diff options
Diffstat (limited to 'Alc/effects/reverb.c')
-rw-r--r-- | Alc/effects/reverb.c | 2090 |
1 files changed, 0 insertions, 2090 deletions
diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c deleted file mode 100644 index 8ebc089e..00000000 --- a/Alc/effects/reverb.c +++ /dev/null @@ -1,2090 +0,0 @@ -/** - * Ambisonic reverb engine for the OpenAL cross platform audio library - * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <stdio.h> -#include <stdlib.h> -#include <math.h> - -#include "alMain.h" -#include "alu.h" -#include "alAuxEffectSlot.h" -#include "alListener.h" -#include "alError.h" -#include "filters/defs.h" - -/* This is a user config option for modifying the overall output of the reverb - * effect. - */ -ALfloat ReverbBoost = 1.0f; - -/* This is the maximum number of samples processed for each inner loop - * iteration. */ -#define MAX_UPDATE_SAMPLES 256 - -/* The number of samples used for cross-faded delay lines. This can be used - * to balance the compensation for abrupt line changes and attenuation due to - * minimally lengthed recursive lines. Try to keep this below the device - * update size. - */ -#define FADE_SAMPLES 128 - -/* The number of spatialized lines or channels to process. Four channels allows - * for a 3D A-Format response. NOTE: This can't be changed without taking care - * of the conversion matrices, and a few places where the length arrays are - * assumed to have 4 elements. - */ -#define NUM_LINES 4 - - -/* The B-Format to A-Format conversion matrix. The arrangement of rows is - * deliberately chosen to align the resulting lines to their spatial opposites - * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below - * back left). It's not quite opposite, since the A-Format results in a - * tetrahedron, but it's close enough. Should the model be extended to 8-lines - * in the future, true opposites can be used. - */ -static const aluMatrixf B2A = {{ - { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f }, - { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }, - { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f }, - { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f } -}}; - -/* Converts A-Format to B-Format. */ -static const aluMatrixf A2B = {{ - { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f }, - { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f }, - { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f }, - { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f } -}}; - -static const ALfloat FadeStep = 1.0f / FADE_SAMPLES; - -/* The all-pass and delay lines have a variable length dependent on the - * effect's density parameter, which helps alter the perceived environment - * size. The size-to-density conversion is a cubed scale: - * - * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); - * - * The line lengths scale linearly with room size, so the inverse density - * conversion is needed, taking the cube root of the re-scaled density to - * calculate the line length multiplier: - * - * length_mult = max(5.0, cbrtf(density*DENSITY_SCALE)); - * - * The density scale below will result in a max line multiplier of 50, for an - * effective size range of 5m to 50m. - */ -static const ALfloat DENSITY_SCALE = 125000.0f; - -/* All delay line lengths are specified in seconds. - * - * To approximate early reflections, we break them up into primary (those - * arriving from the same direction as the source) and secondary (those - * arriving from the opposite direction). - * - * The early taps decorrelate the 4-channel signal to approximate an average - * room response for the primary reflections after the initial early delay. - * - * Given an average room dimension (d_a) and the speed of sound (c) we can - * calculate the average reflection delay (r_a) regardless of listener and - * source positions as: - * - * r_a = d_a / c - * c = 343.3 - * - * This can extended to finding the average difference (r_d) between the - * maximum (r_1) and minimum (r_0) reflection delays: - * - * r_0 = 2 / 3 r_a - * = r_a - r_d / 2 - * = r_d - * r_1 = 4 / 3 r_a - * = r_a + r_d / 2 - * = 2 r_d - * r_d = 2 / 3 r_a - * = r_1 - r_0 - * - * As can be determined by integrating the 1D model with a source (s) and - * listener (l) positioned across the dimension of length (d_a): - * - * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c - * - * The initial taps (T_(i=0)^N) are then specified by taking a power series - * that ranges between r_0 and half of r_1 less r_0: - * - * R_i = 2^(i / (2 N - 1)) r_d - * = r_0 + (2^(i / (2 N - 1)) - 1) r_d - * = r_0 + T_i - * T_i = R_i - r_0 - * = (2^(i / (2 N - 1)) - 1) r_d - * - * Assuming an average of 1m, we get the following taps: - */ -static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] = -{ - 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f -}; - -/* The early all-pass filter lengths are based on the early tap lengths: - * - * A_i = R_i / a - * - * Where a is the approximate maximum all-pass cycle limit (20). - */ -static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] = -{ - 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f -}; - -/* The early delay lines are used to transform the primary reflections into - * the secondary reflections. The A-format is arranged in such a way that - * the channels/lines are spatially opposite: - * - * C_i is opposite C_(N-i-1) - * - * The delays of the two opposing reflections (R_i and O_i) from a source - * anywhere along a particular dimension always sum to twice its full delay: - * - * 2 r_a = R_i + O_i - * - * With that in mind we can determine the delay between the two reflections - * and thus specify our early line lengths (L_(i=0)^N) using: - * - * O_i = 2 r_a - R_(N-i-1) - * L_i = O_i - R_(N-i-1) - * = 2 (r_a - R_(N-i-1)) - * = 2 (r_a - T_(N-i-1) - r_0) - * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) - * - * Using an average dimension of 1m, we get: - */ -static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] = -{ - 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f -}; - -/* The late all-pass filter lengths are based on the late line lengths: - * - * A_i = (5 / 3) L_i / r_1 - */ -static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] = -{ - 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f -}; - -/* The late lines are used to approximate the decaying cycle of recursive - * late reflections. - * - * Splitting the lines in half, we start with the shortest reflection paths - * (L_(i=0)^(N/2)): - * - * L_i = 2^(i / (N - 1)) r_d - * - * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): - * - * L_i = 2 r_a - L_(i-N/2) - * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d - * - * For our 1m average room, we get: - */ -static const ALfloat LATE_LINE_LENGTHS[NUM_LINES] = -{ - 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f -}; - - -typedef struct DelayLineI { - /* The delay lines use interleaved samples, with the lengths being powers - * of 2 to allow the use of bit-masking instead of a modulus for wrapping. - */ - ALsizei Mask; - ALfloat (*Line)[NUM_LINES]; -} DelayLineI; - -typedef struct VecAllpass { - DelayLineI Delay; - ALfloat Coeff; - ALsizei Offset[NUM_LINES][2]; -} VecAllpass; - -typedef struct T60Filter { - /* Two filters are used to adjust the signal. One to control the low - * frequencies, and one to control the high frequencies. - */ - ALfloat MidGain[2]; - BiquadFilter HFFilter, LFFilter; -} T60Filter; - -typedef struct EarlyReflections { - /* A Gerzon vector all-pass filter is used to simulate initial diffusion. - * The spread from this filter also helps smooth out the reverb tail. - */ - VecAllpass VecAp; - - /* An echo line is used to complete the second half of the early - * reflections. - */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]; - ALfloat Coeff[NUM_LINES][2]; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; -} EarlyReflections; - -typedef struct LateReverb { - /* A recursive delay line is used fill in the reverb tail. */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]; - - /* Attenuation to compensate for the modal density and decay rate of the - * late lines. - */ - ALfloat DensityGain[2]; - - /* T60 decay filters are used to simulate absorption. */ - T60Filter T60[NUM_LINES]; - - /* A Gerzon vector all-pass filter is used to simulate diffusion. */ - VecAllpass VecAp; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; -} LateReverb; - -typedef struct ReverbState { - DERIVE_FROM_TYPE(ALeffectState); - - /* All delay lines are allocated as a single buffer to reduce memory - * fragmentation and management code. - */ - ALfloat *SampleBuffer; - ALuint TotalSamples; - - struct { - /* Calculated parameters which indicate if cross-fading is needed after - * an update. - */ - ALfloat Density, Diffusion; - ALfloat DecayTime, HFDecayTime, LFDecayTime; - ALfloat HFReference, LFReference; - } Params; - - /* Master effect filters */ - struct { - BiquadFilter Lp; - BiquadFilter Hp; - } Filter[NUM_LINES]; - - /* Core delay line (early reflections and late reverb tap from this). */ - DelayLineI Delay; - - /* Tap points for early reflection delay. */ - ALsizei EarlyDelayTap[NUM_LINES][2]; - ALfloat EarlyDelayCoeff[NUM_LINES][2]; - - /* Tap points for late reverb feed and delay. */ - ALsizei LateFeedTap; - ALsizei LateDelayTap[NUM_LINES][2]; - - /* Coefficients for the all-pass and line scattering matrices. */ - ALfloat MixX; - ALfloat MixY; - - EarlyReflections Early; - - LateReverb Late; - - /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */ - ALsizei FadeCount; - - /* Maximum number of samples to process at once. */ - ALsizei MaxUpdate[2]; - - /* The current write offset for all delay lines. */ - ALsizei Offset; - - /* Temporary storage used when processing. */ - alignas(16) ALfloat TempSamples[NUM_LINES][MAX_UPDATE_SAMPLES]; - alignas(16) ALfloat MixSamples[NUM_LINES][MAX_UPDATE_SAMPLES]; -} ReverbState; - -static ALvoid ReverbState_Destruct(ReverbState *State); -static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device); -static ALvoid ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props); -static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ReverbState) - -DEFINE_ALEFFECTSTATE_VTABLE(ReverbState); - -static void ReverbState_Construct(ReverbState *state) -{ - ALsizei i, j; - - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ReverbState, ALeffectState, state); - - state->TotalSamples = 0; - state->SampleBuffer = NULL; - - state->Params.Density = AL_EAXREVERB_DEFAULT_DENSITY; - state->Params.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION; - state->Params.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME; - state->Params.HFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_HFRATIO; - state->Params.LFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_LFRATIO; - state->Params.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE; - state->Params.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE; - - for(i = 0;i < NUM_LINES;i++) - { - BiquadFilter_clear(&state->Filter[i].Lp); - BiquadFilter_clear(&state->Filter[i].Hp); - } - - state->Delay.Mask = 0; - state->Delay.Line = NULL; - - for(i = 0;i < NUM_LINES;i++) - { - state->EarlyDelayTap[i][0] = 0; - state->EarlyDelayTap[i][1] = 0; - state->EarlyDelayCoeff[i][0] = 0.0f; - state->EarlyDelayCoeff[i][1] = 0.0f; - } - - state->LateFeedTap = 0; - - for(i = 0;i < NUM_LINES;i++) - { - state->LateDelayTap[i][0] = 0; - state->LateDelayTap[i][1] = 0; - } - - state->MixX = 0.0f; - state->MixY = 0.0f; - - state->Early.VecAp.Delay.Mask = 0; - state->Early.VecAp.Delay.Line = NULL; - state->Early.VecAp.Coeff = 0.0f; - state->Early.Delay.Mask = 0; - state->Early.Delay.Line = NULL; - for(i = 0;i < NUM_LINES;i++) - { - state->Early.VecAp.Offset[i][0] = 0; - state->Early.VecAp.Offset[i][1] = 0; - state->Early.Offset[i][0] = 0; - state->Early.Offset[i][1] = 0; - state->Early.Coeff[i][0] = 0.0f; - state->Early.Coeff[i][1] = 0.0f; - } - - state->Late.DensityGain[0] = 0.0f; - state->Late.DensityGain[1] = 0.0f; - state->Late.Delay.Mask = 0; - state->Late.Delay.Line = NULL; - state->Late.VecAp.Delay.Mask = 0; - state->Late.VecAp.Delay.Line = NULL; - state->Late.VecAp.Coeff = 0.0f; - for(i = 0;i < NUM_LINES;i++) - { - state->Late.Offset[i][0] = 0; - state->Late.Offset[i][1] = 0; - - state->Late.VecAp.Offset[i][0] = 0; - state->Late.VecAp.Offset[i][1] = 0; - - state->Late.T60[i].MidGain[0] = 0.0f; - state->Late.T60[i].MidGain[1] = 0.0f; - BiquadFilter_clear(&state->Late.T60[i].HFFilter); - BiquadFilter_clear(&state->Late.T60[i].LFFilter); - } - - for(i = 0;i < NUM_LINES;i++) - { - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - { - state->Early.CurrentGain[i][j] = 0.0f; - state->Early.PanGain[i][j] = 0.0f; - state->Late.CurrentGain[i][j] = 0.0f; - state->Late.PanGain[i][j] = 0.0f; - } - } - - state->FadeCount = 0; - state->MaxUpdate[0] = MAX_UPDATE_SAMPLES; - state->MaxUpdate[1] = MAX_UPDATE_SAMPLES; - state->Offset = 0; -} - -static ALvoid ReverbState_Destruct(ReverbState *State) -{ - al_free(State->SampleBuffer); - State->SampleBuffer = NULL; - - ALeffectState_Destruct(STATIC_CAST(ALeffectState,State)); -} - -/************************************** - * Device Update * - **************************************/ - -static inline ALfloat CalcDelayLengthMult(ALfloat density) -{ - return maxf(5.0f, cbrtf(density*DENSITY_SCALE)); -} - -/* Given the allocated sample buffer, this function updates each delay line - * offset. - */ -static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay) -{ - union { - ALfloat *f; - ALfloat (*f4)[NUM_LINES]; - } u; - u.f = &sampleBuffer[(ptrdiff_t)Delay->Line * NUM_LINES]; - Delay->Line = u.f4; -} - -/* Calculate the length of a delay line and store its mask and