diff options
Diffstat (limited to 'Alc/effects')
-rw-r--r-- | Alc/effects/autowah.c | 321 | ||||
-rw-r--r-- | Alc/effects/chorus.c | 555 | ||||
-rw-r--r-- | Alc/effects/compressor.c | 243 | ||||
-rw-r--r-- | Alc/effects/dedicated.c | 184 | ||||
-rw-r--r-- | Alc/effects/distortion.c | 286 | ||||
-rw-r--r-- | Alc/effects/echo.c | 310 | ||||
-rw-r--r-- | Alc/effects/equalizer.c | 355 | ||||
-rw-r--r-- | Alc/effects/fshifter.c | 329 | ||||
-rw-r--r-- | Alc/effects/modulator.c | 307 | ||||
-rw-r--r-- | Alc/effects/null.c | 179 | ||||
-rw-r--r-- | Alc/effects/pshifter.c | 441 | ||||
-rw-r--r-- | Alc/effects/reverb.c | 2090 |
12 files changed, 0 insertions, 5600 deletions
diff --git a/Alc/effects/autowah.c b/Alc/effects/autowah.c deleted file mode 100644 index ba1180ef..00000000 --- a/Alc/effects/autowah.c +++ /dev/null @@ -1,321 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - -#define MIN_FREQ 20.0f -#define MAX_FREQ 2500.0f -#define Q_FACTOR 5.0f - -typedef struct ALautowahState { - DERIVE_FROM_TYPE(ALeffectState); - - /* Effect parameters */ - ALfloat AttackRate; - ALfloat ReleaseRate; - ALfloat ResonanceGain; - ALfloat PeakGain; - ALfloat FreqMinNorm; - ALfloat BandwidthNorm; - ALfloat env_delay; - - /* Filter components derived from the envelope. */ - struct { - ALfloat cos_w0; - ALfloat alpha; - } Env[BUFFERSIZE]; - - struct { - /* Effect filters' history. */ - struct { - ALfloat z1, z2; - } Filter; - - /* Effect gains for each output channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; - } Chans[MAX_EFFECT_CHANNELS]; - - /* Effects buffers */ - alignas(16) ALfloat BufferOut[BUFFERSIZE]; -} ALautowahState; - -static ALvoid ALautowahState_Destruct(ALautowahState *state); -static ALboolean ALautowahState_deviceUpdate(ALautowahState *state, ALCdevice *device); -static ALvoid ALautowahState_update(ALautowahState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALautowahState_process(ALautowahState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALautowahState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALautowahState); - -static void ALautowahState_Construct(ALautowahState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALautowahState, ALeffectState, state); -} - -static ALvoid ALautowahState_Destruct(ALautowahState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALautowahState_deviceUpdate(ALautowahState *state, ALCdevice *UNUSED(device)) -{ - /* (Re-)initializing parameters and clear the buffers. */ - ALsizei i, j; - - state->AttackRate = 1.0f; - state->ReleaseRate = 1.0f; - state->ResonanceGain = 10.0f; - state->PeakGain = 4.5f; - state->FreqMinNorm = 4.5e-4f; - state->BandwidthNorm = 0.05f; - state->env_delay = 0.0f; - - memset(state->Env, 0, sizeof(state->Env)); - - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - { - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - state->Chans[i].CurrentGains[j] = 0.0f; - state->Chans[i].Filter.z1 = 0.0f; - state->Chans[i].Filter.z2 = 0.0f; - } - - return AL_TRUE; -} - -static ALvoid ALautowahState_update(ALautowahState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat ReleaseTime; - ALsizei i; - - ReleaseTime = clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f); - - state->AttackRate = expf(-1.0f / (props->Autowah.AttackTime*device->Frequency)); - state->ReleaseRate = expf(-1.0f / (ReleaseTime*device->Frequency)); - /* 0-20dB Resonance Peak gain */ - state->ResonanceGain = sqrtf(log10f(props->Autowah.Resonance)*10.0f / 3.0f); - state->PeakGain = 1.0f - log10f(props->Autowah.PeakGain/AL_AUTOWAH_MAX_PEAK_GAIN); - state->FreqMinNorm = MIN_FREQ / device->Frequency; - state->BandwidthNorm = (MAX_FREQ-MIN_FREQ) / device->Frequency; - - STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels; - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&device->FOAOut, IdentityMatrixf.m[i], slot->Params.Gain, - state->Chans[i].TargetGains); -} - -static ALvoid ALautowahState_process(ALautowahState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - const ALfloat attack_rate = state->AttackRate; - const ALfloat release_rate = state->ReleaseRate; - const ALfloat res_gain = state->ResonanceGain; - const ALfloat peak_gain = state->PeakGain; - const ALfloat freq_min = state->FreqMinNorm; - const ALfloat bandwidth = state->BandwidthNorm; - ALfloat env_delay; - ALsizei c, i; - - env_delay = state->env_delay; - for(i = 0;i < SamplesToDo;i++) - { - ALfloat w0, sample, a; - - /* Envelope follower described on the book: Audio Effects, Theory, - * Implementation and Application. - */ - sample = peak_gain * fabsf(SamplesIn[0][i]); - a = (sample > env_delay) ? attack_rate : release_rate; - env_delay = lerp(sample, env_delay, a); - - /* Calculate the cos and alpha components for this sample's filter. */ - w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * F_TAU; - state->Env[i].cos_w0 = cosf(w0); - state->Env[i].alpha = sinf(w0)/(2.0f * Q_FACTOR); - } - state->env_delay = env_delay; - - for(c = 0;c < MAX_EFFECT_CHANNELS; c++) - { - /* This effectively inlines BiquadFilter_setParams for a peaking - * filter and BiquadFilter_processC. The alpha and cosine components - * for the filter coefficients were previously calculated with the - * envelope. Because the filter changes for each sample, the - * coefficients are transient and don't need to be held. - */ - ALfloat z1 = state->Chans[c].Filter.z1; - ALfloat z2 = state->Chans[c].Filter.z2; - - for(i = 0;i < SamplesToDo;i++) - { - const ALfloat alpha = state->Env[i].alpha; - const ALfloat cos_w0 = state->Env[i].cos_w0; - ALfloat input, output; - ALfloat a[3], b[3]; - - b[0] = 1.0f + alpha*res_gain; - b[1] = -2.0f * cos_w0; - b[2] = 1.0f - alpha*res_gain; - a[0] = 1.0f + alpha/res_gain; - a[1] = -2.0f * cos_w0; - a[2] = 1.0f - alpha/res_gain; - - input = SamplesIn[c][i]; - output = input*(b[0]/a[0]) + z1; - z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2; - z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]); - state->BufferOut[i] = output; - } - state->Chans[c].Filter.z1 = z1; - state->Chans[c].Filter.z2 = z2; - - /* Now, mix the processed sound data to the output. */ - MixSamples(state->BufferOut, NumChannels, SamplesOut, state->Chans[c].CurrentGains, - state->Chans[c].TargetGains, SamplesToDo, 0, SamplesToDo); - } -} - -typedef struct AutowahStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} AutowahStateFactory; - -static ALeffectState *AutowahStateFactory_create(AutowahStateFactory *UNUSED(factory)) -{ - ALautowahState *state; - - NEW_OBJ0(state, ALautowahState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(AutowahStateFactory); - -EffectStateFactory *AutowahStateFactory_getFactory(void) -{ - static AutowahStateFactory AutowahFactory = { { GET_VTABLE2(AutowahStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &AutowahFactory); -} - -void ALautowah_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_AUTOWAH_ATTACK_TIME: - if(!(val >= AL_AUTOWAH_MIN_ATTACK_TIME && val <= AL_AUTOWAH_MAX_ATTACK_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah attack time out of range"); - props->Autowah.AttackTime = val; - break; - - case AL_AUTOWAH_RELEASE_TIME: - if(!(val >= AL_AUTOWAH_MIN_RELEASE_TIME && val <= AL_AUTOWAH_MAX_RELEASE_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah release time out of range"); - props->Autowah.ReleaseTime = val; - break; - - case AL_AUTOWAH_RESONANCE: - if(!(val >= AL_AUTOWAH_MIN_RESONANCE && val <= AL_AUTOWAH_MAX_RESONANCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah resonance out of range"); - props->Autowah.Resonance = val; - break; - - case AL_AUTOWAH_PEAK_GAIN: - if(!(val >= AL_AUTOWAH_MIN_PEAK_GAIN && val <= AL_AUTOWAH_MAX_PEAK_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah peak gain out of range"); - props->Autowah.PeakGain = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid autowah float property 0x%04x", param); - } -} - -void ALautowah_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - ALautowah_setParamf(effect, context, param, vals[0]); -} - -void ALautowah_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer property 0x%04x", param); -} - -void ALautowah_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint *UNUSED(vals)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer vector property 0x%04x", param); -} - -void ALautowah_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(val)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer property 0x%04x", param); -} -void ALautowah_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(vals)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer vector property 0x%04x", param); -} - -void ALautowah_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_AUTOWAH_ATTACK_TIME: - *val = props->Autowah.AttackTime; - break; - - case AL_AUTOWAH_RELEASE_TIME: - *val = props->Autowah.ReleaseTime; - break; - - case AL_AUTOWAH_RESONANCE: - *val = props->Autowah.Resonance; - break; - - case AL_AUTOWAH_PEAK_GAIN: - *val = props->Autowah.PeakGain; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid autowah float property 0x%04x", param); - } - -} - -void ALautowah_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ - ALautowah_getParamf(effect, context, param, vals); -} - -DEFINE_ALEFFECT_VTABLE(ALautowah); diff --git a/Alc/effects/chorus.c b/Alc/effects/chorus.c deleted file mode 100644 index f2861cf5..00000000 --- a/Alc/effects/chorus.c +++ /dev/null @@ -1,555 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch"); -static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch"); - -enum WaveForm { - WF_Sinusoid, - WF_Triangle -}; - -typedef struct ALchorusState { - DERIVE_FROM_TYPE(ALeffectState); - - ALfloat *SampleBuffer; - ALsizei BufferLength; - ALsizei offset; - - ALsizei lfo_offset; - ALsizei lfo_range; - ALfloat lfo_scale; - ALint lfo_disp; - - /* Gains for left and right sides */ - struct { - ALfloat Current[MAX_OUTPUT_CHANNELS]; - ALfloat Target[MAX_OUTPUT_CHANNELS]; - } Gains[2]; - - /* effect parameters */ - enum WaveForm waveform; - ALint delay; - ALfloat depth; - ALfloat feedback; -} ALchorusState; - -static ALvoid ALchorusState_Destruct(ALchorusState *state); -static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device); -static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props); -static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALchorusState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALchorusState); - - -static void ALchorusState_Construct(ALchorusState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALchorusState, ALeffectState, state); - - state->BufferLength = 0; - state->SampleBuffer = NULL; - state->offset = 0; - state->lfo_offset = 0; - state->lfo_range = 1; - state->waveform = WF_Triangle; -} - -static ALvoid ALchorusState_Destruct(ALchorusState *state) -{ - al_free(state->SampleBuffer); - state->SampleBuffer = NULL; - - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device) -{ - const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY); - ALsizei maxlen; - - maxlen = NextPowerOf2(float2int(max_delay*2.0f*Device->Frequency) + 1u); - if(maxlen <= 0) return AL_FALSE; - - if(maxlen != state->BufferLength) - { - void *temp = al_calloc(16, maxlen * sizeof(ALfloat)); - if(!temp) return AL_FALSE; - - al_free(state->SampleBuffer); - state->SampleBuffer = temp; - - state->BufferLength = maxlen; - } - - memset(state->SampleBuffer, 0, state->BufferLength*sizeof(ALfloat)); - memset(state->Gains, 0, sizeof(state->Gains)); - - return AL_TRUE; -} - -static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props) -{ - const ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS; - const ALCdevice *device = Context->Device; - ALfloat frequency = (ALfloat)device->Frequency; - ALfloat coeffs[MAX_AMBI_COEFFS]; - ALfloat rate; - ALint phase; - - switch(props->Chorus.Waveform) - { - case AL_CHORUS_WAVEFORM_TRIANGLE: - state->waveform = WF_Triangle; - break; - case AL_CHORUS_WAVEFORM_SINUSOID: - state->waveform = WF_Sinusoid; - break; - } - - /* The LFO depth is scaled to be relative to the sample delay. Clamp the - * delay and depth to allow enough padding for resampling. - */ - state->delay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), - mindelay); - state->depth = minf(props->Chorus.Depth * state->delay, - (ALfloat)(state->delay - mindelay)); - - state->feedback = props->Chorus.Feedback; - - /* Gains for left and right sides */ - CalcAngleCoeffs(-F_PI_2, 0.0f, 0.0f, coeffs); - ComputePanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[0].Target); - CalcAngleCoeffs( F_PI_2, 0.0f, 0.0f, coeffs); - ComputePanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[1].Target); - - phase = props->Chorus.Phase; - rate = props->Chorus.Rate; - if(!