ALfloat feedb_oldCoeff = State->Early.Coeff[j][0];
- ALfloat feedb_oldCoeffStep = -feedb_oldCoeff / FADE_SAMPLES;
- ALfloat feedb_newCoeffStep = State->Early.Coeff[j][1] / FADE_SAMPLES;
- ALfloat fadeCount = fade;
-
- for(i = 0;i < todo;i++)
- {
- const ALfloat fade0 = feedb_oldCoeff + feedb_oldCoeffStep*fadeCount;
- const ALfloat fade1 = feedb_newCoeffStep*fadeCount;
- out[j][i] = FadedDelayLineOut(&early_delay,
- feedb_tap0++, feedb_tap1++, j, fade0, fade1
- ) + temps[j][i];
- fadeCount += 1.0f;
- }
- }
- for(j = 0;j < NUM_LINES;j++)
- DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo);
-
- late_feed_tap = offset - State->LateFeedTap;
- VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo);
-}
-
-/* Applies the two T60 damping filter sections. */
-static inline void LateT60Filter(ALfloat *restrict samples, const ALsizei todo, T60Filter *filter)
-{
- ALfloat temp[MAX_UPDATE_SAMPLES];
- BiquadFilter_process(&filter->HFFilter, temp, samples, todo);
- BiquadFilter_process(&filter->LFFilter, samples, temp, todo);
-}
-
-/* This generates the reverb tail using a modified feed-back delay network
- * (FDN).
- *
- * Results from the early reflections are mixed with the output from the late
- * delay lines.
- *
- * The late response is then completed by T60 and all-pass filtering the mix.
- *
- * Finally, the lines are reversed (so they feed their opposite directions)
- * and scattered with the FDN matrix before re-feeding the delay lines.
- *
- * Two variations are made, one for for transitional (cross-faded) delay line
- * processing and one for non-transitional processing.
- */
-static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo,
- ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
-{
- ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
- const DelayLineI late_delay = State->Late.Delay;
- const DelayLineI main_delay = State->Delay;
- const ALfloat mixX = State->MixX;
- const ALfloat mixY = State->MixY;
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- /* First, load decorrelated samples from the main and feedback delay lines.
- * Filter the signal to apply its frequency-dependent decay.
- */
- for(j = 0;j < NUM_LINES;j++)
- {
- ALsizei late_delay_tap = offset - State->LateDelayTap[j][0];
- ALsizei late_feedb_tap = offset - State->Late.Offset[j][0];
- ALfloat midGain = State->Late.T60[j].MidGain[0];
- const ALfloat densityGain = State->Late.DensityGain[0] * midGain;
- for(i = 0;i < todo;i++)
- temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain +
- DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain;
- LateT60Filter(temps[j], todo, &State->Late.T60[j]);
- }
-
- /* Apply a vector all-pass to improve micro-surface diffusion, and write
- * out the results for mixing.
- */
- VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Late.VecAp);
-
- for(j = 0;j < NUM_LINES;j++)
- memcpy(out[j], temps[j], todo*sizeof(ALfloat));
-
- /* Finally, scatter and bounce the results to refeed the feedback buffer. */
- VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, out, todo);
-}
-static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo,
- const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
-{
- ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples;
- const DelayLineI late_delay = State->Late.Delay;
- const DelayLineI main_delay = State->Delay;