offset. */ -static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency, - const ALuint extra, DelayLineI *Delay) -{ - ALuint samples; - - /* All line lengths are powers of 2, calculated from their lengths in - * seconds, rounded up. - */ - samples = float2int(ceilf(length*frequency)); - samples = NextPowerOf2(samples + extra); - - /* All lines share a single sample buffer. */ - Delay->Mask = samples - 1; - Delay->Line = (ALfloat(*)[NUM_LINES])offset; - - /* Return the sample count for accumulation. */ - return samples; -} - -/* Calculates the delay line metrics and allocates the shared sample buffer - * for all lines given the sample rate (frequency). If an allocation failure - * occurs, it returns AL_FALSE. - */ -static ALboolean AllocLines(const ALuint frequency, ReverbState *State) -{ - ALuint totalSamples, i; - ALfloat multiplier, length; - - /* All delay line lengths are calculated to accomodate the full range of - * lengths given their respective paramters. - */ - totalSamples = 0; - - /* Multiplier for the maximum density value, i.e. density=1, which is - * actually the least density... - */ - multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY); - - /* The main delay length includes the maximum early reflection delay, the - * largest early tap width, the maximum late reverb delay, and the - * largest late tap width. Finally, it must also be extended by the - * update size (MAX_UPDATE_SAMPLES) for block processing. - */ - length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier + - AL_EAXREVERB_MAX_LATE_REVERB_DELAY + - (LATE_LINE_LENGTHS[NUM_LINES-1] - LATE_LINE_LENGTHS[0])*0.25f*multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES, - &State->Delay); - - /* The early vector all-pass line. */ - length = EARLY_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Early.VecAp.Delay); - - /* The early reflection line. */ - length = EARLY_LINE_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Early.Delay); - - /* The late vector all-pass line. */ - length = LATE_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Late.VecAp.Delay); - - /* The late delay lines are calculated from the largest maximum density - * line length. - */ - length = LATE_LINE_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Late.Delay); - - if(totalSamples != State->TotalSamples) - { - ALfloat *newBuffer; - - TRACE("New reverb buffer length: %ux4 samples\n", totalSamples); - newBuffer = al_calloc(16, sizeof(ALfloat[NUM_LINES]) * totalSamples); - if(!newBuffer) return AL_FALSE; - - al_free(State->SampleBuffer); - State->SampleBuffer = newBuffer; - State->TotalSamples = totalSamples; - } - - /* Update all delays to reflect the new sample buffer. */ - RealizeLineOffset(State->SampleBuffer, &State->Delay); - RealizeLineOffset(State->SampleBuffer, &State->Early.VecAp.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Early.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Late.VecAp.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Late.Delay); - - /* Clear the sample buffer. */ - for(i = 0;i < State->TotalSamples;i++) - State->SampleBuffer[i] = 0.0f; - - return AL_TRUE; -} - -static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device) -{ - ALuint frequency = Device->Frequency; - ALfloat multiplier; - ALsizei i, j; - - /* Allocate the delay lines. */ - if(!AllocLines(frequency, State)) - return AL_FALSE; - - multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY); - - /* The late feed taps are set a fixed position past the latest delay tap. */ - State->LateFeedTap = float2int((AL_EAXREVERB_MAX_REFLECTIONS_DELAY + - EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier) * - frequency); - - /* Clear filters and gain coefficients since the delay lines were all just - * cleared (if not reallocated). - */ - for(i = 0;i < NUM_LINES;i++) - { - BiquadFilter_clear(&State->Filter[i].Lp); - BiquadFilter_clear(&State->Filter[i].Hp); - } - - for(i = 0;i < NUM_LINES;i++) - { - State->EarlyDelayCoeff[i][0] = 0.0f; - State->EarlyDelayCoeff[i][1] = 0.0f; - } - - for(i = 0;i < NUM_LINES;i++) - { - State->Early.Coeff[i][0] = 0.0f; - State->Early.Coeff[i][1] = 0.0f; - } - - State->Late.DensityGain[0] = 0.0f; - State->Late.DensityGain[1] = 0.0f; - for(i = 0;i < NUM_LINES;i++) - { - State->Late.T60[i].MidGain[0] = 0.0f; - State->Late.T60[i].MidGain[1] = 0.0f; - BiquadFilter_clear(&State->Late.T60[i].HFFilter); - BiquadFilter_clear(&State->Late.T60[i].LFFilter); - } - - for(i = 0;i < NUM_LINES;i++) - { - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - { - State->Early.CurrentGain[i][j] = 0.0f; - State->Early.PanGain[i][j] = 0.0f; - State->Late.CurrentGain[i][j] = 0.0f; - State->Late.PanGain[i][j] = 0.0f; - } - } - - /* Reset counters and offset base. */ - State->FadeCount = 0; - State->MaxUpdate[0] = MAX_UPDATE_SAMPLES; - State->MaxUpdate[1] = MAX_UPDATE_SAMPLES; - State->Offset = 0; - - return AL_TRUE; -} - -/************************************** - * Effect Update * - **************************************/ - -/* Calculate a decay coefficient given the length of each cycle and the time - * until the decay reaches -60 dB. - */ -static inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime) -{ - return powf(REVERB_DECAY_GAIN, length/decayTime); -} - -/* Calculate a decay length from a coefficient and the time until the decay - * reaches -60 dB. - */ -static inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime) -{ - return log10f(coeff) * decayTime / log10f(REVERB_DECAY_GAIN); -} - -/* Calculate an attenuation to be applied to the input of any echo models to - * compensate for modal density and decay time. - */ -static inline ALfloat CalcDensityGain(const ALfloat a) -{ - /* The energy of a signal can be obtained by finding the area under the - * squared signal. This takes the form of Sum(x_n^2), where x is the - * amplitude for the sample n. - * - * Decaying feedback matches exponential decay of the form Sum(a^n), - * where a is the attenuation coefficient, and n is the sample. The area - * under this decay curve can be calculated as: 1 / (1 - a). - * - * Modifying the above equation to find the area under the squared curve - * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be - * calculated by inverting the square root of this approximation, - * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). - */ - return sqrtf(1.0f - a*a); -} - -/* Calculate the scattering matrix coefficients given a diffusion factor. */ -static inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y) -{ - ALfloat n, t; - - /* The matrix is of order 4, so n is sqrt(4 - 1). */ - n = sqrtf(3.0f); - t = diffusion * atanf(n); - - /* Calculate the first mixing matrix coefficient. */ - *x = cosf(t); - /* Calculate the second mixing matrix coefficient. */ - *y = sinf(t) / n; -} - -/* Calculate the limited HF ratio for use with the late reverb low-pass - * filters. - */ -static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF, - const ALfloat decayTime, const ALfloat SpeedOfSound) -{ - ALfloat limitRatio; - - /* Find the attenuation due to air absorption in dB (converting delay - * time to meters using the speed of sound). Then reversing the decay - * equation, solve for HF ratio. The delay length is cancelled out of - * the equation, so it can be calculated once for all lines. - */ - limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound); - - /* Using the limit calculated above, apply the upper bound to the HF ratio. - */ - return minf(limitRatio, hfRatio); -} - - -/* Calculates the 3-band T60 damping coefficients for a particular delay line - * of specified length, using a combination of two shelf filter sections given - * decay times for each band split at two reference frequencies. - */ -static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, - const ALfloat lf0norm, const ALfloat hf0norm, - T60Filter *filter) -{ - ALfloat lfGain = CalcDecayCoeff(length, lfDecayTime); - ALfloat mfGain = CalcDecayCoeff(length, mfDecayTime); - ALfloat hfGain = CalcDecayCoeff(length, hfDecayTime); - - filter->MidGain[1] = mfGain; - BiquadFilter_setParams(&filter->LFFilter, BiquadType_LowShelf, lfGain/mfGain, lf0norm, - calc_rcpQ_from_slope(lfGain/mfGain, 1.0f)); - BiquadFilter_setParams(&filter->HFFilter, BiquadType_HighShelf, hfGain/mfGain, hf0norm, - calc_rcpQ_from_slope(hfGain/mfGain, 1.0f)); -} - -/* Update the offsets for the main effect delay line. */ -static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State) -{ - ALfloat multiplier, length; - ALuint i; - - multiplier = CalcDelayLengthMult(density); - - /* Early reflection taps are decorrelated by means of an average room - * reflection approximation described above the definition of the taps. - * This approximation is linear and so the above density multiplier can - * be applied to adjust the width of the taps. A single-band decay - * coefficient is applied to simulate initial attenuation and absorption. - * - * Late reverb taps are based on the late line lengths to allow a zero- - * delay path and offsets that would continue the propagation naturally - * into the late lines. - */ - for(i = 0;i < NUM_LINES;i++) - { - length = earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier; - State->EarlyDelayTap[i][1] = float2int(length * frequency); - - length = EARLY_TAP_LENGTHS[i]*multiplier; - State->EarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime); - - length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier; - State->LateDelayTap[i][1] = State->LateFeedTap + float2int(length * frequency); - } -} - -/* Update the early reflection line lengths and gain coefficients. */ -static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early) -{ - ALfloat multiplier, length; - ALsizei i; - - multiplier = CalcDelayLengthMult(density); - - /* Calculate the all-pass feed-back/forward coefficient. */ - Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f); - - for(i = 0;i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = EARLY_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - Early->VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = EARLY_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Early->Offset[i][1] = float2int(length * frequency); - - /* Calculate the gain (coefficient) for each line. */ - Early->Coeff[i][1] = CalcDecayCoeff(length, decayTime); - } -} - -/* Update the late reverb line lengths and T60 coefficients. */ -static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late) -{ - /* Scaling factor to convert the normalized reference frequencies from - * representing 0...freq to 0...max_reference. - */ - const ALfloat norm_weight_factor = (ALfloat)frequency / AL_EAXREVERB_MAX_HFREFERENCE; - ALfloat multiplier, length, bandWeights[3]; - ALsizei i; - - /* To compensate for changes in modal density and decay time of the late - * reverb signal, the input is attenuated based on the maximal energy of - * the outgoing signal. This approximation is used to keep the apparent - * energy of the signal equal for all ranges of density and decay time. - * - * The average length of the delay lines is used to calculate the - * attenuation coefficient. - */ - multiplier = CalcDelayLengthMult(density); - length = (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] + - LATE_LINE_LENGTHS[2] + LATE_LINE_LENGTHS[3]) / 4.0f * multiplier; - length += (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] + - LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f * multiplier; - /* The density gain calculation uses an average decay time weighted by - * approximate bandwidth. This attempts to compensate for losses of energy - * that reduce decay time due to scattering into highly attenuated bands. - */ - bandWeights[0] = lf0norm*norm_weight_factor; - bandWeights[1] = hf0norm*norm_weight_factor - lf0norm*norm_weight_factor; - bandWeights[2] = 1.0f - hf0norm*norm_weight_factor; - Late->DensityGain[1] = CalcDensityGain( - CalcDecayCoeff(length, - bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime - ) - ); - - /* Calculate the all-pass feed-back/forward coefficient. */ - Late->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f); - - for(i = 0;i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = LATE_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - Late->VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = LATE_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Late->Offset[i][1] = float2int(length*frequency + 0.5f); - - /* Approximate the absorption that the vector all-pass would exhibit - * given the current diffusion so we don't have to process a full T60 - * filter for each of its four lines. - */ - length += lerp(LATE_ALLPASS_LENGTHS[i], - (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] + - LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f, - diffusion) * multiplier; - - /* Calculate the T60 damping coefficients for each line. */ - CalcT60DampingCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, - lf0norm, hf0norm, &Late->T60[i]); - } -} - -/* Creates a transform matrix given a reverb vector. The vector pans the reverb - * reflections toward the given direction, using its magnitude (up to 1) as a - * focal strength. This function results in a B-Format transformation matrix - * that spatially focuses the signal in the desired direction. - */ -static aluMatrixf GetTransformFromVector(const ALfloat *vec) -{ - aluMatrixf focus; - ALfloat norm[3]; - ALfloat mag; - - /* Normalize the panning vector according to the N3D scale, which has an - * extra sqrt(3) term on the directional components. Converting from OpenAL - * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however - * that the reverb panning vectors use left-handed coordinates, unlike the - * rest of OpenAL which use right-handed. This is