(rate > 0.0f)) - { - state->lfo_offset = 0; - state->lfo_range = 1; - state->lfo_scale = 0.0f; - state->lfo_disp = 0; - } - else - { - /* Calculate LFO coefficient (number of samples per cycle). Limit the - * max range to avoid overflow when calculating the displacement. - */ - ALsizei lfo_range = float2int(minf(frequency/rate + 0.5f, (ALfloat)(INT_MAX/360 - 180))); - - state->lfo_offset = float2int((ALfloat)state->lfo_offset/state->lfo_range* - lfo_range + 0.5f) % lfo_range; - state->lfo_range = lfo_range; - switch(state->waveform) - { - case WF_Triangle: - state->lfo_scale = 4.0f / state->lfo_range; - break; - case WF_Sinusoid: - state->lfo_scale = F_TAU / state->lfo_range; - break; - } - - /* Calculate lfo phase displacement */ - if(phase < 0) phase = 360 + phase; - state->lfo_disp = (state->lfo_range*phase + 180) / 360; - } -} - -static void GetTriangleDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range, - const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, - const ALsizei todo) -{ - ALsizei i; - for(i = 0;i < todo;i++) - { - delays[i] = fastf2i((1.0f - fabsf(2.0f - lfo_scale*offset)) * depth) + delay; - offset = (offset+1)%lfo_range; - } -} - -static void GetSinusoidDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range, - const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, - const ALsizei todo) -{ - ALsizei i; - for(i = 0;i < todo;i++) - { - delays[i] = fastf2i(sinf(lfo_scale*offset) * depth) + delay; - offset = (offset+1)%lfo_range; - } -} - - -static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - const ALsizei bufmask = state->BufferLength-1; - const ALfloat feedback = state->feedback; - const ALsizei avgdelay = (state->delay + (FRACTIONONE>>1)) >> FRACTIONBITS; - ALfloat *restrict delaybuf = state->SampleBuffer; - ALsizei offset = state->offset; - ALsizei i, c; - ALsizei base; - - for(base = 0;base < SamplesToDo;) - { - const ALsizei todo = mini(256, SamplesToDo-base); - ALint moddelays[2][256]; - alignas(16) ALfloat temps[2][256]; - - if(state->waveform == WF_Sinusoid) - { - GetSinusoidDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale, - state->depth, state->delay, todo); - GetSinusoidDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range, - state->lfo_range, state->lfo_scale, state->depth, state->delay, - todo); - } - else /*if(state->waveform == WF_Triangle)*/ - { - GetTriangleDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale, - state->depth, state->delay, todo); - GetTriangleDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range, - state->lfo_range, state->lfo_scale, state->depth, state->delay, - todo); - } - state->lfo_offset = (state->lfo_offset+todo) % state->lfo_range; - - for(i = 0;i < todo;i++) - { - ALint delay; - ALfloat mu; - - // Feed the buffer's input first (necessary for delays < 1). - delaybuf[offset&bufmask] = SamplesIn[0][base+i]; - - // Tap for the left output. - delay = offset - (moddelays[0][i]>>FRACTIONBITS); - mu = (moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); - temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], - delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], - mu); - - // Tap for the right output. - delay = offset - (moddelays[1][i]>>FRACTIONBITS); - mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); - temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], - delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], - mu); - - // Accumulate feedback from the average delay of the taps. - delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; - offset++; - } - - for(c = 0;c < 2;c++) - MixSamples(temps[c], NumChannels, SamplesOut, state->Gains[c].Current, - state->Gains[c].Target, SamplesToDo-base, base, todo); - - base += todo; - } - - state->offset = offset; -} - - -typedef struct ChorusStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} ChorusStateFactory; - -static ALeffectState *ChorusStateFactory_create(ChorusStateFactory *UNUSED(factory)) -{ - ALchorusState *state; - - NEW_OBJ0(state, ALchorusState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(ChorusStateFactory); - - -EffectStateFactory *ChorusStateFactory_getFactory(void) -{ - static ChorusStateFactory ChorusFactory = { { GET_VTABLE2(ChorusStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &ChorusFactory); -} - - -void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_CHORUS_WAVEFORM: - if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid chorus waveform"); - props->Chorus.Waveform = val; - break; - - case AL_CHORUS_PHASE: - if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus phase out of range"); - props->Chorus.Phase = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); - } -} -void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALchorus_setParami(effect, context, param, vals[0]); } -void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_CHORUS_RATE: - if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus rate out of range"); - props->Chorus.Rate = val; - break; - - case AL_CHORUS_DEPTH: - if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus depth out of range"); - props->Chorus.Depth = val; - break; - - case AL_CHORUS_FEEDBACK: - if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus feedback out of range"); - props->Chorus.Feedback = val; - break; - - case AL_CHORUS_DELAY: - if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus delay out of range"); - props->Chorus.Delay = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); - } -} -void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALchorus_setParamf(effect, context, param, vals[0]); } - -void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_CHORUS_WAVEFORM: - *val = props->Chorus.Waveform; - break; - - case AL_CHORUS_PHASE: - *val = props->Chorus.Phase; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); - } -} -void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALchorus_getParami(effect, context, param, vals); } -void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_CHORUS_RATE: - *val = props->Chorus.Rate; - break; - - case AL_CHORUS_DEPTH: - *val = props->Chorus.Depth; - break; - - case AL_CHORUS_FEEDBACK: - *val = props->Chorus.Feedback; - break; - - case AL_CHORUS_DELAY: - *val = props->Chorus.Delay; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); - } -} -void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALchorus_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALchorus); - - -/* Flanger is basically a chorus with a really short delay. They can both use - * the same processing functions, so piggyback flanger on the chorus functions. - */ -typedef struct FlangerStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} FlangerStateFactory; - -ALeffectState *FlangerStateFactory_create(FlangerStateFactory *UNUSED(factory)) -{ - ALchorusState *state; - - NEW_OBJ0(state, ALchorusState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(FlangerStateFactory); - -EffectStateFactory *FlangerStateFactory_getFactory(void) -{ - static FlangerStateFactory FlangerFactory = { { GET_VTABLE2(FlangerStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &FlangerFactory); -} - - -void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FLANGER_WAVEFORM: - if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid flanger waveform"); - props->Chorus.Waveform = val; - break; - - case AL_FLANGER_PHASE: - if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger phase out of range"); - props->Chorus.Phase = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); - } -} -void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALflanger_setParami(effect, context, param, vals[0]); } -void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FLANGER_RATE: - if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger rate out of range"); - props->Chorus.Rate = val; - break; - - case AL_FLANGER_DEPTH: - if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger depth out of range"); - props->Chorus.Depth = val; - break; - - case AL_FLANGER_FEEDBACK: - if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger feedback out of range"); - props->Chorus.Feedback = val; - break; - - case AL_FLANGER_DELAY: - if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger delay out of range"); - props->Chorus.Delay = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); - } -} -void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALflanger_setParamf(effect, context, param, vals[0]); } - -void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FLANGER_WAVEFORM: - *val = props->Chorus.Waveform; - break; - - case AL_FLANGER_PHASE: - *val = props->Chorus.Phase; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); - } -} -void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALflanger_getParami(effect, context, param, vals); } -void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FLANGER_RATE: - *val = props->Chorus.Rate; - break; - - case AL_FLANGER_DEPTH: - *val = props->Chorus.Depth; - break; - - case AL_FLANGER_FEEDBACK: - *val = props->Chorus.Feedback; - break; - - case AL_FLANGER_DELAY: - *val = props->Chorus.Delay; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); - } -} -void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALflanger_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALflanger); diff --git a/Alc/effects/compressor.c b/Alc/effects/compressor.c deleted file mode 100644 index 2b4a76b0..00000000 --- a/Alc/effects/compressor.c +++ /dev/null @@ -1,243 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Anis A. Hireche - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include <stdlib.h> - -#include "config.h" -#include "alError.h" -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alu.h" - - -#define AMP_ENVELOPE_MIN 0.5f -#define AMP_ENVELOPE_MAX 2.0f - -#define ATTACK_TIME 0.1f /* 100ms to rise from min to max */ -#define RELEASE_TIME 0.2f /* 200ms to drop from max to min */ - - -typedef struct ALcompressorState { - DERIVE_FROM_TYPE(ALeffectState); - - /* Effect gains for each channel */ - ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS]; - - /* Effect parameters */ - ALboolean Enabled; - ALfloat AttackMult; - ALfloat ReleaseMult; - ALfloat EnvFollower; -} ALcompressorState; - -static ALvoid ALcompressorState_Destruct(ALcompressorState *state); -static ALboolean ALcompressorState_deviceUpdate(ALcompressorState *state, ALCdevice *device); -static ALvoid ALcompressorState_update(ALcompressorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALcompressorState_process(ALcompressorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALcompressorState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALcompressorState); - - -static void ALcompressorState_Construct(ALcompressorState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALcompressorState, ALeffectState, state); - - state->Enabled = AL_TRUE; - state->AttackMult = 1.0f; - state->ReleaseMult = 1.0f; - state->EnvFollower = 1.0f; -} - -static ALvoid ALcompressorState_Destruct(ALcompressorState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALcompressorState_deviceUpdate(ALcompressorState *state, ALCdevice *device) -{ - /* Number of samples to do a full attack and release (non-integer sample - * counts are okay). - */ - const ALfloat attackCount = (ALfloat)device->Frequency * ATTACK_TIME; - const ALfloat releaseCount = (ALfloat)device->Frequency * RELEASE_TIME; - - /* Calculate per-sample multipliers to attack and release at the desired - * rates. - */ - state->AttackMult = powf(AMP_ENVELOPE_MAX/AMP_ENVELOPE_MIN, 1.0f/attackCount); - state->ReleaseMult = powf(AMP_ENVELOPE_MIN/AMP_ENVELOPE_MAX, 1.0f/releaseCount); - - return AL_TRUE; -} - -static ALvoid ALcompressorState_update(ALcompressorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALuint i; - - state->Enabled = props->Compressor.OnOff; - - STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels; - for(i = 0;i < 4;i++) - ComputePanGains(&device->FOAOut, IdentityMatrixf.m[i], slot->Params.Gain, state->Gain[i]); -} - -static ALvoid ALcompressorState_process(ALcompressorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - ALsizei i, j, k; - ALsizei base; - - for(base = 0;base < SamplesToDo;) - { - ALfloat gains[256]; - ALsizei td = mini(256, SamplesToDo-base); - ALfloat env = state->EnvFollower; - - /* Generate the per-sample gains from the signal envelope. */ - if(state->Enabled) - { - for(i = 0;i < td;++i) - { - /* Clamp the absolute amplitude to the defined envelope limits, - * then attack or release the envelope to reach it. - */ - ALfloat amplitude = clampf(fabsf(SamplesIn[0][base+i]), - AMP_ENVELOPE_MIN, AMP_ENVELOPE_MAX); - if(amplitude > env) - env = minf(env*state->AttackMult, amplitude); - else if(amplitude < env) - env = maxf(env*state->ReleaseMult, amplitude); - - /* Apply the reciprocal of the envelope to normalize the volume - * (compress the dynamic range). - */ - gains[i] = 1.0f / env; - } - } - else - { - /* Same as above, except the amplitude is forced to 1. This helps - * ensure smooth gain changes when the compressor is turned on and - * off. - */ - for(i = 0;i < td;++i) - { - ALfloat amplitude = 1.0f; - if(amplitude > env) - env = minf(env*state->AttackMult, amplitude); - else if(amplitude < env) - env = maxf(env*state->ReleaseMult, amplitude); - - gains[i] = 1.0f / env; - } - } - state->EnvFollower = env; - - /* Now compress the signal amplitude to output. */ - for(j = 0;j < MAX_EFFECT_CHANNELS;j++) - { - for(k = 0;k < NumChannels;k++) - { - ALfloat gain = state->Gain[j][k]; - if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) - continue; - - for(i = 0;i < td;i++) - SamplesOut[k][base+i] += SamplesIn[j][base+i] * gains[i] * gain; - } - } - - base += td; - } -} - - -typedef struct CompressorStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} CompressorStateFactory; - -static ALeffectState *CompressorStateFactory_create(CompressorStateFactory *UNUSED(factory)) -{ - ALcompressorState *state; - - NEW_OBJ0(state, ALcompressorState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(CompressorStateFactory); - -EffectStateFactory *CompressorStateFactory_getFactory(void) -{ - static CompressorStateFactory CompressorFactory = { { GET_VTABLE2(CompressorStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &CompressorFactory); -} - - -void ALcompressor_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_COMPRESSOR_ONOFF: - if(!(val >= AL_COMPRESSOR_MIN_ONOFF && val <= AL_COMPRESSOR_MAX_ONOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Compressor state out of range"); - props->Compressor.OnOff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid compressor integer property 0x%04x", - param); - } -} -void ALcompressor_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALcompressor_setParami(effect, context, param, vals[0]); } -void ALcompressor_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float property 0x%04x", param); } -void ALcompressor_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float-vector property 0x%04x", param); } - -void ALcompressor_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_COMPRESSOR_ONOFF: - *val = props->Compressor.OnOff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid compressor integer property 0x%04x", - param); - } -} -void ALcompressor_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALcompressor_getParami(effect, context, param, vals); } -void ALcompressor_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float property 0x%04x", param); } -void ALcompressor_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float-vector property 0x%04x", param); } - -DEFINE_ALEFFECT_VTABLE(ALcompressor); diff --git a/Alc/effects/dedicated.c b/Alc/effects/dedicated.c deleted file mode 100644 index 0e1fd389..00000000 --- a/Alc/effects/dedicated.c +++ /dev/null @@ -1,184 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2011 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -typedef struct ALdedicatedState { - DERIVE_FROM_TYPE(ALeffectState); - - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; -} ALdedicatedState; - -static ALvoid ALdedicatedState_Destruct(ALdedicatedState *state); -static ALboolean ALdedicatedState_deviceUpdate(ALdedicatedState *state, ALCdevice *device); -static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALdedicatedState_process(ALdedicatedState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALdedicatedState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALdedicatedState); - - -static void ALdedicatedState_Construct(ALdedicatedState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALdedicatedState, ALeffectState, state); -} - -static ALvoid ALdedicatedState_Destruct(ALdedicatedState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALdedicatedState_deviceUpdate(ALdedicatedState *state, ALCdevice *UNUSED(device)) -{ - ALsizei i; - for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) - state->CurrentGains[i] = 0.0f; - return AL_TRUE; -} - -static ALvoid ALdedicatedState_update(ALdedicatedState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat Gain; - ALsizei i; - - for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) - state->TargetGains[i] = 0.0f; - - Gain = slot->Params.Gain * props->Dedicated.Gain; - if(slot->Params.EffectType == AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT) - { - int idx; - if((idx=GetChannelIdxByName(&device->RealOut, LFE)) != -1) - { - STATIC_CAST(ALeffectState,state)->OutBuffer = device->RealOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->RealOut.NumChannels; - state->TargetGains[idx] = Gain; - } - } - else if(slot->Params.EffectType == AL_EFFECT_DEDICATED_DIALOGUE) - { - int idx; - /* Dialog goes to the front-center speaker if it exists, otherwise it - * plays from the front-center location. */ - if((idx=GetChannelIdxByName(&device->RealOut, FrontCenter)) != -1) - { - STATIC_CAST(ALeffectState,state)->OutBuffer = device->RealOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->RealOut.NumChannels; - state->TargetGains[idx] = Gain; - } - else - { - ALfloat coeffs[MAX_AMBI_COEFFS]; - CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); - - STATIC_CAST(ALeffectState,state)->OutBuffer = device->Dry.