- const ALfloat mixX = State->MixX;
- const ALfloat mixY = State->MixY;
- ALsizei i, j;
-
- ASSUME(todo > 0);
-
- for(j = 0;j < NUM_LINES;j++)
- {
- const ALfloat oldMidGain = State->Late.T60[j].MidGain[0];
- const ALfloat midGain = State->Late.T60[j].MidGain[1];
- const ALfloat oldMidStep = -oldMidGain / FADE_SAMPLES;
- const ALfloat midStep = midGain / FADE_SAMPLES;
- const ALfloat oldDensityGain = State->Late.DensityGain[0] * oldMidGain;
- const ALfloat densityGain = State->Late.DensityGain[1] * midGain;
- const ALfloat oldDensityStep = -oldDensityGain / FADE_SAMPLES;
- const ALfloat densityStep = densityGain / FADE_SAMPLES;
- ALsizei late_delay_tap0 = offset - State->LateDelayTap[j][0];
- ALsizei late_delay_tap1 = offset - State->LateDelayTap[j][1];
- ALsizei late_feedb_tap0 = offset - State->Late.Offset[j][0];
- ALsizei late_feedb_tap1 = offset - State->Late.Offset[j][1];
- ALfloat fadeCount = fade;
-
- for(i = 0;i < todo;i++)
- {
- const ALfloat fade0 = oldDensityGain + oldDensityStep*fadeCount;
- const ALfloat fade1 = densityStep*fadeCount;
- const ALfloat gfade0 = oldMidGain + oldMidStep*fadeCount;
- const ALfloat gfade1 = midStep*fadeCount;
- temps[j][i] =
- FadedDelayLineOut(&main_delay, late_delay_tap0++, late_delay_tap1++, j,
- fade0, fade1) +
- FadedDelayLineOut(&late_delay, late_feedb_tap0++, late_feedb_tap1++, j,
- gfade0, gfade1);
- fadeCount += 1.0f;
- }
- LateT60Filter(temps[j], todo, &State->Late.T60[j]);
- }
-
- VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Late.VecAp);
-
- for(j = 0;j < NUM_LINES;j++)
- memcpy(out[j], temps[j], todo*sizeof(ALfloat));
-
- VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, temps, todo);
-}
-
-static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
-{
- ALfloat (*restrict afmt)[MAX_UPDATE_SAMPLES] = State->TempSamples;
- ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES] = State->MixSamples;
- ALsizei fadeCount = State->FadeCount;
- ALsizei offset = State->Offset;
- ALsizei base, c;
-
- /* Process reverb for these samples. */
- for(base = 0;base < SamplesToDo;)
- {
- ALsizei todo = SamplesToDo - base;
- /* If cross-fading, don't do more samples than there are to fade. */
- if(FADE_SAMPLES-fadeCount > 0)
- {
- todo = mini(todo, FADE_SAMPLES-fadeCount);
- todo = mini(todo, State->MaxUpdate[0]);
- }
- todo = mini(todo, State->MaxUpdate[1]);
- /* If this is not the final update, ensure the update size is a
- * multiple of 4 for the SIMD mixers.
- */
- if(todo < SamplesToDo-base)
- todo &= ~3;
-
- /* Convert B-Format to A-Format for processing. */
- memset(afmt, 0, sizeof(*afmt)*NUM_LINES);
- for(c = 0;c < NUM_LINES;c++)
- MixRowSamples(afmt[c], B2A.m[c],
- SamplesIn, MAX_EFFECT_CHANNELS, base, todo
- );
-
- /* Process the samples for reverb. */
- for(c = 0;c < NUM_LINES;c++)
- {
- /* Band-pass the incoming samples. */
- BiquadFilter_process(&State->Filter[c].Lp, samples[0], afmt[c], todo);
- BiquadFilter_process(&State->Filter[c].Hp, samples[1], samples[0], todo);
-
- /* Feed the initial delay line. */
- DelayLineIn(&State->Delay, offset, c, samples[1], todo);
- }
-
- if(UNLIKELY(fadeCount < FADE_SAMPLES))
- {
- ALfloat fade = (ALfloat)fadeCount;
-
- /* Generate early reflections. */
- EarlyReflection_Faded(State, offset, todo, fade, samples);
- /* Mix the A-Format results to output, implicitly converting back
- * to B-Format.