fixed by negating Z, - * which cancels out with the B-Format Z negation. - */ - mag = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); - if(mag > 1.0f) - { - norm[0] = vec[0] / mag * -SQRTF_3; - norm[1] = vec[1] / mag * SQRTF_3; - norm[2] = vec[2] / mag * SQRTF_3; - mag = 1.0f; - } - else - { - /* If the magnitude is less than or equal to 1, just apply the sqrt(3) - * term. There's no need to renormalize the magnitude since it would - * just be reapplied in the matrix. - */ - norm[0] = vec[0] * -SQRTF_3; - norm[1] = vec[1] * SQRTF_3; - norm[2] = vec[2] * SQRTF_3; - } - - aluMatrixfSet(&focus, - 1.0f, 0.0f, 0.0f, 0.0f, - norm[0], 1.0f-mag, 0.0f, 0.0f, - norm[1], 0.0f, 1.0f-mag, 0.0f, - norm[2], 0.0f, 0.0f, 1.0f-mag - ); - - return focus; -} - -/* Update the early and late 3D panning gains. */ -static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State) -{ - aluMatrixf transform, rot; - ALsizei i; - - STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels; - - /* Note: _res is transposed. */ -#define MATRIX_MULT(_res, _m1, _m2) do { \ - int row, col; \ - for(col = 0;col < 4;col++) \ - { \ - for(row = 0;row < 4;row++) \ - _res.m[col][row] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \ - _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \ - } \ -} while(0) - /* Create a matrix that first converts A-Format to B-Format, then - * transforms the B-Format signal according to the panning vector. - */ - rot = GetTransformFromVector(ReflectionsPan); - MATRIX_MULT(transform, rot, A2B); - memset(&State->Early.PanGain, 0, sizeof(State->Early.PanGain)); - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&Device->FOAOut, transform.m[i], earlyGain, - State->Early.PanGain[i]); - - rot = GetTransformFromVector(LateReverbPan); - MATRIX_MULT(transform, rot, A2B); - memset(&State->Late.PanGain, 0, sizeof(State->Late.PanGain)); - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&Device->FOAOut, transform.m[i], lateGain, - State->Late.PanGain[i]); -#undef MATRIX_MULT -} - -static void ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props) -{ - const ALCdevice *Device = Context->Device; - const ALlistener *Listener = Context->Listener; - ALuint frequency = Device->Frequency; - ALfloat lf0norm, hf0norm, hfRatio; - ALfloat lfDecayTime, hfDecayTime; - ALfloat gain, gainlf, gainhf; - ALsizei i; - - /* Calculate the master filters */ - hf0norm = minf(props->Reverb.HFReference / frequency, 0.49f); - /* Restrict the filter gains from going below -60dB to keep the filter from - * killing most of the signal. - */ - gainhf = maxf(props->Reverb.GainHF, 0.001f); - BiquadFilter_setParams(&State->Filter[0].Lp, BiquadType_HighShelf, gainhf, hf0norm, - calc_rcpQ_from_slope(gainhf, 1.0f)); - lf0norm = minf(props->Reverb.LFReference / frequency, 0.49f); - gainlf = maxf(props->Reverb.GainLF, 0.001f); - BiquadFilter_setParams(&State->Filter[0].Hp, BiquadType_LowShelf, gainlf, lf0norm, - calc_rcpQ_from_slope(gainlf, 1.0f)); - for(i = 1;i < NUM_LINES;i++) - { - BiquadFilter_copyParams(&State->Filter[i].Lp, &State->Filter[0].Lp); - BiquadFilter_copyParams(&State->Filter[i].Hp, &State->Filter[0].Hp); - } - - /* Update the main effect delay and associated taps. */ - UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, - props->Reverb.Density, props->Reverb.DecayTime, frequency, - State); - - /* Update the early lines. */ - UpdateEarlyLines(props->Reverb.Density, props->Reverb.Diffusion, - props->Reverb.DecayTime, frequency, &State->Early); - - /* Get the mixing matrix coefficients. */ - CalcMatrixCoeffs(props->Reverb.Diffusion, &State->MixX, &State->MixY); - - /* If the HF limit parameter is flagged, calculate an appropriate limit - * based on the air absorption parameter. - */ - hfRatio = props->Reverb.DecayHFRatio; - if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) - hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, - props->Reverb.DecayTime, Listener->Params.ReverbSpeedOfSound - ); - - /* Calculate the LF/HF decay times. */ - lfDecayTime = clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME); - hfDecayTime = clampf(props->Reverb.DecayTime * hfRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME); - - /* Update the late lines. */ - UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion, - lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, - frequency, &State->Late - ); - - /* Update early and late 3D panning. */ - gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost; - Update3DPanning(Device, props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, - props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, - State); - - /* Calculate the max update size from the smallest relevant delay. */ - State->MaxUpdate[1] = mini(MAX_UPDATE_SAMPLES, - mini(State->Early.Offset[0][1], State->Late.Offset[0][1]) - ); - - /* Determine if delay-line cross-fading is required. Density is essentially - * a master control for the feedback delays, so changes the offsets of many - * delay lines. - */ - if(State->Params.Density != props->Reverb.Density || - /* Diffusion and decay times influences the decay rate (gain) of the - * late reverb T60 filter. - */ - State->Params.Diffusion != props->Reverb.Diffusion || - State->Params.DecayTime != props->Reverb.DecayTime || - State->Params.HFDecayTime != hfDecayTime || - State->Params.LFDecayTime != lfDecayTime || - /* HF/LF References control the weighting used to calculate the density - * gain. - */ - State->Params.HFReference != props->Reverb.HFReference || - State->Params.LFReference != props->Reverb.LFReference) - State->FadeCount = 0; - State->Params.Density = props->Reverb.Density; - State->Params.Diffusion = props->Reverb.Diffusion; - State->Params.DecayTime = props->Reverb.DecayTime; - State->Params.HFDecayTime = hfDecayTime; - State->Params.LFDecayTime = lfDecayTime; - State->Params.HFReference = props->Reverb.HFReference; - State->Params.LFReference = props->Reverb.LFReference; -} - - -/************************************** - * Effect Processing * - **************************************/ - -/* Basic delay line input/output routines. */ -static inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c) -{ - return Delay->Line[offset&Delay->Mask][c]; -} - -/* Cross-faded delay line output routine. Instead of interpolating the - * offsets, this interpolates (cross-fades) the outputs at each offset. - */ -static inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0, - const ALsizei off1, const ALsizei c, - const ALfloat sc0, const ALfloat sc1) -{ - return Delay->Line[off0&Delay->Mask][c]*sc0 + - Delay->Line[off1&Delay->Mask][c]*sc1; -} - - -static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c, - const ALfloat *restrict in, ALsizei count) -{ - ALsizei i; - for(i = 0;i < count;i++) - Delay->Line[(offset++)&Delay->Mask][c] = *(in++); -} - -/* Applies a scattering matrix to the 4-line (vector) input. This is used - * for both the below vector all-pass model and to perform modal feed-back - * delay network (FDN) mixing. - * - * The matrix is derived from a skew-symmetric matrix to form a 4D rotation - * matrix with a single unitary rotational parameter: - * - * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 - * [ -a, d, c, -b ] - * [ -b, -c, d, a ] - * [ -c, b, -a, d ] - * - * The rotation is constructed from the effect's diffusion parameter, - * yielding: - * - * 1 = x^2 + 3 y^2 - * - * Where a, b, and c are the coefficient y with differing signs, and d is the - * coefficient x. The final matrix is thus: - * - * [ x, y, -y, y ] n = sqrt(matrix_order - 1) - * [ -y, x, y, y ] t = diffusion_parameter * atan(n) - * [ y, -y, x, y ] x = cos(t) - * [ -y, -y, -y, x ] y = sin(t) / n - * - * Any square orthogonal matrix with an order that is a power of two will - * work (where ^T is transpose, ^-1 is inverse): - * - * M^T = M^-1 - * - * Using that knowledge, finding an appropriate matrix can be accomplished - * naively by searching all combinations of: - * - * M = D + S - S^T - * - * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) - * whose combination of signs are being iterated. - */ -static inline void VectorPartialScatter(ALfloat *restrict out, const ALfloat *restrict in, - const ALfloat xCoeff, const ALfloat yCoeff) -{ - out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]); - out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]); - out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]); - out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ); -} -#define VectorScatterDelayIn(delay, o, in, xcoeff, ycoeff) \ - VectorPartialScatter((delay)->Line[(o)&(delay)->Mask], in, xcoeff, ycoeff) - -/* Utilizes the above, but reverses the input channels. */ -static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset, - const ALfloat xCoeff, const ALfloat yCoeff, - const ALfloat (*restrict in)[MAX_UPDATE_SAMPLES], - const ALsizei count) -{ - const DelayLineI delay = *Delay; - ALsizei i, j; - - for(i = 0;i < count;++i) - { - ALfloat f[NUM_LINES]; - for(j = 0;j < NUM_LINES;j++) - f[NUM_LINES-1-j] = in[j][i]; - - VectorScatterDelayIn(&delay, offset++, f, xCoeff, yCoeff); - } -} - -/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass - * filter to the 4-line input. - * - * It works by vectorizing a regular all-pass filter and replacing the delay - * element with a scattering matrix (like the one above) and a diagonal - * matrix of delay elements. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -static void VectorAllpass_Unfaded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo, - VecAllpass *Vap) -{ - const DelayLineI delay = Vap->Delay; - const ALfloat feedCoeff = Vap->Coeff; - ALsizei vap_offset[NUM_LINES]; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - vap_offset[j] = offset-Vap->Offset[j][0]; - for(i = 0;i < todo;i++) - { - ALfloat f[NUM_LINES]; - - for(j = 0;j < NUM_LINES;j++) - { - ALfloat input = samples[j][i]; - ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - - VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff); - ++offset; - } -} -static void VectorAllpass_Faded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, - ALsizei todo, VecAllpass *Vap) -{ - const DelayLineI delay = Vap->Delay; - const ALfloat feedCoeff = Vap->Coeff; - ALsizei vap_offset[NUM_LINES][2]; - ALsizei i, j; - - ASSUME(todo > 0); - - fade *= 1.0f/FADE_SAMPLES; - for(j = 0;j < NUM_LINES;j++) - { - vap_offset[j][0] = offset-Vap->Offset[j][0]; - vap_offset[j][1] = offset-Vap->Offset[j][1]; - } - for(i = 0;i < todo;i++) - { - ALfloat f[NUM_LINES]; - - for(j = 0;j < NUM_LINES;j++) - { - ALfloat input = samples[j][i]; - ALfloat out = - FadedDelayLineOut(&delay, vap_offset[j][0]++, vap_offset[j][1]++, j, - 1.0f-fade, fade - ) - feedCoeff*input; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - fade += FadeStep; - - VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff); - ++offset; - } -} - -/* This generates early reflections. - * - * This is done by obtaining the primary reflections (those arriving from the - * same direction as the source) from the main delay line. These are - * attenuated and all-pass filtered (based on the diffusion parameter). - * - * The early lines are then fed in reverse (according to the approximately - * opposite spatial location of the A-Format lines) to create the secondary - * reflections (those arriving from the opposite direction as the source). - * - * The early response is then completed by combining the primary reflections - * with the delayed and attenuated output from the early lines. - * - * Finally, the early response is reversed, scattered (based on diffusion), - * and fed into the late reverb section of the main delay line. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo, - ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI early_delay = State->Early.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei late_feed_tap; - ALsizei i, j; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main delay line as the primary - * reflections. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALsizei early_delay_tap = offset - State->EarlyDelayTap[j][0]; - ALfloat coeff = State->EarlyDelayCoeff[j][0]; - for(i = 0;i < todo;i++) - temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff; - } - - /* Apply a vector all-pass, to help color the initial reflections based on - * the diffusion strength. - */ - VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Early.VecAp); - - /* Apply a delay and bounce to generate secondary reflections, combine with - * the primary reflections and write out the result for mixing. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALint early_feedb_tap = offset - State->Early.Offset[j][0]; - ALfloat early_feedb_coeff = State->Early.Coeff[j][0]; - - for(i = 0;i < todo;i++) - out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff + - temps[j][i]; - } - for(j = 0;j < NUM_LINES;j++) - DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo); - - /* Also write the result back to the main delay line for the late reverb - * stage to pick up at the appropriate time, appplying a scatter and - * bounce to improve the initial diffusion in the late reverb. - */ - late_feed_tap = offset - State->LateFeedTap; - VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo); -} -static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, - const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI early_delay = State->Early.