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->Dry.NumChannels; - ComputePanGains(&device->Dry, coeffs, Gain, state->TargetGains); - } - } -} - -static ALvoid ALdedicatedState_process(ALdedicatedState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - MixSamples(SamplesIn[0], NumChannels, SamplesOut, state->CurrentGains, - state->TargetGains, SamplesToDo, 0, SamplesToDo); -} - - -typedef struct DedicatedStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} DedicatedStateFactory; - -ALeffectState *DedicatedStateFactory_create(DedicatedStateFactory *UNUSED(factory)) -{ - ALdedicatedState *state; - - NEW_OBJ0(state, ALdedicatedState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(DedicatedStateFactory); - - -EffectStateFactory *DedicatedStateFactory_getFactory(void) -{ - static DedicatedStateFactory DedicatedFactory = { { GET_VTABLE2(DedicatedStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &DedicatedFactory); -} - - -void ALdedicated_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer property 0x%04x", param); } -void ALdedicated_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer-vector property 0x%04x", param); } -void ALdedicated_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_DEDICATED_GAIN: - if(!(val >= 0.0f && isfinite(val))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Dedicated gain out of range"); - props->Dedicated.Gain = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid dedicated float property 0x%04x", param); - } -} -void ALdedicated_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALdedicated_setParamf(effect, context, param, vals[0]); } - -void ALdedicated_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer property 0x%04x", param); } -void ALdedicated_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer-vector property 0x%04x", param); } -void ALdedicated_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_DEDICATED_GAIN: - *val = props->Dedicated.Gain; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid dedicated float property 0x%04x", param); - } -} -void ALdedicated_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALdedicated_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALdedicated); diff --git a/Alc/effects/distortion.c b/Alc/effects/distortion.c deleted file mode 100644 index de8da4fe..00000000 --- a/Alc/effects/distortion.c +++ /dev/null @@ -1,286 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -typedef struct ALdistortionState { - DERIVE_FROM_TYPE(ALeffectState); - - /* Effect gains for each channel */ - ALfloat Gain[MAX_OUTPUT_CHANNELS]; - - /* Effect parameters */ - BiquadFilter lowpass; - BiquadFilter bandpass; - ALfloat attenuation; - ALfloat edge_coeff; - - ALfloat Buffer[2][BUFFERSIZE]; -} ALdistortionState; - -static ALvoid ALdistortionState_Destruct(ALdistortionState *state); -static ALboolean ALdistortionState_deviceUpdate(ALdistortionState *state, ALCdevice *device); -static ALvoid ALdistortionState_update(ALdistortionState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALdistortionState_process(ALdistortionState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALdistortionState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALdistortionState); - - -static void ALdistortionState_Construct(ALdistortionState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALdistortionState, ALeffectState, state); -} - -static ALvoid ALdistortionState_Destruct(ALdistortionState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALdistortionState_deviceUpdate(ALdistortionState *state, ALCdevice *UNUSED(device)) -{ - BiquadFilter_clear(&state->lowpass); - BiquadFilter_clear(&state->bandpass); - return AL_TRUE; -} - -static ALvoid ALdistortionState_update(ALdistortionState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat frequency = (ALfloat)device->Frequency; - ALfloat coeffs[MAX_AMBI_COEFFS]; - ALfloat bandwidth; - ALfloat cutoff; - ALfloat edge; - - /* Store waveshaper edge settings. */ - edge = sinf(props->Distortion.Edge * (F_PI_2)); - edge = minf(edge, 0.99f); - state->edge_coeff = 2.0f * edge / (1.0f-edge); - - cutoff = props->Distortion.LowpassCutoff; - /* Bandwidth value is constant in octaves. */ - bandwidth = (cutoff / 2.0f) / (cutoff * 0.67f); - /* Multiply sampling frequency by the amount of oversampling done during - * processing. - */ - BiquadFilter_setParams(&state->lowpass, BiquadType_LowPass, 1.0f, - cutoff / (frequency*4.0f), calc_rcpQ_from_bandwidth(cutoff / (frequency*4.0f), bandwidth) - ); - - cutoff = props->Distortion.EQCenter; - /* Convert bandwidth in Hz to octaves. */ - bandwidth = props->Distortion.EQBandwidth / (cutoff * 0.67f); - BiquadFilter_setParams(&state->bandpass, BiquadType_BandPass, 1.0f, - cutoff / (frequency*4.0f), calc_rcpQ_from_bandwidth(cutoff / (frequency*4.0f), bandwidth) - ); - - CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); - ComputePanGains(&device->Dry, coeffs, slot->Params.Gain*props->Distortion.Gain, state->Gain); -} - -static ALvoid ALdistortionState_process(ALdistortionState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - ALfloat (*restrict buffer)[BUFFERSIZE] = state->Buffer; - const ALfloat fc = state->edge_coeff; - ALsizei base; - ALsizei i, k; - - for(base = 0;base < SamplesToDo;) - { - /* Perform 4x oversampling to avoid aliasing. Oversampling greatly - * improves distortion quality and allows to implement lowpass and - * bandpass filters using high frequencies, at which classic IIR - * filters became unstable. - */ - ALsizei todo = mini(BUFFERSIZE, (SamplesToDo-base) * 4); - - /* Fill oversample buffer using zero stuffing. Multiply the sample by - * the amount of oversampling to maintain the signal's power. - */ - for(i = 0;i < todo;i++) - buffer[0][i] = !(i&3) ? SamplesIn[0][(i>>2)+base] * 4.0f : 0.0f; - - /* First step, do lowpass filtering of original signal. Additionally - * perform buffer interpolation and lowpass cutoff for oversampling - * (which is fortunately first step of distortion). So combine three - * operations into the one. - */ - BiquadFilter_process(&state->lowpass, buffer[1], buffer[0], todo); - - /* Second step, do distortion using waveshaper function to emulate - * signal processing during tube overdriving. Three steps of - * waveshaping are intended to modify waveform without boost/clipping/ - * attenuation process. - */ - for(i = 0;i < todo;i++) - { - ALfloat smp = buffer[1][i]; - - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)) * -1.0f; - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); - - buffer[0][i] = smp; - } - - /* Third step, do bandpass filtering of distorted signal. */ - BiquadFilter_process(&state->bandpass, buffer[1], buffer[0], todo); - - todo >>= 2; - for(k = 0;k < NumChannels;k++) - { - /* Fourth step, final, do attenuation and perform decimation, - * storing only one sample out of four. - */ - ALfloat gain = state->Gain[k]; - if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) - continue; - - for(i = 0;i < todo;i++) - SamplesOut[k][base+i] += gain * buffer[1][i*4]; - } - - base += todo; - } -} - - -typedef struct DistortionStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} DistortionStateFactory; - -static ALeffectState *DistortionStateFactory_create(DistortionStateFactory *UNUSED(factory)) -{ - ALdistortionState *state; - - NEW_OBJ0(state, ALdistortionState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(DistortionStateFactory); - - -EffectStateFactory *DistortionStateFactory_getFactory(void) -{ - static DistortionStateFactory DistortionFactory = { { GET_VTABLE2(DistortionStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &DistortionFactory); -} - - -void ALdistortion_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer property 0x%04x", param); } -void ALdistortion_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer-vector property 0x%04x", param); } -void ALdistortion_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_DISTORTION_EDGE: - if(!(val >= AL_DISTORTION_MIN_EDGE && val <= AL_DISTORTION_MAX_EDGE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion edge out of range"); - props->Distortion.Edge = val; - break; - - case AL_DISTORTION_GAIN: - if(!(val >= AL_DISTORTION_MIN_GAIN && val <= AL_DISTORTION_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion gain out of range"); - props->Distortion.Gain = val; - break; - - case AL_DISTORTION_LOWPASS_CUTOFF: - if(!(val >= AL_DISTORTION_MIN_LOWPASS_CUTOFF && val <= AL_DISTORTION_MAX_LOWPASS_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion low-pass cutoff out of range"); - props->Distortion.LowpassCutoff = val; - break; - - case AL_DISTORTION_EQCENTER: - if(!(val >= AL_DISTORTION_MIN_EQCENTER && val <= AL_DISTORTION_MAX_EQCENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion EQ center out of range"); - props->Distortion.EQCenter = val; - break; - - case AL_DISTORTION_EQBANDWIDTH: - if(!(val >= AL_DISTORTION_MIN_EQBANDWIDTH && val <= AL_DISTORTION_MAX_EQBANDWIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion EQ bandwidth out of range"); - props->Distortion.EQBandwidth = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid distortion float property 0x%04x", - param); - } -} -void ALdistortion_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALdistortion_setParamf(effect, context, param, vals[0]); } - -void ALdistortion_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer property 0x%04x", param); } -void ALdistortion_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer-vector property 0x%04x", param); } -void ALdistortion_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_DISTORTION_EDGE: - *val = props->Distortion.Edge; - break; - - case AL_DISTORTION_GAIN: - *val = props->Distortion.Gain; - break; - - case AL_DISTORTION_LOWPASS_CUTOFF: - *val = props->Distortion.LowpassCutoff; - break; - - case AL_DISTORTION_EQCENTER: - *val = props->Distortion.EQCenter; - break; - - case AL_DISTORTION_EQBANDWIDTH: - *val = props->Distortion.EQBandwidth; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid distortion float property 0x%04x", - param); - } -} -void ALdistortion_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALdistortion_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALdistortion); diff --git a/Alc/effects/echo.c b/Alc/effects/echo.c deleted file mode 100644 index 4570fcb1..00000000 --- a/Alc/effects/echo.c +++ /dev/null @@ -1,310 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2009 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alFilter.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -typedef struct ALechoState { - DERIVE_FROM_TYPE(ALeffectState); - - ALfloat *SampleBuffer; - ALsizei BufferLength; - - // The echo is two tap. The delay is the number of samples from before the - // current offset - struct { - ALsizei delay; - } Tap[2]; - ALsizei Offset; - - /* The panning gains for the two taps */ - struct { - ALfloat Current[MAX_OUTPUT_CHANNELS]; - ALfloat Target[MAX_OUTPUT_CHANNELS]; - } Gains[2]; - - ALfloat FeedGain; - - BiquadFilter Filter; -} ALechoState; - -static ALvoid ALechoState_Destruct(ALechoState *state); -static ALboolean ALechoState_deviceUpdate(ALechoState *state, ALCdevice *Device); -static ALvoid ALechoState_update(ALechoState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALechoState_process(ALechoState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALechoState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALechoState); - - -static void ALechoState_Construct(ALechoState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALechoState, ALeffectState, state); - - state->BufferLength = 0; - state->SampleBuffer = NULL; - - state->Tap[0].delay = 0; - state->Tap[1].delay = 0; - state->Offset = 0; - - BiquadFilter_clear(&state->Filter); -} - -static ALvoid ALechoState_Destruct(ALechoState *state) -{ - al_free(state->SampleBuffer); - state->SampleBuffer = NULL; - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALechoState_deviceUpdate(ALechoState *state, ALCdevice *Device) -{ - ALsizei maxlen; - - // Use the next power of 2 for the buffer length, so the tap offsets can be - // wrapped using a mask instead of a modulo - maxlen = float2int(AL_ECHO_MAX_DELAY*Device->Frequency + 0.5f) + - float2int(AL_ECHO_MAX_LRDELAY*Device->Frequency + 0.5f); - maxlen = NextPowerOf2(maxlen); - if(maxlen <= 0) return AL_FALSE; - - if(maxlen != state->BufferLength) - { - void *temp = al_calloc(16, maxlen * sizeof(ALfloat)); - if(!temp) return AL_FALSE; - - al_free(state->SampleBuffer); - state->SampleBuffer = temp; - state->BufferLength = maxlen; - } - - memset(state->SampleBuffer, 0, state->BufferLength*sizeof(ALfloat)); - memset(state->Gains, 0, sizeof(state->Gains)); - - return AL_TRUE; -} - -static ALvoid ALechoState_update(ALechoState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALuint frequency = device->Frequency; - ALfloat coeffs[MAX_AMBI_COEFFS]; - ALfloat gainhf, lrpan, spread; - - state->Tap[0].delay = maxi(float2int(props->Echo.Delay*frequency + 0.5f), 1); - state->Tap[1].delay = float2int(props->Echo.LRDelay*frequency + 0.5f); - state->Tap[1].delay += state->Tap[0].delay; - - spread = props->Echo.Spread; - if(spread < 0.0f) lrpan = -1.0f; - else lrpan = 1.0f; - /* Convert echo spread (where 0 = omni, +/-1 = directional) to coverage - * spread (where 0 = point, tau = omni). - */ - spread = asinf(1.0f - fabsf(spread))*4.0f; - - state->FeedGain = props->Echo.Feedback; - - gainhf = maxf(1.0f - props->Echo.Damping, 0.0625f); /* Limit -24dB */ - BiquadFilter_setParams(&state->Filter, BiquadType_HighShelf, - gainhf, LOWPASSFREQREF/frequency, calc_rcpQ_from_slope(gainhf, 1.0f) - ); - - /* First tap panning */ - CalcAngleCoeffs(-F_PI_2*lrpan, 0.0f, spread, coeffs); - ComputePanGains(&device->Dry, coeffs, slot->Params.Gain, state->Gains[0].Target); - - /* Second tap panning */ - CalcAngleCoeffs( F_PI_2*lrpan, 0.0f, spread, coeffs); - ComputePanGains(&device->Dry, coeffs, slot->Params.Gain, state->Gains[1].Target); -} - -static ALvoid ALechoState_process(ALechoState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - const ALsizei mask = state->BufferLength-1; - const ALsizei tap1 = state->Tap[0].delay; - const ALsizei tap2 = state->Tap[1].delay; - ALfloat *restrict delaybuf = state->SampleBuffer; - ALsizei offset = state->Offset; - ALfloat z1, z2, in, out; - ALsizei base; - ALsizei c, i; - - z1 = state->Filter.z1; - z2 = state->Filter.z2; - for(base = 0;base < SamplesToDo;) - { - alignas(16) ALfloat temps[2][128]; - ALsizei td = mini(128, SamplesToDo-base); - - for(i = 0;i < td;i++) - { - /* Feed the delay buffer's input first. */ - delaybuf[offset&mask] = SamplesIn[0][i+base]; - - /* First tap */ - temps[0][i] = delaybuf[(offset-tap1) & mask]; - /* Second tap */ - temps[1][i] = delaybuf[(offset-tap2) & mask]; - - /* Apply damping to the second tap, then add it to the buffer with - * feedback attenuation. - */ - in = temps[1][i]; - out = in*state->Filter.b0 + z1; - z1 = in*state->Filter.b1 - out*state->Filter.a1 + z2; - z2 = in*state->Filter.b2 - out*state->Filter.a2; - - delaybuf[offset&mask] += out * state->FeedGain; - offset++; - } - - for(c = 0;c < 2;c++) - MixSamples(temps[c], NumChannels, SamplesOut, state->Gains[c].Current, - state->Gains[c].Target, SamplesToDo-base, base, td); - - base += td; - } - state->Filter.z1 = z1; - state->Filter.z2 = z2; - - state->Offset = offset; -} - - -typedef struct EchoStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} EchoStateFactory; - -ALeffectState *EchoStateFactory_create(EchoStateFactory *UNUSED(factory)) -{ - ALechoState *state; - - NEW_OBJ0(state, ALechoState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(EchoStateFactory); - -EffectStateFactory *EchoStateFactory_getFactory(void) -{ - static EchoStateFactory EchoFactory = { { GET_VTABLE2(EchoStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &EchoFactory); -} - - -void ALecho_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer property 0x%04x", param); } -void ALecho_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer-vector property 0x%04x", param); } -void ALecho_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_ECHO_DELAY: - if(!(val >= AL_ECHO_MIN_DELAY && val <= AL_ECHO_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo delay out of range"); - props->Echo.Delay = val; - break; - - case AL_ECHO_LRDELAY: - if(!(val >= AL_ECHO_MIN_LRDELAY && val <= AL_ECHO_MAX_LRDELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo LR delay out of range"); - props->Echo.LRDelay = val; - break; - - case AL_ECHO_DAMPING: - if(!(val >= AL_ECHO_MIN_DAMPING && val <= AL_ECHO_MAX_DAMPING)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo damping out of range"); - props->Echo.Damping = val; - break; - - case AL_ECHO_FEEDBACK: - if(!(val >= AL_ECHO_MIN_FEEDBACK && val <= AL_ECHO_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo feedback out of range"); - props->Echo.Feedback = val; - break; - - case AL_ECHO_SPREAD: - if(!(val >= AL_ECHO_MIN_SPREAD && val <= AL_ECHO_MAX_SPREAD)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo spread out of range"); - props->Echo.Spread = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid echo float property 0x%04x", param); - } -} -void ALecho_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALecho_setParamf(effect, context, param, vals[0]); } - -void ALecho_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer property 0x%04x", param); } -void ALecho_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer-vector property 0x%04x", param); } -void ALecho_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_ECHO_DELAY: - *val = props->Echo.Delay; - break; - - case AL_ECHO_LRDELAY: - *val = props->Echo.LRDelay; - break; - - case AL_ECHO_DAMPING: - *val = props->Echo.Damping; - break; - - case AL_ECHO_FEEDBACK: - *val = props->Echo.Feedback; - break; - - case AL_ECHO_SPREAD: - *val = props->Echo.Spread; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid echo float property 0x%04x", param); - } -} -void ALecho_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALecho_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALecho); diff --git a/Alc/effects/equalizer.c b/Alc/effects/equalizer.c deleted file mode 100644 index 17106127..00000000 --- a/Alc/effects/equalizer.c +++ /dev/null @@ -1,355 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -/* The document "Effects Extension Guide.pdf" says that low and high * - * frequencies are cutoff frequencies. This is not fully correct, they * - * are corner frequencies for low and high shelf filters. If they were * - * just cutoff frequencies, there would be no need in cutoff frequency * - * gains, which are present. Documentation for "Creative Proteus X2" * - * software describes 4-band equalizer functionality in a much better * - * way. This equalizer seems to be a predecessor of OpenAL 4-band * - * equalizer. With low and high shelf filters we are able to cutoff * - * frequencies below and/or above corner frequencies using attenuation * - * gains (below 1.0) and amplify all low and/or high frequencies using * - * gains above 1.0. * - * * - * Low-shelf Low Mid Band High Mid Band High-shelf * - * corner center center corner * - * frequency frequency frequency frequency * - * 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz * - * * - * | | | | * - * | | | | * - * B -----+ /--+--\ /--+--\ +----- * - * O |\ | | | | | | /| * - * O | \ - | - - | - / | * - * S + | \ | | | | | | / | * - * T | | | | | | | | | | * - * ---------+---------------+------------------+---------------+-------- * - * C | | | | | | | | | | * - * U - | / | | | | | | \ | * - * T | / - | - - | - \ | * - * O |/ | | | | | | \| * - * F -----+ \--+--/ \--+--/ +----- * - * F | | | | * - * | | | | * - * * - * Gains vary from 0.126 up to 7.943, which means from -18dB attenuation * - * up to +18dB amplification. Band width varies from 0.01 up to 1.0 in * - * octaves for two mid bands. * - * * - * Implementation is based on the "Cookbook formulae for audio EQ biquad * - * filter coefficients" by Robert Bristow-Johnson * - * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */ - - -typedef struct ALequalizerState { - DERIVE_FROM_TYPE(ALeffectState); - - struct { - /* Effect parameters */ - BiquadFilter filter[4]; - - /* Effect gains for each channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; - } Chans[MAX_EFFECT_CHANNELS]; - - ALfloat SampleBuffer[MAX_EFFECT_CHANNELS][BUFFERSIZE]; -} ALequalizerState; - -static ALvoid ALequalizerState_Destruct(ALequalizerState *state); -static ALboolean ALequalizerState_deviceUpdate(ALequalizerState *state, ALCdevice *device); -static ALvoid ALequalizerState_update(ALequalizerState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALequalizerState_process(ALequalizerState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALequalizerState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALequalizerState); - - -static void ALequalizerState_Construct(ALequalizerState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALequalizerState, ALeffectState, state); -} - -static ALvoid ALequalizerState_Destruct(ALequalizerState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALequalizerState_deviceUpdate(ALequalizerState *state, ALCdevice *UNUSED(device)) -{ - ALsizei i, j; - - for(i = 0; i < MAX_EFFECT_CHANNELS;i++) - { - for(j = 0;j < 4;j++) - BiquadFilter_clear(&state->Chans[i].filter[j]); - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - state->Chans[i].CurrentGains[j] = 0.0f; - } - return AL_TRUE; -} - -static ALvoid ALequalizerState_update(ALequalizerState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat frequency = (ALfloat)device->Frequency; - ALfloat gain, f0norm; - ALuint i; - - /* Calculate coefficients for the each type of filter. Note that the shelf - * filters' gain is for the reference frequency, which is the centerpoint - * of the transition band. - */ - gain = maxf(sqrtf(props->Equalizer.LowGain), 0.0625f); /* Limit -24dB */ - f0norm = props->Equalizer.LowCutoff/frequency; - BiquadFilter_setParams(&state->Chans[0].filter[0], BiquadType_LowShelf, - gain, f0norm, calc_rcpQ_from_slope(gain, 0.75f) - ); - - gain = maxf(props->Equalizer.Mid1Gain, 0.0625f); - f0norm = props->Equalizer.Mid1Center/frequency; - BiquadFilter_setParams(&state->Chans[0].filter[1], BiquadType_Peaking, - gain, f0norm, calc_rcpQ_from_bandwidth( - f0norm, props->Equalizer.Mid1Width - ) - ); - - gain = maxf(props->Equalizer.Mid2Gain, 0.0625f); - f0norm = props->Equalizer.Mid2Center/frequency; - BiquadFilter_setParams(&state->Chans[0].filter[2], BiquadType_Peaking, - gain, f0norm, calc_rcpQ_from_bandwidth( - f0norm, props->Equalizer.Mid2Width - ) - ); - - gain = maxf(sqrtf(props->Equalizer.HighGain), 0.0625f); - f0norm = props->Equalizer.HighCutoff/frequency; - BiquadFilter_setParams(&state->Chans[0].filter[3], BiquadType_HighShelf, - gain, f0norm, calc_rcpQ_from_slope(gain, 0.75f) - ); - - /* Copy the filter coefficients for the other input channels. */ - for(i = 1;i < MAX_EFFECT_CHANNELS;i++) - { - BiquadFilter_copyParams(&state->Chans[i].filter[0], &state->Chans[0].filter[0]); - BiquadFilter_copyParams(&state->Chans[i].filter[1], &state->Chans[0].filter[1]); - BiquadFilter_copyParams(&state->Chans[i].filter[2], &state->Chans[0].filter[2]); - BiquadFilter_copyParams(&state->Chans[i].filter[3], &state->Chans[0].filter[3]); - } - - STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels; - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&device->FOAOut, IdentityMatrixf.m[i], slot->Params.Gain, - state->Chans[i].TargetGains); -} - -static ALvoid ALequalizerState_process(ALequalizerState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - ALfloat (*restrict temps)[BUFFERSIZE] = state->SampleBuffer; - ALsizei c; - - for(c = 0;c < MAX_EFFECT_CHANNELS;c++) - { - BiquadFilter_process(&state->Chans[c].filter[0], temps[0], SamplesIn[c], SamplesToDo); - BiquadFilter_process(&state->Chans[c].filter[1], temps[1], temps[0], SamplesToDo); - BiquadFilter_process(&state->Chans[c].filter[2], temps[2], temps[1], SamplesToDo); - BiquadFilter_process(&state->Chans[c].filter[3], temps[3], temps[2], SamplesToDo); - - MixSamples(temps[3], NumChannels, SamplesOut, - state->Chans[c].CurrentGains, state->Chans[c].TargetGains, - SamplesToDo, 0, SamplesToDo - ); - } -} - - -typedef struct EqualizerStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} EqualizerStateFactory; - -ALeffectState *EqualizerStateFactory_create(EqualizerStateFactory *UNUSED(factory)) -{ - ALequalizerState *state; - - NEW_OBJ0(state, ALequalizerState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(EqualizerStateFactory); - -EffectStateFactory *EqualizerStateFactory_getFactory(void) -{ - static EqualizerStateFactory EqualizerFactory = { { GET_VTABLE2(EqualizerStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &EqualizerFactory); -} - - -void ALequalizer_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer property 0x%04x", param); } -void ALequalizer_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer-vector property 0x%04x", param); } -void ALequalizer_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EQUALIZER_LOW_GAIN: - if(!(val >= AL_EQUALIZER_MIN_LOW_GAIN && val <= AL_EQUALIZER_MAX_LOW_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer low-band gain out of range"); - props->Equalizer.LowGain = val; - break; - - case AL_EQUALIZER_LOW_CUTOFF: - if(!(val >= AL_EQUALIZER_MIN_LOW_CUTOFF && val <= AL_EQUALIZER_MAX_LOW_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer low-band cutoff out of range"); - props->Equalizer.LowCutoff = val; - break; - - case AL_EQUALIZER_MID1_GAIN: - if(!(val >= AL_EQUALIZER_MIN_MID1_GAIN && val <= AL_EQUALIZER_MAX_MID1_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band gain out of range"); - props->Equalizer.Mid1Gain = val; - break; - - case AL_EQUALIZER_MID1_CENTER: - if(!(val >= AL_EQUALIZER_MIN_MID1_CENTER && val <= AL_EQUALIZER_MAX_MID1_CENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band center out of range"); - props->Equalizer.Mid1Center = val; - break; - - case AL_EQUALIZER_MID1_WIDTH: - if(!(val >= AL_EQUALIZER_MIN_MID1_WIDTH && val <= AL_EQUALIZER_MAX_MID1_WIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band width out of range"); - props->Equalizer.Mid1Width = val; - break; - - case AL_EQUALIZER_MID2_GAIN: - if(!(val >= AL_EQUALIZER_MIN_MID2_GAIN && val <= AL_EQUALIZER_MAX_MID2_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band gain out of range"); - props->Equalizer.Mid2Gain = val; - break; - - case AL_EQUALIZER_MID2_CENTER: - if(!(val >= AL_EQUALIZER_MIN_MID2_CENTER && val <= AL_EQUALIZER_MAX_MID2_CENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band center out of range"); - props->Equalizer.Mid2Center = val; - break; - - case AL_EQUALIZER_MID2_WIDTH: - if(!(val >= AL_EQUALIZER_MIN_MID2_WIDTH && val <= AL_EQUALIZER_MAX_MID2_WIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band width out of range"); - props->Equalizer.Mid2Width = val; - break; - - case AL_EQUALIZER_HIGH_GAIN: - if(!(val >= AL_EQUALIZER_MIN_HIGH_GAIN && val <= AL_EQUALIZER_MAX_HIGH_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer high-band gain out of range"); - props->Equalizer.HighGain = val; - break; - - case AL_EQUALIZER_HIGH_CUTOFF: - if(!