- */
- for(c = 0;c < NUM_LINES;c++)
- MixSamples(samples[c], NumChannels, SamplesOut,
- State->Early.CurrentGain[c], State->Early.PanGain[c],
- SamplesToDo-base, base, todo
- );
-
- /* Generate and mix late reverb. */
- LateReverb_Faded(State, offset, todo, fade, samples);
- for(c = 0;c < NUM_LINES;c++)
- MixSamples(samples[c], NumChannels, SamplesOut,
- State->Late.CurrentGain[c], State->Late.PanGain[c],
- SamplesToDo-base, base, todo
- );
-
- /* Step fading forward. */
- fadeCount += todo;
- if(LIKELY(fadeCount >= FADE_SAMPLES))
- {
- /* Update the cross-fading delay line taps. */
- fadeCount = FADE_SAMPLES;
- for(c = 0;c < NUM_LINES;c++)
- {
- State->EarlyDelayTap[c][0] = State->EarlyDelayTap[c][1];
- State->EarlyDelayCoeff[c][0] = State->EarlyDelayCoeff[c][1];
- State->Early.VecAp.Offset[c][0] = State->Early.VecAp.Offset[c][1];
- State->Early.Offset[c][0] = State->Early.Offset[c][1];
- State->Early.Coeff[c][0] = State->Early.Coeff[c][1];
- State->LateDelayTap[c][0] = State->LateDelayTap[c][1];
- State->Late.VecAp.Offset[c][0] = State->Late.VecAp.Offset[c][1];
- State->Late.Offset[c][0] = State->Late.Offset[c][1];
- State->Late.T60[c].MidGain[0] = State->Late.T60[c].MidGain[1];
- }
- State->Late.DensityGain[0] = State->Late.DensityGain[1];
- State->MaxUpdate[0] = State->MaxUpdate[1];
- }
- }
- else
- {
- /* Generate and mix early reflections. */
- EarlyReflection_Unfaded(State, offset, todo, samples);
- for(c = 0;c < NUM_LINES;c++)
- MixSamples(samples[c], NumChannels, SamplesOut,
- State->Early.CurrentGain[c], State->Early.PanGain[c],
- SamplesToDo-base, base, todo
- );
-
- /* Generate and mix late reverb. */
- LateReverb_Unfaded(State, offset, todo, samples);
- for(c = 0;c < NUM_LINES;c++)
- MixSamples(samples[c], NumChannels, SamplesOut,
- State->Late.CurrentGain[c], State->Late.PanGain[c],
- SamplesToDo-base, base, todo
- );
- }
-
- /* Step all delays forward. */
- offset += todo;
-
- base += todo;
- }
- State->Offset = offset;
- State->FadeCount = fadeCount;
-}
-
-
-typedef struct ReverbStateFactory {
- DERIVE_FROM_TYPE(EffectStateFactory);
-} ReverbStateFactory;
-
-static ALeffectState *ReverbStateFactory_create(ReverbStateFactory* UNUSED(factory))
-{
- ReverbState *state;
-
- NEW_OBJ0(state, ReverbState)();
- if(!state) return NULL;
-
- return STATIC_CAST(ALeffectState, state);
-}
-
-DEFINE_EFFECTSTATEFACTORY_VTABLE(ReverbStateFactory);
-
-EffectStateFactory *ReverbStateFactory_getFactory(void)
-{
- static ReverbStateFactory ReverbFactory = { { GET_VTABLE2(ReverbStateFactory, EffectStateFactory) } };
-
- return STATIC_CAST(EffectStateFactory, &ReverbFactory);
-}
-
-
-void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range");
- props->Reverb.DecayHFLimit = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
- param);
- }
-}
-void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
-{ ALeaxreverb_setParami(effect, context, param, vals[0]); }
-void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range");
- props->Reverb.Density = val;
- break;
-
- case AL_EAXREVERB_DIFFUSION:
- if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range");
- props->Reverb.Diffusion = val;
- break;
-
- case AL_EAXREVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range");
- props->Reverb.Gain = val;
- break;
-
- case AL_EAXREVERB_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range");
- props->Reverb.GainHF = val;
- break;
-
- case AL_EAXREVERB_GAINLF:
- if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range");
- props->Reverb.GainLF = val;
- break;
-
- case AL_EAXREVERB_DECAY_TIME:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range");
- props->Reverb.DecayTime = val;
- break;
-
- case AL_EAXREVERB_DECAY_HFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range");
- props->Reverb.DecayHFRatio = val;
- break;
-
- case AL_EAXREVERB_DECAY_LFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range");
- props->Reverb.DecayLFRatio = val;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range");
- props->Reverb.ReflectionsGain = val;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range");
- props->Reverb.ReflectionsDelay = val;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range");
- props->Reverb.LateReverbGain = val;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range");
- props->Reverb.LateReverbDelay = val;
- break;
-
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range");
- props->Reverb.AirAbsorptionGainHF = val;
- break;
-
- case AL_EAXREVERB_ECHO_TIME:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range");
- props->Reverb.EchoTime = val;
- break;
-
- case AL_EAXREVERB_ECHO_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range");
- props->Reverb.EchoDepth = val;
- break;
-
- case AL_EAXREVERB_MODULATION_TIME:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range");
- props->Reverb.ModulationTime = val;
- break;
-
- case AL_EAXREVERB_MODULATION_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range");
- props->Reverb.ModulationDepth = val;
- break;
-
- case AL_EAXREVERB_HFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range");
- props->Reverb.HFReference = val;
- break;
-
- case AL_EAXREVERB_LFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range");
- props->Reverb.LFReference = val;
- break;
-
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range");
- props->Reverb.RoomRolloffFactor = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
- param);
- }
-}
-void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range");