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei late_feed_tap; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - { - ALsizei early_delay_tap0 = offset - State->EarlyDelayTap[j][0]; - ALsizei early_delay_tap1 = offset - State->EarlyDelayTap[j][1]; - ALfloat oldCoeff = State->EarlyDelayCoeff[j][0]; - ALfloat oldCoeffStep = -oldCoeff / FADE_SAMPLES; - ALfloat newCoeffStep = State->EarlyDelayCoeff[j][1] / FADE_SAMPLES; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount; - const ALfloat fade1 = newCoeffStep*fadeCount; - temps[j][i] = FadedDelayLineOut(&main_delay, - early_delay_tap0++, early_delay_tap1++, j, fade0, fade1 - ); - fadeCount += 1.0f; - } - } - - VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Early.VecAp); - - for(j = 0;j < NUM_LINES;j++) - { - ALint feedb_tap0 = offset - State->Early.Offset[j][0]; - ALint feedb_tap1 = offset - State->Early.Offset[j][1]; - ALfloat feedb_oldCoeff = State->Early.Coeff[j][0]; - ALfloat feedb_oldCoeffStep = -feedb_oldCoeff / FADE_SAMPLES; - ALfloat feedb_newCoeffStep = State->Early.Coeff[j][1] / FADE_SAMPLES; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = feedb_oldCoeff + feedb_oldCoeffStep*fadeCount; - const ALfloat fade1 = feedb_newCoeffStep*fadeCount; - out[j][i] = FadedDelayLineOut(&early_delay, - feedb_tap0++, feedb_tap1++, j, fade0, fade1 - ) + temps[j][i]; - fadeCount += 1.0f; - } - } - for(j = 0;j < NUM_LINES;j++) - DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo); - - late_feed_tap = offset - State->LateFeedTap; - VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo); -} - -/* Applies the two T60 damping filter sections. */ -static inline void LateT60Filter(ALfloat *restrict samples, const ALsizei todo, T60Filter *filter) -{ - ALfloat temp[MAX_UPDATE_SAMPLES]; - BiquadFilter_process(&filter->HFFilter, temp, samples, todo); - BiquadFilter_process(&filter->LFFilter, samples, temp, todo); -} - -/* This generates the reverb tail using a modified feed-back delay network - * (FDN). - * - * Results from the early reflections are mixed with the output from the late - * delay lines. - * - * The late response is then completed by T60 and all-pass filtering the mix. - * - * Finally, the lines are reversed (so they feed their opposite directions) - * and scattered with the FDN matrix before re-feeding the delay lines. - * - * Two variations are made, one for for transitional (cross-faded) delay line - * processing and one for non-transitional processing. - */ -static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo, - ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI late_delay = State->Late.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei i, j; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main and feedback delay lines. - * Filter the signal to apply its frequency-dependent decay. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALsizei late_delay_tap = offset - State->LateDelayTap[j][0]; - ALsizei late_feedb_tap = offset - State->Late.Offset[j][0]; - ALfloat midGain = State->Late.T60[j].MidGain[0]; - const ALfloat densityGain = State->Late.DensityGain[0] * midGain; - for(i = 0;i < todo;i++) - temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain + - DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain; - LateT60Filter(temps[j], todo, &State->Late.T60[j]); - } - - /* Apply a vector all-pass to improve micro-surface diffusion, and write - * out the results for mixing. - */ - VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Late.VecAp); - - for(j = 0;j < NUM_LINES;j++) - memcpy(out[j], temps[j], todo*sizeof(ALfloat)); - - /* Finally, scatter and bounce the results to refeed the feedback buffer. */ - VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, out, todo); -} -static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, - const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI late_delay = State->Late.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - { - const ALfloat oldMidGain = State->Late.T60[j].MidGain[0]; - const ALfloat midGain = State->Late.T60[j].MidGain[1]; - const ALfloat oldMidStep = -oldMidGain / FADE_SAMPLES; - const ALfloat midStep = midGain / FADE_SAMPLES; - const ALfloat oldDensityGain = State->Late.DensityGain[0] * oldMidGain; - const ALfloat densityGain = State->Late.DensityGain[1] * midGain; - const ALfloat oldDensityStep = -oldDensityGain / FADE_SAMPLES; - const ALfloat densityStep = densityGain / FADE_SAMPLES; - ALsizei late_delay_tap0 = offset - State->LateDelayTap[j][0]; - ALsizei late_delay_tap1 = offset - State->LateDelayTap[j][1]; - ALsizei late_feedb_tap0 = offset - State->Late.Offset[j][0]; - ALsizei late_feedb_tap1 = offset - State->Late.Offset[j][1]; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = oldDensityGain + oldDensityStep*fadeCount; - const ALfloat fade1 = densityStep*fadeCount; - const ALfloat gfade0 = oldMidGain + oldMidStep*fadeCount; - const ALfloat gfade1 = midStep*fadeCount; - temps[j][i] = - FadedDelayLineOut(&main_delay, late_delay_tap0++, late_delay_tap1++, j, - fade0, fade1) + - FadedDelayLineOut(&late_delay, late_feedb_tap0++, late_feedb_tap1++, j, - gfade0, gfade1); - fadeCount += 1.0f; - } - LateT60Filter(temps[j], todo, &State->Late.T60[j]); - } - - VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Late.VecAp); - - for(j = 0;j < NUM_LINES;j++) - memcpy(out[j], temps[j], todo*sizeof(ALfloat)); - - VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, temps, todo); -} - -static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - ALfloat (*restrict afmt)[MAX_UPDATE_SAMPLES] = State->TempSamples; - ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES] = State->MixSamples; - ALsizei fadeCount = State->FadeCount; - ALsizei offset = State->Offset; - ALsizei base, c; - - /* Process reverb for these samples. */ - for(base = 0;base < SamplesToDo;) - { - ALsizei todo = SamplesToDo - base; - /* If cross-fading, don't do more samples than there are to fade. */ - if(FADE_SAMPLES-fadeCount > 0) - { - todo = mini(todo, FADE_SAMPLES-fadeCount); - todo = mini(todo, State->MaxUpdate[0]); - } - todo = mini(todo, State->MaxUpdate[1]); - /* If this is not the final update, ensure the update size is a - * multiple of 4 for the SIMD mixers. - */ - if(todo < SamplesToDo-base) - todo &= ~3; - - /* Convert B-Format to A-Format for processing. */ - memset(afmt, 0, sizeof(*afmt)*NUM_LINES); - for(c = 0;c < NUM_LINES;c++) - MixRowSamples(afmt[c], B2A.m[c], - SamplesIn, MAX_EFFECT_CHANNELS, base, todo - ); - - /* Process the samples for reverb. */ - for(c = 0;c < NUM_LINES;c++) - { - /* Band-pass the incoming samples. */ - BiquadFilter_process(&State->Filter[c].Lp, samples[0], afmt[c], todo); - BiquadFilter_process(&State->Filter[c].Hp, samples[1], samples[0], todo); - - /* Feed the initial delay line. */ - DelayLineIn(&State->Delay, offset, c, samples[1], todo); - } - - if(UNLIKELY(fadeCount < FADE_SAMPLES)) - { - ALfloat fade = (ALfloat)fadeCount; - - /* Generate early reflections. */ - EarlyReflection_Faded(State, offset, todo, fade, samples); - /* Mix the A-Format results to output, implicitly converting back - * to B-Format. - */ - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Early.CurrentGain[c], State->Early.