(val >= AL_EQUALIZER_MIN_HIGH_CUTOFF && val <= AL_EQUALIZER_MAX_HIGH_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer high-band cutoff out of range"); - props->Equalizer.HighCutoff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid equalizer float property 0x%04x", param); - } -} -void ALequalizer_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALequalizer_setParamf(effect, context, param, vals[0]); } - -void ALequalizer_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(val)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer property 0x%04x", param); } -void ALequalizer_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint *UNUSED(vals)) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer-vector property 0x%04x", param); } -void ALequalizer_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EQUALIZER_LOW_GAIN: - *val = props->Equalizer.LowGain; - break; - - case AL_EQUALIZER_LOW_CUTOFF: - *val = props->Equalizer.LowCutoff; - break; - - case AL_EQUALIZER_MID1_GAIN: - *val = props->Equalizer.Mid1Gain; - break; - - case AL_EQUALIZER_MID1_CENTER: - *val = props->Equalizer.Mid1Center; - break; - - case AL_EQUALIZER_MID1_WIDTH: - *val = props->Equalizer.Mid1Width; - break; - - case AL_EQUALIZER_MID2_GAIN: - *val = props->Equalizer.Mid2Gain; - break; - - case AL_EQUALIZER_MID2_CENTER: - *val = props->Equalizer.Mid2Center; - break; - - case AL_EQUALIZER_MID2_WIDTH: - *val = props->Equalizer.Mid2Width; - break; - - case AL_EQUALIZER_HIGH_GAIN: - *val = props->Equalizer.HighGain; - break; - - case AL_EQUALIZER_HIGH_CUTOFF: - *val = props->Equalizer.HighCutoff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid equalizer float property 0x%04x", param); - } -} -void ALequalizer_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALequalizer_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALequalizer); diff --git a/Alc/effects/fshifter.c b/Alc/effects/fshifter.c deleted file mode 100644 index 7d72472a..00000000 --- a/Alc/effects/fshifter.c +++ /dev/null @@ -1,329 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - -#include "alcomplex.h" - -#define HIL_SIZE 1024 -#define OVERSAMP (1<<2) - -#define HIL_STEP (HIL_SIZE / OVERSAMP) -#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1)) - - -typedef struct ALfshifterState { - DERIVE_FROM_TYPE(ALeffectState); - - /* Effect parameters */ - ALsizei count; - ALsizei PhaseStep; - ALsizei Phase; - ALdouble ld_sign; - - /*Effects buffers*/ - ALfloat InFIFO[HIL_SIZE]; - ALcomplex OutFIFO[HIL_SIZE]; - ALcomplex OutputAccum[HIL_SIZE]; - ALcomplex Analytic[HIL_SIZE]; - ALcomplex Outdata[BUFFERSIZE]; - - alignas(16) ALfloat BufferOut[BUFFERSIZE]; - - /* Effect gains for each output channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; -} ALfshifterState; - -static ALvoid ALfshifterState_Destruct(ALfshifterState *state); -static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *device); -static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALfshifterState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALfshifterState); - -/* Define a Hann window, used to filter the HIL input and output. */ -alignas(16) static ALdouble HannWindow[HIL_SIZE]; - -static void InitHannWindow(void) -{ - ALsizei i; - - /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ - for(i = 0;i < HIL_SIZE>>1;i++) - { - ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(HIL_SIZE-1)); - HannWindow[i] = HannWindow[HIL_SIZE-1-i] = val * val; - } -} - -static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT; - -static void ALfshifterState_Construct(ALfshifterState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALfshifterState, ALeffectState, state); - - alcall_once(&HannInitOnce, InitHannWindow); -} - -static ALvoid ALfshifterState_Destruct(ALfshifterState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALfshifterState_deviceUpdate(ALfshifterState *state, ALCdevice *UNUSED(device)) -{ - /* (Re-)initializing parameters and clear the buffers. */ - state->count = FIFO_LATENCY; - state->PhaseStep = 0; - state->Phase = 0; - state->ld_sign = 1.0; - - memset(state->InFIFO, 0, sizeof(state->InFIFO)); - memset(state->OutFIFO, 0, sizeof(state->OutFIFO)); - memset(state->OutputAccum, 0, sizeof(state->OutputAccum)); - memset(state->Analytic, 0, sizeof(state->Analytic)); - - memset(state->CurrentGains, 0, sizeof(state->CurrentGains)); - memset(state->TargetGains, 0, sizeof(state->TargetGains)); - - return AL_TRUE; -} - -static ALvoid ALfshifterState_update(ALfshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat coeffs[MAX_AMBI_COEFFS]; - ALfloat step; - - step = props->Fshifter.Frequency / (ALfloat)device->Frequency; - state->PhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE); - - switch(props->Fshifter.LeftDirection) - { - case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: - state->ld_sign = -1.0; - break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_UP: - state->ld_sign = 1.0; - break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: - state->Phase = 0; - state->PhaseStep = 0; - break; - } - - CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); - ComputePanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains); -} - -static ALvoid ALfshifterState_process(ALfshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - static const ALcomplex complex_zero = { 0.0, 0.0 }; - ALfloat *restrict BufferOut = state->BufferOut; - ALsizei j, k, base; - - for(base = 0;base < SamplesToDo;) - { - ALsizei todo = mini(HIL_SIZE-state->count, SamplesToDo-base); - - ASSUME(todo > 0); - - /* Fill FIFO buffer with samples data */ - k = state->count; - for(j = 0;j < todo;j++,k++) - { - state->InFIFO[k] = SamplesIn[0][base+j]; - state->Outdata[base+j] = state->OutFIFO[k-FIFO_LATENCY]; - } - state->count += todo; - base += todo; - - /* Check whether FIFO buffer is filled */ - if(state->count < HIL_SIZE) continue; - - state->count = FIFO_LATENCY; - - /* Real signal windowing and store in Analytic buffer */ - for(k = 0;k < HIL_SIZE;k++) - { - state->Analytic[k].Real = state->InFIFO[k] * HannWindow[k]; - state->Analytic[k].Imag = 0.0; - } - - /* Processing signal by Discrete Hilbert Transform (analytical signal). */ - complex_hilbert(state->Analytic, HIL_SIZE); - - /* Windowing and add to output accumulator */ - for(k = 0;k < HIL_SIZE;k++) - { - state->OutputAccum[k].Real += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Real; - state->OutputAccum[k].Imag += 2.0/OVERSAMP*HannWindow[k]*state->Analytic[k].Imag; - } - - /* Shift accumulator, input & output FIFO */ - for(k = 0;k < HIL_STEP;k++) state->OutFIFO[k] = state->OutputAccum[k]; - for(j = 0;k < HIL_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k]; - for(;j < HIL_SIZE;j++) state->OutputAccum[j] = complex_zero; - for(k = 0;k < FIFO_LATENCY;k++) - state->InFIFO[k] = state->InFIFO[k+HIL_STEP]; - } - - /* Process frequency shifter using the analytic signal obtained. */ - for(k = 0;k < SamplesToDo;k++) - { - ALdouble phase = state->Phase * ((1.0/FRACTIONONE) * 2.0*M_PI); - BufferOut[k] = (ALfloat)(state->Outdata[k].Real*cos(phase) + - state->Outdata[k].Imag*sin(phase)*state->ld_sign); - - state->Phase += state->PhaseStep; - state->Phase &= FRACTIONMASK; - } - - /* Now, mix the processed sound data to the output. */ - MixSamples(BufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains, - maxi(SamplesToDo, 512), 0, SamplesToDo); -} - -typedef struct FshifterStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} FshifterStateFactory; - -static ALeffectState *FshifterStateFactory_create(FshifterStateFactory *UNUSED(factory)) -{ - ALfshifterState *state; - - NEW_OBJ0(state, ALfshifterState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(FshifterStateFactory); - -EffectStateFactory *FshifterStateFactory_getFactory(void) -{ - static FshifterStateFactory FshifterFactory = { { GET_VTABLE2(FshifterStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &FshifterFactory); -} - -void ALfshifter_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range"); - props->Fshifter.Frequency = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); - } -} - -void ALfshifter_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - ALfshifter_setParamf(effect, context, param, vals[0]); -} - -void ALfshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range"); - props->Fshifter.LeftDirection = val; - break; - - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range"); - props->Fshifter.RightDirection = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); - } -} -void ALfshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ - ALfshifter_setParami(effect, context, param, vals[0]); -} - -void ALfshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - *val = props->Fshifter.LeftDirection; - break; - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - *val = props->Fshifter.RightDirection; - break; - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); - } -} -void ALfshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ - ALfshifter_getParami(effect, context, param, vals); -} - -void ALfshifter_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - *val = props->Fshifter.Frequency; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); - } - -} - -void ALfshifter_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ - ALfshifter_getParamf(effect, context, param, vals); -} - -DEFINE_ALEFFECT_VTABLE(ALfshifter); diff --git a/Alc/effects/modulator.c b/Alc/effects/modulator.c deleted file mode 100644 index e368adb8..00000000 --- a/Alc/effects/modulator.c +++ /dev/null @@ -1,307 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2009 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - - -#define MAX_UPDATE_SAMPLES 128 - -typedef struct ALmodulatorState { - DERIVE_FROM_TYPE(ALeffectState); - - void (*GetSamples)(ALfloat*, ALsizei, const ALsizei, ALsizei); - - ALsizei index; - ALsizei step; - - struct { - BiquadFilter Filter; - - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; - } Chans[MAX_EFFECT_CHANNELS]; -} ALmodulatorState; - -static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state); -static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *device); -static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALmodulatorState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALmodulatorState); - - -#define WAVEFORM_FRACBITS 24 -#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS) -#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1) - -static inline ALfloat Sin(ALsizei index) -{ - return sinf((ALfloat)index * (F_TAU / WAVEFORM_FRACONE)); -} - -static inline ALfloat Saw(ALsizei index) -{ - return (ALfloat)index*(2.0f/WAVEFORM_FRACONE) - 1.0f; -} - -static inline ALfloat Square(ALsizei index) -{ - return (ALfloat)(((index>>(WAVEFORM_FRACBITS-2))&2) - 1); -} - -static inline ALfloat One(ALsizei UNUSED(index)) -{ - return 1.0f; -} - -#define DECL_TEMPLATE(func) \ -static void Modulate##func(ALfloat *restrict dst, ALsizei index, \ - const ALsizei step, ALsizei todo) \ -{ \ - ALsizei i; \ - for(i = 0;i < todo;i++) \ - { \ - index += step; \ - index &= WAVEFORM_FRACMASK; \ - dst[i] = func(index); \ - } \ -} - -DECL_TEMPLATE(Sin) -DECL_TEMPLATE(Saw) -DECL_TEMPLATE(Square) -DECL_TEMPLATE(One) - -#undef DECL_TEMPLATE - - -static void ALmodulatorState_Construct(ALmodulatorState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALmodulatorState, ALeffectState, state); - - state->index = 0; - state->step = 1; -} - -static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *UNUSED(device)) -{ - ALsizei i, j; - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - { - BiquadFilter_clear(&state->Chans[i].Filter); - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - state->Chans[i].CurrentGains[j] = 0.0f; - } - return AL_TRUE; -} - -static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat f0norm; - ALsizei i; - - state->step = fastf2i(props->Modulator.Frequency / (ALfloat)device->Frequency * - WAVEFORM_FRACONE); - state->step = clampi(state->step, 0, WAVEFORM_FRACONE-1); - - if(state->step == 0) - state->GetSamples = ModulateOne; - else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID) - state->GetSamples = ModulateSin; - else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH) - state->GetSamples = ModulateSaw; - else /*if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/ - state->GetSamples = ModulateSquare; - - f0norm = props->Modulator.HighPassCutoff / (ALfloat)device->Frequency; - f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); - /* Bandwidth value is constant in octaves. */ - BiquadFilter_setParams(&state->Chans[0].Filter, BiquadType_HighPass, 1.0f, - f0norm, calc_rcpQ_from_bandwidth(f0norm, 0.75f)); - for(i = 1;i < MAX_EFFECT_CHANNELS;i++) - BiquadFilter_copyParams(&state->Chans[i].Filter, &state->Chans[0].Filter); - - STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels; - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&device->FOAOut, IdentityMatrixf.m[i], slot->Params.Gain, - state->Chans[i].TargetGains); -} - -static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - const ALsizei step = state->step; - ALsizei base; - - for(base = 0;base < SamplesToDo;) - { - alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES]; - ALsizei td = mini(MAX_UPDATE_SAMPLES, SamplesToDo-base); - ALsizei c, i; - - state->GetSamples(modsamples, state->index, step, td); - state->index += (step*td) & WAVEFORM_FRACMASK; - state->index &= WAVEFORM_FRACMASK; - - for(c = 0;c < MAX_EFFECT_CHANNELS;c++) - { - alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES]; - - BiquadFilter_process(&state->Chans[c].Filter, temps, &SamplesIn[c][base], td); - for(i = 0;i < td;i++) - temps[i] *= modsamples[i]; - - MixSamples(temps, NumChannels, SamplesOut, state->Chans[c].CurrentGains, - state->Chans[c].TargetGains, SamplesToDo-base, base, td); - } - - base += td; - } -} - - -typedef struct ModulatorStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} ModulatorStateFactory; - -static ALeffectState *ModulatorStateFactory_create(ModulatorStateFactory *UNUSED(factory)) -{ - ALmodulatorState *state; - - NEW_OBJ0(state, ALmodulatorState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(ModulatorStateFactory); - -EffectStateFactory *ModulatorStateFactory_getFactory(void) -{ - static ModulatorStateFactory ModulatorFactory = { { GET_VTABLE2(ModulatorStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &ModulatorFactory); -} - - -void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range"); - props->Modulator.Frequency = val; - break; - - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range"); - props->Modulator.HighPassCutoff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); - } -} -void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALmodulator_setParamf(effect, context, param, vals[0]); } -void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - ALmodulator_setParamf(effect, context, param, (ALfloat)val); - break; - - case