- props->Reverb.ReflectionsPan[0] = vals[0];
- props->Reverb.ReflectionsPan[1] = vals[1];
- props->Reverb.ReflectionsPan[2] = vals[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range");
- props->Reverb.LateReverbPan[0] = vals[0];
- props->Reverb.LateReverbPan[1] = vals[1];
- props->Reverb.LateReverbPan[2] = vals[2];
- break;
-
- default:
- ALeaxreverb_setParamf(effect, context, param, vals[0]);
- break;
- }
-}
-
-void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
- param);
- }
-}
-void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
-{ ALeaxreverb_getParami(effect, context, param, vals); }
-void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
-
- case AL_EAXREVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
-
- case AL_EAXREVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
-
- case AL_EAXREVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
-
- case AL_EAXREVERB_GAINLF:
- *val = props->Reverb.GainLF;
- break;
-
- case AL_EAXREVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
-
- case AL_EAXREVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
-
- case AL_EAXREVERB_DECAY_LFRATIO:
- *val = props->Reverb.DecayLFRatio;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
-
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
-
- case AL_EAXREVERB_ECHO_TIME:
- *val = props->Reverb.EchoTime;
- break;
-
- case AL_EAXREVERB_ECHO_DEPTH:
- *val = props->Reverb.EchoDepth;
- break;
-
- case AL_EAXREVERB_MODULATION_TIME:
- *val = props->Reverb.ModulationTime;
- break;
-
- case AL_EAXREVERB_MODULATION_DEPTH:
- *val = props->Reverb.ModulationDepth;
- break;
-
- case AL_EAXREVERB_HFREFERENCE:
- *val = props->Reverb.HFReference;
- break;
-
- case AL_EAXREVERB_LFREFERENCE:
- *val = props->Reverb.LFReference;
- break;
-
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
- param);
- }
-}
-void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- vals[0] = props->Reverb.ReflectionsPan[0];
- vals[1] = props->Reverb.ReflectionsPan[1];
- vals[2] = props->Reverb.ReflectionsPan[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- vals[0] = props->Reverb.LateReverbPan[0];
- vals[1] = props->Reverb.LateReverbPan[1];
- vals[2] = props->Reverb.LateReverbPan[2];
- break;
-
- default:
- ALeaxreverb_getParamf(effect, context, param, vals);
- break;
- }
-}
-
-DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
-
-void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range");
- props->Reverb.DecayHFLimit = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
- }
-}
-void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
-{ ALreverb_setParami(effect, context, param, vals[0]); }
-void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DENSITY:
- if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range");
- props->Reverb.Density = val;
- break;
-
- case AL_REVERB_DIFFUSION:
- if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range");
- props->Reverb.Diffusion = val;
- break;
-
- case AL_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range");
- props->Reverb.Gain = val;
- break;
-
- case AL_REVERB_GAINHF:
- if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range");
- props->Reverb.GainHF = val;
- break;
-
- case AL_REVERB_DECAY_TIME:
- if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range");
- props->Reverb.DecayTime = val;
- break;
-
- case AL_REVERB_DECAY_HFRATIO:
- if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range");
- props->Reverb.DecayHFRatio = val;
- break;
-
- case AL_REVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range");
- props->Reverb.ReflectionsGain = val;
- break;
-
- case AL_REVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range");
- props->Reverb.ReflectionsDelay = val;
- break;
-
- case AL_REVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range");
- props->Reverb.LateReverbGain = val;
- break;
-
- case AL_REVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range");
- props->Reverb.LateReverbDelay = val;
- break;
-
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range");
- props->Reverb.AirAbsorptionGainHF = val;
- break;
-
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range");
- props->Reverb.RoomRolloffFactor = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
- }
-}
-void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
-{ ALreverb_setParamf(effect, context, param, vals[0]); }
-
-void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
- }
-}
-void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
-{ ALreverb_getParami(effect, context, param, vals); }
-void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
-
- case AL_REVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
-
- case AL_REVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
-
- case AL_REVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
-
- case AL_REVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
-
- case AL_REVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
-
- case AL_REVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
-
- case AL_REVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
-
- case AL_REVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
-
- case AL_REVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
-
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
-
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
- }
-}
-void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
-{ ALreverb_getParamf(effect, context, param, vals); }
-
-DEFINE_ALEFFECT_VTABLE(ALreverb);