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Generate and mix late reverb. */ - LateReverb_Faded(State, offset, todo, fade, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Late.CurrentGain[c], State->Late.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Step fading forward. */ - fadeCount += todo; - if(LIKELY(fadeCount >= FADE_SAMPLES)) - { - /* Update the cross-fading delay line taps. */ - fadeCount = FADE_SAMPLES; - for(c = 0;c < NUM_LINES;c++) - { - State->EarlyDelayTap[c][0] = State->EarlyDelayTap[c][1]; - State->EarlyDelayCoeff[c][0] = State->EarlyDelayCoeff[c][1]; - State->Early.VecAp.Offset[c][0] = State->Early.VecAp.Offset[c][1]; - State->Early.Offset[c][0] = State->Early.Offset[c][1]; - State->Early.Coeff[c][0] = State->Early.Coeff[c][1]; - State->LateDelayTap[c][0] = State->LateDelayTap[c][1]; - State->Late.VecAp.Offset[c][0] = State->Late.VecAp.Offset[c][1]; - State->Late.Offset[c][0] = State->Late.Offset[c][1]; - State->Late.T60[c].MidGain[0] = State->Late.T60[c].MidGain[1]; - } - State->Late.DensityGain[0] = State->Late.DensityGain[1]; - State->MaxUpdate[0] = State->MaxUpdate[1]; - } - } - else - { - /* Generate and mix early reflections. */ - EarlyReflection_Unfaded(State, offset, todo, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Early.CurrentGain[c], State->Early.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Generate and mix late reverb. */ - LateReverb_Unfaded(State, offset, todo, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Late.CurrentGain[c], State->Late.PanGain[c], - SamplesToDo-base, base, todo - ); - } - - /* Step all delays forward. */ - offset += todo; - - base += todo; - } - State->Offset = offset; - State->FadeCount = fadeCount; -} - - -typedef struct ReverbStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} ReverbStateFactory; - -static ALeffectState *ReverbStateFactory_create(ReverbStateFactory* UNUSED(factory)) -{ - ReverbState *state; - - NEW_OBJ0(state, ReverbState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(ReverbStateFactory); - -EffectStateFactory *ReverbStateFactory_getFactory(void) -{ - static ReverbStateFactory ReverbFactory = { { GET_VTABLE2(ReverbStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &ReverbFactory); -} - - -void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALeaxreverb_setParami(effect, context, param, vals[0]); } -void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DENSITY: - if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_EAXREVERB_DIFFUSION: - if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_EAXREVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_EAXREVERB_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_EAXREVERB_GAINLF: - if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range"); - props->Reverb.GainLF = val; - break; - - case AL_EAXREVERB_DECAY_TIME: - if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range"); - props->Reverb.DecayLFRatio = val; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_EAXREVERB_ECHO_TIME: - if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range"); - props->Reverb.EchoTime = val; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range"); - props->Reverb.EchoDepth = val; - break; - - case AL_EAXREVERB_MODULATION_TIME: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range"); - props->Reverb.ModulationTime = val; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range"); - props->Reverb.ModulationDepth = val; - break; - - case AL_EAXREVERB_HFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range"); - props->Reverb.HFReference = val; - break; - - case AL_EAXREVERB_LFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range"); - props->Reverb.LFReference = val; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range"); - props->Reverb.ReflectionsPan[0] = vals[0]; - props->Reverb.ReflectionsPan[1] = vals[1]; - props->Reverb.ReflectionsPan[2] = vals[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range"); - props->Reverb.LateReverbPan[0] = vals[0]; - props->Reverb.LateReverbPan[1] = vals[1]; - props->Reverb.LateReverbPan[2] = vals[2]; - break; - - default: - ALeaxreverb_setParamf(effect, context, param, vals[0]); - break; - } -} - -void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALeaxreverb_getParami(effect, context, param, vals); } -void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_EAXREVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_EAXREVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_EAXREVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_EAXREVERB_GAINLF: - *val = props->Reverb.GainLF; - break; - - case AL_EAXREVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - *val = props->Reverb.DecayLFRatio; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_EAXREVERB_ECHO_TIME: - *val = props->Reverb.EchoTime; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - *val = props->Reverb.EchoDepth; - break; - - case AL_EAXREVERB_MODULATION_TIME: - *val = props->Reverb.ModulationTime; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - *val = props->Reverb.ModulationDepth; - break; - - case AL_EAXREVERB_HFREFERENCE: - *val = props->Reverb.HFReference; - break; - - case AL_EAXREVERB_LFREFERENCE: - *val = props->Reverb.LFReference; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - vals[0] = props->Reverb.ReflectionsPan[0]; - vals[1] = props->Reverb.ReflectionsPan[1]; - vals[2] = props->Reverb.ReflectionsPan[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - vals[0] = props->Reverb.LateReverbPan[0]; - vals[1] = props->Reverb.LateReverbPan[1]; - vals[2] = props->Reverb.LateReverbPan[2]; - break; - - default: - ALeaxreverb_getParamf(effect, context, param, vals); - break; - } -} - -DEFINE_ALEFFECT_VTABLE(ALeaxreverb); - -void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALreverb_setParami(effect, context, param, vals[0]); } -void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DENSITY: - if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_REVERB_DIFFUSION: - if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_REVERB_GAINHF: - if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_REVERB_DECAY_TIME: - if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_REVERB_DECAY_HFRATIO: - if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALreverb_setParamf(effect, context, param, vals[0]); } - -void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALreverb_getParami(effect, context, param, vals); } -void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_REVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_REVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_REVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_REVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_REVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALreverb_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALreverb); |