AL_RING_MODULATOR_WAVEFORM: - if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform"); - props->Modulator.Waveform = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); - } -} -void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALmodulator_setParami(effect, context, param, vals[0]); } - -void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - *val = (ALint)props->Modulator.Frequency; - break; - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - *val = (ALint)props->Modulator.HighPassCutoff; - break; - case AL_RING_MODULATOR_WAVEFORM: - *val = props->Modulator.Waveform; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); - } -} -void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALmodulator_getParami(effect, context, param, vals); } -void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - *val = props->Modulator.Frequency; - break; - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - *val = props->Modulator.HighPassCutoff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); - } -} -void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALmodulator_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALmodulator); diff --git a/Alc/effects/null.c b/Alc/effects/null.c deleted file mode 100644 index e57359e3..00000000 --- a/Alc/effects/null.c +++ /dev/null @@ -1,179 +0,0 @@ -#include "config.h" - -#include <stdlib.h> - -#include "AL/al.h" -#include "AL/alc.h" -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" - - -typedef struct ALnullState { - DERIVE_FROM_TYPE(ALeffectState); -} ALnullState; - -/* Forward-declare "virtual" functions to define the vtable with. */ -static ALvoid ALnullState_Destruct(ALnullState *state); -static ALboolean ALnullState_deviceUpdate(ALnullState *state, ALCdevice *device); -static ALvoid ALnullState_update(ALnullState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALnullState_process(ALnullState *state, ALsizei samplesToDo, const ALfloat (*restrict samplesIn)[BUFFERSIZE], ALfloat (*restrict samplesOut)[BUFFERSIZE], ALsizei mumChannels); -static void *ALnullState_New(size_t size); -static void ALnullState_Delete(void *ptr); - -/* Define the ALeffectState vtable for this type. */ -DEFINE_ALEFFECTSTATE_VTABLE(ALnullState); - - -/* This constructs the effect state. It's called when the object is first - * created. Make sure to call the parent Construct function first, and set the - * vtable! - */ -static void ALnullState_Construct(ALnullState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALnullState, ALeffectState, state); -} - -/* This destructs (not free!) the effect state. It's called only when the - * effect slot is no longer used. Make sure to call the parent Destruct - * function before returning! - */ -static ALvoid ALnullState_Destruct(ALnullState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -/* This updates the device-dependant effect state. This is called on - * initialization and any time the device parameters (eg. playback frequency, - * format) have been changed. - */ -static ALboolean ALnullState_deviceUpdate(ALnullState* UNUSED(state), ALCdevice* UNUSED(device)) -{ - return AL_TRUE; -} - -/* This updates the effect state. This is called any time the effect is - * (re)loaded into a slot. - */ -static ALvoid ALnullState_update(ALnullState* UNUSED(state), const ALCcontext* UNUSED(context), const ALeffectslot* UNUSED(slot), const ALeffectProps* UNUSED(props)) -{ -} - -/* This processes the effect state, for the given number of samples from the - * input to the output buffer. The result should be added to the output buffer, - * not replace it. - */ -static ALvoid ALnullState_process(ALnullState* UNUSED(state), ALsizei UNUSED(samplesToDo), const ALfloatBUFFERSIZE*restrict UNUSED(samplesIn), ALfloatBUFFERSIZE*restrict UNUSED(samplesOut), ALsizei UNUSED(numChannels)) -{ -} - -/* This allocates memory to store the object, before it gets constructed. - * DECLARE_DEFAULT_ALLOCATORS can be used to declare a default method. - */ -static void *ALnullState_New(size_t size) -{ - return al_malloc(16, size); -} - -/* This frees the memory used by the object, after it has been destructed. - * DECLARE_DEFAULT_ALLOCATORS can be used to declare a default method. - */ -static void ALnullState_Delete(void *ptr) -{ - al_free(ptr); -} - - -typedef struct NullStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} NullStateFactory; - -/* Creates ALeffectState objects of the appropriate type. */ -ALeffectState *NullStateFactory_create(NullStateFactory *UNUSED(factory)) -{ - ALnullState *state; - - NEW_OBJ0(state, ALnullState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -/* Define the EffectStateFactory vtable for this type. */ -DEFINE_EFFECTSTATEFACTORY_VTABLE(NullStateFactory); - -EffectStateFactory *NullStateFactory_getFactory(void) -{ - static NullStateFactory NullFactory = { { GET_VTABLE2(NullStateFactory, EffectStateFactory) } }; - return STATIC_CAST(EffectStateFactory, &NullFactory); -} - - -void ALnull_setParami(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint UNUSED(val)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param); - } -} -void ALnull_setParamiv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALint* UNUSED(vals)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer-vector property 0x%04x", param); - } -} -void ALnull_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param); - } -} -void ALnull_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat* UNUSED(vals)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float-vector property 0x%04x", param); - } -} - -void ALnull_getParami(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint* UNUSED(val)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param); - } -} -void ALnull_getParamiv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALint* UNUSED(vals)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer-vector property 0x%04x", param); - } -} -void ALnull_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat* UNUSED(val)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param); - } -} -void ALnull_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat* UNUSED(vals)) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float-vector property 0x%04x", param); - } -} - -DEFINE_ALEFFECT_VTABLE(ALnull); diff --git a/Alc/effects/pshifter.c b/Alc/effects/pshifter.c deleted file mode 100644 index ed18e9a8..00000000 --- a/Alc/effects/pshifter.c +++ /dev/null @@ -1,441 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <math.h> -#include <stdlib.h> - -#include "alMain.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/defs.h" - -#include "alcomplex.h" - - -#define STFT_SIZE 1024 -#define STFT_HALF_SIZE (STFT_SIZE>>1) -#define OVERSAMP (1<<2) - -#define STFT_STEP (STFT_SIZE / OVERSAMP) -#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1)) - - -typedef struct ALphasor { - ALdouble Amplitude; - ALdouble Phase; -} ALphasor; - -typedef struct ALFrequencyDomain { - ALdouble Amplitude; - ALdouble Frequency; -} ALfrequencyDomain; - - -typedef struct ALpshifterState { - DERIVE_FROM_TYPE(ALeffectState); - - /* Effect parameters */ - ALsizei count; - ALsizei PitchShiftI; - ALfloat PitchShift; - ALfloat FreqPerBin; - - /*Effects buffers*/ - ALfloat InFIFO[STFT_SIZE]; - ALfloat OutFIFO[STFT_STEP]; - ALdouble LastPhase[STFT_HALF_SIZE+1]; - ALdouble SumPhase[STFT_HALF_SIZE+1]; - ALdouble OutputAccum[STFT_SIZE]; - - ALcomplex FFTbuffer[STFT_SIZE]; - - ALfrequencyDomain Analysis_buffer[STFT_HALF_SIZE+1]; - ALfrequencyDomain Syntesis_buffer[STFT_HALF_SIZE+1]; - - alignas(16) ALfloat BufferOut[BUFFERSIZE]; - - /* Effect gains for each output channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; -} ALpshifterState; - -static ALvoid ALpshifterState_Destruct(ALpshifterState *state); -static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device); -static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); -static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ALpshifterState) - -DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState); - - -/* Define a Hann window, used to filter the STFT input and output. */ -alignas(16) static ALdouble HannWindow[STFT_SIZE]; - -static void InitHannWindow(void) -{ - ALsizei i; - - /* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */ - for(i = 0;i < STFT_SIZE>>1;i++) - { - ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(STFT_SIZE-1)); - HannWindow[i] = HannWindow[STFT_SIZE-1-i] = val * val; - } -} -static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT; - - -static inline ALint double2int(ALdouble d) -{ -#if ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \ - !defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) - ALint sign, shift; - ALint64 mant; - union { - ALdouble d; - ALint64 i64; - } conv; - - conv.d = d; - sign = (conv.i64>>63) | 1; - shift = ((conv.i64>>52)&0x7ff) - (1023+52); - - /* Over/underflow */ - if(UNLIKELY(shift >= 63 || shift < -52)) - return 0; - - mant = (conv.i64&I64(0xfffffffffffff)) | I64(0x10000000000000); - if(LIKELY(shift < 0)) - return (ALint)(mant >> -shift) * sign; - return (ALint)(mant << shift) * sign; - -#else - - return (ALint)d; -#endif -} - - -/* Converts ALcomplex to ALphasor */ -static inline ALphasor rect2polar(ALcomplex number) -{ - ALphasor polar; - - polar.Amplitude = sqrt(number.Real*number.Real + number.Imag*number.Imag); - polar.Phase = atan2(number.Imag, number.Real); - - return polar; -} - -/* Converts ALphasor to ALcomplex */ -static inline ALcomplex polar2rect(ALphasor number) -{ - ALcomplex cartesian; - - cartesian.Real = number.Amplitude * cos(number.Phase); - cartesian.Imag = number.Amplitude * sin(number.Phase); - - return cartesian; -} - - -static void ALpshifterState_Construct(ALpshifterState *state) -{ - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ALpshifterState, ALeffectState, state); - - alcall_once(&HannInitOnce, InitHannWindow); -} - -static ALvoid ALpshifterState_Destruct(ALpshifterState *state) -{ - ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); -} - -static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device) -{ - /* (Re-)initializing parameters and clear the buffers. */ - state->count = FIFO_LATENCY; - state->PitchShiftI = FRACTIONONE; - state->PitchShift = 1.0f; - state->FreqPerBin = device->Frequency / (ALfloat)STFT_SIZE; - - memset(state->InFIFO, 0, sizeof(state->InFIFO)); - memset(state->OutFIFO, 0, sizeof(state->OutFIFO)); - memset(state->FFTbuffer, 0, sizeof(state->FFTbuffer)); - memset(state->LastPhase, 0, sizeof(state->LastPhase)); - memset(state->SumPhase, 0, sizeof(state->SumPhase)); - memset(state->OutputAccum, 0, sizeof(state->OutputAccum)); - memset(state->Analysis_buffer, 0, sizeof(state->Analysis_buffer)); - memset(state->Syntesis_buffer, 0, sizeof(state->Syntesis_buffer)); - - memset(state->CurrentGains, 0, sizeof(state->CurrentGains)); - memset(state->TargetGains, 0, sizeof(state->TargetGains)); - - return AL_TRUE; -} - -static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) -{ - const ALCdevice *device = context->Device; - ALfloat coeffs[MAX_AMBI_COEFFS]; - float pitch; - - pitch = powf(2.0f, - (ALfloat)(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f - ); - state->PitchShiftI = fastf2i(pitch*FRACTIONONE); - state->PitchShift = state->PitchShiftI * (1.0f/FRACTIONONE); - - CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); - ComputePanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains); -} - -static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - /* Pitch shifter engine based on the work of Stephan Bernsee. - * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ - */ - - static const ALdouble expected = M_PI*2.0 / OVERSAMP; - const ALdouble freq_per_bin = state->FreqPerBin; - ALfloat *restrict bufferOut = state->BufferOut; - ALsizei count = state->count; - ALsizei i, j, k; - - for(i = 0;i < SamplesToDo;) - { - do { - /* Fill FIFO buffer with samples data */ - state->InFIFO[count] = SamplesIn[0][i]; - bufferOut[i] = state->OutFIFO[count - FIFO_LATENCY]; - - count++; - } while(++i < SamplesToDo && count < STFT_SIZE); - - /* Check whether FIFO buffer is filled */ - if(count < STFT_SIZE) break; - count = FIFO_LATENCY; - - /* Real signal windowing and store in FFTbuffer */ - for(k = 0;k < STFT_SIZE;k++) - { - state->FFTbuffer[k].Real = state->InFIFO[k] * HannWindow[k]; - state->FFTbuffer[k].Imag = 0.0; - } - - /* ANALYSIS */ - /* Apply FFT to FFTbuffer data */ - complex_fft(state->FFTbuffer, STFT_SIZE, -1.0); - - /* Analyze the obtained data. Since the real FFT is symmetric, only - * STFT_HALF_SIZE+1 samples are needed. - */ - for(k = 0;k < STFT_HALF_SIZE+1;k++) - { - ALphasor component; - ALdouble tmp; - ALint qpd; - - /* Compute amplitude and phase */ - component = rect2polar(state->FFTbuffer[k]); - - /* Compute phase difference and subtract expected phase difference */ - tmp = (component.Phase - state->LastPhase[k]) - k*expected; - - /* Map delta phase into +/- Pi interval */ - qpd = double2int(tmp / M_PI); - tmp -= M_PI * (qpd + (qpd%2)); - - /* Get deviation from bin frequency from the +/- Pi interval */ - tmp /= expected; - - /* Compute the k-th partials' true frequency, twice the amplitude - * for maintain the gain (because half of bins are used) and store - * amplitude and true frequency in analysis buffer. - */ - state->Analysis_buffer[k].Amplitude = 2.0 * component.Amplitude; - state->Analysis_buffer[k].Frequency = (k + tmp) * freq_per_bin; - - /* Store actual phase[k] for the calculations in the next frame*/ - state->LastPhase[k] = component.Phase; - } - - /* PROCESSING */ - /* pitch shifting */ - for(k = 0;k < STFT_HALF_SIZE+1;k++) - { - state->Syntesis_buffer[k].Amplitude = 0.0; - state->Syntesis_buffer[k].Frequency = 0.0; - } - - for(k = 0;k < STFT_HALF_SIZE+1;k++) - { - j = (k*state->PitchShiftI) >> FRACTIONBITS; - if(j >= STFT_HALF_SIZE+1) break; - - state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude; - state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency * - state->PitchShift; - } - - /* SYNTHESIS */ - /* Synthesis the processing data */ - for(k = 0;k < STFT_HALF_SIZE+1;k++) - { - ALphasor component; - ALdouble tmp; - - /* Compute bin deviation from scaled freq */ - tmp = state->Syntesis_buffer[k].Frequency/freq_per_bin - k; - - /* Calculate actual delta phase and accumulate it to get bin phase */ - state->SumPhase[k] += (k + tmp) * expected; - - component.Amplitude = state->Syntesis_buffer[k].Amplitude; - component.Phase = state->SumPhase[k]; - - /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ - state->FFTbuffer[k] = polar2rect(component); - } - /* zero negative frequencies for recontruct a real signal */ - for(k = STFT_HALF_SIZE+1;k < STFT_SIZE;k++) - { - state->FFTbuffer[k].Real = 0.0; - state->FFTbuffer[k].Imag = 0.0; - } - - /* Apply iFFT to buffer data */ - complex_fft(state->FFTbuffer, STFT_SIZE, 1.0); - - /* Windowing and add to output */ - for(k = 0;k < STFT_SIZE;k++) - state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].Real / - (0.5 * STFT_HALF_SIZE * OVERSAMP); - - /* Shift accumulator, input & output FIFO */ - for(k = 0;k < STFT_STEP;k++) state->OutFIFO[k] = (ALfloat)state->OutputAccum[k]; - for(j = 0;k < STFT_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k]; - for(;j < STFT_SIZE;j++) state->OutputAccum[j] = 0.0; - for(k = 0;k < FIFO_LATENCY;k++) - state->InFIFO[k] = state->InFIFO[k+STFT_STEP]; - } - state->count = count; - - /* Now, mix the processed sound data to the output. */ - MixSamples(bufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains, - maxi(SamplesToDo, 512), 0, SamplesToDo); -} - -typedef struct PshifterStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} PshifterStateFactory; - -static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory)) -{ - ALpshifterState *state; - - NEW_OBJ0(state, ALpshifterState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory); - -EffectStateFactory *PshifterStateFactory_getFactory(void) -{ - static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &PshifterFactory); -} - - -void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) -{ - alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param ); -} - -void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals)) -{ - alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param ); -} - -void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_PITCH_SHIFTER_COARSE_TUNE: - if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range"); - props->Pshifter.CoarseTune = val; - break; - - case AL_PITCH_SHIFTER_FINE_TUNE: - if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range"); - props->Pshifter.FineTune = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); - } -} -void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ - ALpshifter_setParami(effect, context, param, vals[0]); -} - -void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_PITCH_SHIFTER_COARSE_TUNE: - *val = (ALint)props->Pshifter.CoarseTune; - break; - case AL_PITCH_SHIFTER_FINE_TUNE: - *val = (ALint)props->Pshifter.FineTune; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); - } -} -void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ - ALpshifter_getParami(effect, context, param, vals); -} - -void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); -} - -void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals)) -{ - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); -} - -DEFINE_ALEFFECT_VTABLE(ALpshifter); diff --git a/Alc/effects/reverb.c b/Alc/effects/reverb.c deleted file mode 100644 index 8ebc089e..00000000 --- a/Alc/effects/reverb.c +++ /dev/null @@ -1,2090 +0,0 @@ -/** - * Ambisonic reverb engine for the OpenAL cross platform audio library - * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <stdio.h> -#include <stdlib.h> -#include <math.h> - -#include "alMain.h" -#include "alu.h" -#include "alAuxEffectSlot.h" -#include "alListener.h" -#include "alError.h" -#include "filters/defs.h" - -/* This is a user config option for modifying the overall output of the reverb - * effect. - */ -ALfloat ReverbBoost = 1.0f; - -/* This is the maximum number of samples processed for each inner loop - * iteration. */ -#define MAX_UPDATE_SAMPLES 256 - -/* The number of samples used for cross-faded delay lines. This can be used - * to balance the compensation for abrupt line changes and attenuation due to - * minimally lengthed recursive lines. Try to keep this below the device - * update size. - */ -#define FADE_SAMPLES 128 - -/* The number of spatialized lines or channels to process. Four channels allows - * for a 3D A-Format response. NOTE: This can't be changed without taking care - * of the conversion matrices, and a few places where the length arrays are - * assumed to have 4 elements. - */ -#define NUM_LINES 4 - - -/* The B-Format to A-Format conversion matrix. The arrangement of rows is - * deliberately chosen to align the resulting lines to their spatial opposites - * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below - * back left). It's not quite opposite, since the A-Format results in a - * tetrahedron, but it's close enough. Should the model be extended to 8-lines - * in the future, true opposites can be used. - */ -static const aluMatrixf B2A = {{ - { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f }, - { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }, - { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f }, - { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f } -}}; - -/* Converts A-Format to B-Format. */ -static const aluMatrixf A2B = {{ - { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f }, - { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f }, - { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f }, - { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f } -}}; - -static const ALfloat FadeStep = 1.0f / FADE_SAMPLES; - -/* The all-pass and delay lines have a variable length dependent on the - * effect's density parameter, which helps alter the perceived environment - * size. The size-to-density conversion is a cubed scale: - * - * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); - * - * The line lengths scale linearly with room size, so the inverse density - * conversion is needed, taking the cube root of the re-scaled density to - * calculate the line length multiplier: - * - * length_mult = max(5.0, cbrtf(density*DENSITY_SCALE)); - * - * The density scale below will result in a max line multiplier of 50, for an - * effective size range of 5m to 50m. - */ -static const ALfloat DENSITY_SCALE = 125000.0f; - -/* All delay line lengths are specified in seconds. - * - * To approximate early reflections, we break them up into primary (those - * arriving from the same direction as the source) and secondary (those - * arriving from the opposite direction). - * - * The early taps decorrelate the 4-channel signal to approximate an average - * room response for the primary reflections after the initial early delay. - * - * Given an average room dimension (d_a) and the speed of sound (c) we can - * calculate the average reflection delay (r_a) regardless of listener and - * source positions as: - * - * r_a = d_a / c - * c = 343.3 - * - * This can extended to finding the average difference (r_d) between the - * maximum (r_1) and minimum (r_0) reflection delays: - * - * r_0 = 2 / 3 r_a - * = r_a - r_d / 2 - * = r_d - * r_1 = 4 / 3 r_a - * = r_a + r_d / 2 - * = 2 r_d - * r_d = 2 / 3 r_a - * = r_1 - r_0 - * - * As can be determined by integrating the 1D model with a source (s) and - * listener (l) positioned across the dimension of length (d_a): - * - * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c - * - * The initial taps (T_(i=0)^N) are then specified by taking a power series - * that ranges between r_0 and half of r_1 less r_0: - * - * R_i = 2^(i / (2 N - 1)) r_d - * = r_0 + (2^(i / (2 N - 1)) - 1) r_d - * = r_0 + T_i - * T_i = R_i - r_0 - * = (2^(i / (2 N - 1)) - 1) r_d - * - * Assuming an average of 1m, we get the following taps: - */ -static const ALfloat EARLY_TAP_LENGTHS[NUM_LINES] = -{ - 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f -}; - -/* The early all-pass filter lengths are based on the early tap lengths: - * - * A_i = R_i / a - * - * Where a is the approximate maximum all-pass cycle limit (20). - */ -static const ALfloat EARLY_ALLPASS_LENGTHS[NUM_LINES] = -{ - 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f -}; - -/* The early delay lines are used to transform the primary reflections into - * the secondary reflections. The A-format is arranged in such a way that - * the channels/lines are spatially opposite: - * - * C_i is opposite C_(N-i-1) - * - * The delays of the two opposing reflections (R_i and O_i) from a source - * anywhere along a particular dimension always sum to twice its full delay: - * - * 2 r_a = R_i + O_i - * - * With that in mind we can determine the delay between the two reflections - * and thus specify our early line lengths (L_(i=0)^N) using: - * - * O_i = 2 r_a - R_(N-i-1) - * L_i = O_i - R_(N-i-1) - * = 2 (r_a - R_(N-i-1)) - * = 2 (r_a - T_(N-i-1) - r_0) - * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) - * - * Using an average dimension of 1m, we get: - */ -static const ALfloat EARLY_LINE_LENGTHS[NUM_LINES] = -{ - 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f -}; - -/* The late all-pass filter lengths are based on the late line lengths: - * - * A_i = (5 / 3) L_i / r_1 - */ -static const ALfloat LATE_ALLPASS_LENGTHS[NUM_LINES] = -{ - 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f -}; - -/* The late lines are used to approximate the decaying cycle of recursive - * late reflections. - * - * Splitting the lines in half, we start with the shortest reflection paths - * (L_(i=0)^(N/2)): - * - * L_i = 2^(i / (N - 1)) r_d - * - * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): - * - * L_i = 2 r_a - L_(i-N/2) - * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d - * - * For our 1m average room, we get: - */ -static const ALfloat LATE_LINE_LENGTHS[NUM_LINES] = -{ - 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f -}; - - -typedef struct DelayLineI { - /* The delay lines use interleaved samples, with the lengths being powers - * of 2 to allow the use of bit-masking instead of a modulus for wrapping. - */ - ALsizei Mask; - ALfloat (*Line)[NUM_LINES]; -} DelayLineI; - -typedef struct VecAllpass { - DelayLineI Delay; - ALfloat Coeff; - ALsizei Offset[NUM_LINES][2]; -} VecAllpass; - -typedef struct T60Filter { - /* Two filters are used to adjust the signal. One to control the low - * frequencies, and one to control the high frequencies. - */ - ALfloat MidGain[2]; - BiquadFilter HFFilter, LFFilter; -} T60Filter; - -typedef struct EarlyReflections { - /* A Gerzon vector all-pass filter is used to simulate initial diffusion. - * The spread from this filter also helps smooth out the reverb tail. - */ - VecAllpass VecAp; - - /* An echo line is used to complete the second half of the early - * reflections. - */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]; - ALfloat Coeff[NUM_LINES][2]; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; -} EarlyReflections; - -typedef struct LateReverb { - /* A recursive delay line is used fill in the reverb tail. */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]; - - /* Attenuation to compensate for the modal density and decay rate of the - * late lines. - */ - ALfloat DensityGain[2]; - - /* T60 decay filters are used to simulate absorption. */ - T60Filter T60[NUM_LINES]; - - /* A Gerzon vector all-pass filter is used to simulate diffusion. */ - VecAllpass VecAp; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]; -} LateReverb; - -typedef struct ReverbState { - DERIVE_FROM_TYPE(ALeffectState); - - /* All delay lines are allocated as a single buffer to reduce memory - * fragmentation and management code. - */ - ALfloat *SampleBuffer; - ALuint TotalSamples; - - struct { - /* Calculated parameters which indicate if cross-fading is needed after - * an update. - */ - ALfloat Density, Diffusion; - ALfloat DecayTime, HFDecayTime, LFDecayTime; - ALfloat HFReference, LFReference; - } Params; - - /* Master effect filters */ - struct { - BiquadFilter Lp; - BiquadFilter Hp; - } Filter[NUM_LINES]; - - /* Core delay line (early reflections and late reverb tap from this). */ - DelayLineI Delay; - - /* Tap points for early reflection delay. */ - ALsizei EarlyDelayTap[NUM_LINES][2]; - ALfloat EarlyDelayCoeff[NUM_LINES][2]; - - /* Tap points for late reverb feed and delay. */ - ALsizei LateFeedTap; - ALsizei LateDelayTap[NUM_LINES][2]; - - /* Coefficients for the all-pass and line scattering matrices. */ - ALfloat MixX; - ALfloat MixY; - - EarlyReflections Early; - - LateReverb Late; - - /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */ - ALsizei FadeCount; - - /* Maximum number of samples to process at once. */ - ALsizei MaxUpdate[2]; - - /* The current write offset for all delay lines. */ - ALsizei Offset; - - /* Temporary storage used when processing. */ - alignas(16) ALfloat TempSamples[NUM_LINES][MAX_UPDATE_SAMPLES]; - alignas(16) ALfloat MixSamples[NUM_LINES][MAX_UPDATE_SAMPLES]; -} ReverbState; - -static ALvoid ReverbState_Destruct(ReverbState *State); -static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device); -static ALvoid ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props); -static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); -DECLARE_DEFAULT_ALLOCATORS(ReverbState) - -DEFINE_ALEFFECTSTATE_VTABLE(ReverbState); - -static void ReverbState_Construct(ReverbState *state) -{ - ALsizei i, j; - - ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); - SET_VTABLE2(ReverbState, ALeffectState, state); - - state->TotalSamples = 0; - state->SampleBuffer = NULL; - - state->Params.Density = AL_EAXREVERB_DEFAULT_DENSITY; - state->Params.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION; - state->Params.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME; - state->Params.HFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_HFRATIO; - state->Params.LFDecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME*AL_EAXREVERB_DEFAULT_DECAY_LFRATIO; - state->Params.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE; - state->Params.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE; - - for(i = 0;i < NUM_LINES;i++) - { - BiquadFilter_clear(&state->Filter[i].Lp); - BiquadFilter_clear(&state->Filter[i].Hp); - } - - state->Delay.Mask = 0; - state->Delay.Line = NULL; - - for(i = 0;i < NUM_LINES;i++) - { - state->EarlyDelayTap[i][0] = 0; - state->EarlyDelayTap[i][1] = 0; - state->EarlyDelayCoeff[i][0] = 0.0f; - state->EarlyDelayCoeff[i][1] = 0.0f; - } - - state->LateFeedTap = 0; - - for(i = 0;i < NUM_LINES;i++) - { - state->LateDelayTap[i][0] = 0; - state->LateDelayTap[i][1] = 0; - } - - state->MixX = 0.0f; - state->MixY = 0.0f; - - state->Early.VecAp.Delay.Mask = 0; - state->Early.VecAp.Delay.Line = NULL; - state->Early.VecAp.Coeff = 0.0f; - state->Early.Delay.Mask = 0; - state->Early.Delay.Line = NULL; - for(i = 0;i < NUM_LINES;i++) - { - state->Early.VecAp.Offset[i][0] = 0; - state->Early.VecAp.Offset[i][1] = 0; - state->Early.Offset[i][0] = 0; - state->Early.Offset[i][1] = 0; - state->Early.Coeff[i][0] = 0.0f; - state->Early.Coeff[i][1] = 0.0f; - } - - state->Late.DensityGain[0] = 0.0f; - state->Late.DensityGain[1] = 0.0f; - state->Late.Delay.Mask = 0; - state->Late.Delay.Line = NULL; - state->Late.VecAp.Delay.Mask = 0; - state->Late.VecAp.Delay.Line = NULL; - state->Late.VecAp.Coeff = 0.0f; - for(i = 0;i < NUM_LINES;i++) - { - state->Late.Offset[i][0] = 0; - state->Late.Offset[i][1] = 0; - - state->Late.VecAp.Offset[i][0] = 0; - state->Late.VecAp.Offset[i][1] = 0; - - state->Late.T60[i].MidGain[0] = 0.0f; - state->Late.T60[i].MidGain[1] = 0.0f; - BiquadFilter_clear(&state->Late.T60[i].HFFilter); - BiquadFilter_clear(&state->Late.T60[i].LFFilter); - } - - for(i = 0;i < NUM_LINES;i++) - { - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - { - state->Early.CurrentGain[i][j] = 0.0f; - state->Early.PanGain[i][j] = 0.0f; - state->Late.CurrentGain[i][j] = 0.0f; - state->Late.PanGain[i][j] = 0.0f; - } - } - - state->FadeCount = 0; - state->MaxUpdate[0] = MAX_UPDATE_SAMPLES; - state->MaxUpdate[1] = MAX_UPDATE_SAMPLES; - state->Offset = 0; -} - -static ALvoid ReverbState_Destruct(ReverbState *State) -{ - al_free(State->SampleBuffer); - State->SampleBuffer = NULL; - - ALeffectState_Destruct(STATIC_CAST(ALeffectState,State)); -} - -/************************************** - * Device Update * - **************************************/ - -static inline ALfloat CalcDelayLengthMult(ALfloat density) -{ - return maxf(5.0f, cbrtf(density*DENSITY_SCALE)); -} - -/* Given the allocated sample buffer, this function updates each delay line - * offset. - */ -static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay) -{ - union { - ALfloat *f; - ALfloat (*f4)[NUM_LINES]; - } u; - u.f = &sampleBuffer[(ptrdiff_t)Delay->Line * NUM_LINES]; - Delay->Line = u.f4; -} - -/* Calculate the length of a delay line and store its mask and offset. */ -static ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALuint frequency, - const ALuint extra, DelayLineI *Delay) -{ - ALuint samples; - - /* All line lengths are powers of 2, calculated from their lengths in - * seconds, rounded up. - */ - samples = float2int(ceilf(length*frequency)); - samples = NextPowerOf2(samples + extra); - - /* All lines share a single sample buffer. */ - Delay->Mask = samples - 1; - Delay->Line = (ALfloat(*)[NUM_LINES])offset; - - /* Return the sample count for accumulation. */ - return samples; -} - -/* Calculates the delay line metrics and allocates the shared sample buffer - * for all lines given the sample rate (frequency). If an allocation failure - * occurs, it returns AL_FALSE. - */ -static ALboolean AllocLines(const ALuint frequency, ReverbState *State) -{ - ALuint totalSamples, i; - ALfloat multiplier, length; - - /* All delay line lengths are calculated to accomodate the full range of - * lengths given their respective paramters. - */ - totalSamples = 0; - - /* Multiplier for the maximum density value, i.e. density=1, which is - * actually the least density... - */ - multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY); - - /* The main delay length includes the maximum early reflection delay, the - * largest early tap width, the maximum late reverb delay, and the - * largest late tap width. Finally, it must also be extended by the - * update size (MAX_UPDATE_SAMPLES) for block processing. - */ - length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier + - AL_EAXREVERB_MAX_LATE_REVERB_DELAY + - (LATE_LINE_LENGTHS[NUM_LINES-1] - LATE_LINE_LENGTHS[0])*0.25f*multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES, - &State->Delay); - - /* The early vector all-pass line. */ - length = EARLY_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Early.VecAp.Delay); - - /* The early reflection line. */ - length = EARLY_LINE_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Early.Delay); - - /* The late vector all-pass line. */ - length = LATE_ALLPASS_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Late.VecAp.Delay); - - /* The late delay lines are calculated from the largest maximum density - * line length. - */ - length = LATE_LINE_LENGTHS[NUM_LINES-1] * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, - &State->Late.Delay); - - if(totalSamples != State->TotalSamples) - { - ALfloat *newBuffer; - - TRACE("New reverb buffer length: %ux4 samples\n", totalSamples); - newBuffer = al_calloc(16, sizeof(ALfloat[NUM_LINES]) * totalSamples); - if(!newBuffer) return AL_FALSE; - - al_free(State->SampleBuffer); - State->SampleBuffer = newBuffer; - State->TotalSamples = totalSamples; - } - - /* Update all delays to reflect the new sample buffer. */ - RealizeLineOffset(State->SampleBuffer, &State->Delay); - RealizeLineOffset(State->SampleBuffer, &State->Early.VecAp.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Early.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Late.VecAp.Delay); - RealizeLineOffset(State->SampleBuffer, &State->Late.Delay); - - /* Clear the sample buffer. */ - for(i = 0;i < State->TotalSamples;i++) - State->SampleBuffer[i] = 0.0f; - - return AL_TRUE; -} - -static ALboolean ReverbState_deviceUpdate(ReverbState *State, ALCdevice *Device) -{ - ALuint frequency = Device->Frequency; - ALfloat multiplier; - ALsizei i, j; - - /* Allocate the delay lines. */ - if(!AllocLines(frequency, State)) - return AL_FALSE; - - multiplier = CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY); - - /* The late feed taps are set a fixed position past the latest delay tap. */ - State->LateFeedTap = float2int((AL_EAXREVERB_MAX_REFLECTIONS_DELAY + - EARLY_TAP_LENGTHS[NUM_LINES-1]*multiplier) * - frequency); - - /* Clear filters and gain coefficients since the delay lines were all just - * cleared (if not reallocated). - */ - for(i = 0;i < NUM_LINES;i++) - { - BiquadFilter_clear(&State->Filter[i].Lp); - BiquadFilter_clear(&State->Filter[i].Hp); - } - - for(i = 0;i < NUM_LINES;i++) - { - State->EarlyDelayCoeff[i][0] = 0.0f; - State->EarlyDelayCoeff[i][1] = 0.0f; - } - - for(i = 0;i < NUM_LINES;i++) - { - State->Early.Coeff[i][0] = 0.0f; - State->Early.Coeff[i][1] = 0.0f; - } - - State->Late.DensityGain[0] = 0.0f; - State->Late.DensityGain[1] = 0.0f; - for(i = 0;i < NUM_LINES;i++) - { - State->Late.T60[i].MidGain[0] = 0.0f; - State->Late.T60[i].MidGain[1] = 0.0f; - BiquadFilter_clear(&State->Late.T60[i].HFFilter); - BiquadFilter_clear(&State->Late.T60[i].LFFilter); - } - - for(i = 0;i < NUM_LINES;i++) - { - for(j = 0;j < MAX_OUTPUT_CHANNELS;j++) - { - State->Early.CurrentGain[i][j] = 0.0f; - State->Early.PanGain[i][j] = 0.0f; - State->Late.CurrentGain[i][j] = 0.0f; - State->Late.PanGain[i][j] = 0.0f; - } - } - - /* Reset counters and offset base. */ - State->FadeCount = 0; - State->MaxUpdate[0] = MAX_UPDATE_SAMPLES; - State->MaxUpdate[1] = MAX_UPDATE_SAMPLES; - State->Offset = 0; - - return AL_TRUE; -} - -/************************************** - * Effect Update * - **************************************/ - -/* Calculate a decay coefficient given the length of each cycle and the time - * until the decay reaches -60 dB. - */ -static inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime) -{ - return powf(REVERB_DECAY_GAIN, length/decayTime); -} - -/* Calculate a decay length from a coefficient and the time until the decay - * reaches -60 dB. - */ -static inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime) -{ - return log10f(coeff) * decayTime / log10f(REVERB_DECAY_GAIN); -} - -/* Calculate an attenuation to be applied to the input of any echo models to - * compensate for modal density and decay time. - */ -static inline ALfloat CalcDensityGain(const ALfloat a) -{ - /* The energy of a signal can be obtained by finding the area under the - * squared signal. This takes the form of Sum(x_n^2), where x is the - * amplitude for the sample n. - * - * Decaying feedback matches exponential decay of the form Sum(a^n), - * where a is the attenuation coefficient, and n is the sample. The area - * under this decay curve can be calculated as: 1 / (1 - a). - * - * Modifying the above equation to find the area under the squared curve - * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be - * calculated by inverting the square root of this approximation, - * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). - */ - return sqrtf(1.0f - a*a); -} - -/* Calculate the scattering matrix coefficients given a diffusion factor. */ -static inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y) -{ - ALfloat n, t; - - /* The matrix is of order 4, so n is sqrt(4 - 1). */ - n = sqrtf(3.0f); - t = diffusion * atanf(n); - - /* Calculate the first mixing matrix coefficient. */ - *x = cosf(t); - /* Calculate the second mixing matrix coefficient. */ - *y = sinf(t) / n; -} - -/* Calculate the limited HF ratio for use with the late reverb low-pass - * filters. - */ -static ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF, - const ALfloat decayTime, const ALfloat SpeedOfSound) -{ - ALfloat limitRatio; - - /* Find the attenuation due to air absorption in dB (converting delay - * time to meters using the speed of sound). Then reversing the decay - * equation, solve for HF ratio. The delay length is cancelled out of - * the equation, so it can be calculated once for all lines. - */ - limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound); - - /* Using the limit calculated above, apply the upper bound to the HF ratio. - */ - return minf(limitRatio, hfRatio); -} - - -/* Calculates the 3-band T60 damping coefficients for a particular delay line - * of specified length, using a combination of two shelf filter sections given - * decay times for each band split at two reference frequencies. - */ -static void CalcT60DampingCoeffs(const ALfloat length, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, - const ALfloat lf0norm, const ALfloat hf0norm, - T60Filter *filter) -{ - ALfloat lfGain = CalcDecayCoeff(length, lfDecayTime); - ALfloat mfGain = CalcDecayCoeff(length, mfDecayTime); - ALfloat hfGain = CalcDecayCoeff(length, hfDecayTime); - - filter->MidGain[1] = mfGain; - BiquadFilter_setParams(&filter->LFFilter, BiquadType_LowShelf, lfGain/mfGain, lf0norm, - calc_rcpQ_from_slope(lfGain/mfGain, 1.0f)); - BiquadFilter_setParams(&filter->HFFilter, BiquadType_HighShelf, hfGain/mfGain, hf0norm, - calc_rcpQ_from_slope(hfGain/mfGain, 1.0f)); -} - -/* Update the offsets for the main effect delay line. */ -static ALvoid UpdateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, const ALfloat decayTime, const ALuint frequency, ReverbState *State) -{ - ALfloat multiplier, length; - ALuint i; - - multiplier = CalcDelayLengthMult(density); - - /* Early reflection taps are decorrelated by means of an average room - * reflection approximation described above the definition of the taps. - * This approximation is linear and so the above density multiplier can - * be applied to adjust the width of the taps. A single-band decay - * coefficient is applied to simulate initial attenuation and absorption. - * - * Late reverb taps are based on the late line lengths to allow a zero- - * delay path and offsets that would continue the propagation naturally - * into the late lines. - */ - for(i = 0;i < NUM_LINES;i++) - { - length = earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier; - State->EarlyDelayTap[i][1] = float2int(length * frequency); - - length = EARLY_TAP_LENGTHS[i]*multiplier; - State->EarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime); - - length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS[0])*0.25f*multiplier; - State->LateDelayTap[i][1] = State->LateFeedTap + float2int(length * frequency); - } -} - -/* Update the early reflection line lengths and gain coefficients. */ -static ALvoid UpdateEarlyLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, const ALuint frequency, EarlyReflections *Early) -{ - ALfloat multiplier, length; - ALsizei i; - - multiplier = CalcDelayLengthMult(density); - - /* Calculate the all-pass feed-back/forward coefficient. */ - Early->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f); - - for(i = 0;i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = EARLY_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - Early->VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = EARLY_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Early->Offset[i][1] = float2int(length * frequency); - - /* Calculate the gain (coefficient) for each line. */ - Early->Coeff[i][1] = CalcDecayCoeff(length, decayTime); - } -} - -/* Update the late reverb line lengths and T60 coefficients. */ -static ALvoid UpdateLateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm, const ALuint frequency, LateReverb *Late) -{ - /* Scaling factor to convert the normalized reference frequencies from - * representing 0...freq to 0...max_reference. - */ - const ALfloat norm_weight_factor = (ALfloat)frequency / AL_EAXREVERB_MAX_HFREFERENCE; - ALfloat multiplier, length, bandWeights[3]; - ALsizei i; - - /* To compensate for changes in modal density and decay time of the late - * reverb signal, the input is attenuated based on the maximal energy of - * the outgoing signal. This approximation is used to keep the apparent - * energy of the signal equal for all ranges of density and decay time. - * - * The average length of the delay lines is used to calculate the - * attenuation coefficient. - */ - multiplier = CalcDelayLengthMult(density); - length = (LATE_LINE_LENGTHS[0] + LATE_LINE_LENGTHS[1] + - LATE_LINE_LENGTHS[2] + LATE_LINE_LENGTHS[3]) / 4.0f * multiplier; - length += (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] + - LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f * multiplier; - /* The density gain calculation uses an average decay time weighted by - * approximate bandwidth. This attempts to compensate for losses of energy - * that reduce decay time due to scattering into highly attenuated bands. - */ - bandWeights[0] = lf0norm*norm_weight_factor; - bandWeights[1] = hf0norm*norm_weight_factor - lf0norm*norm_weight_factor; - bandWeights[2] = 1.0f - hf0norm*norm_weight_factor; - Late->DensityGain[1] = CalcDensityGain( - CalcDecayCoeff(length, - bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime - ) - ); - - /* Calculate the all-pass feed-back/forward coefficient. */ - Late->VecAp.Coeff = sqrtf(0.5f) * powf(diffusion, 2.0f); - - for(i = 0;i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = LATE_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - Late->VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = LATE_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Late->Offset[i][1] = float2int(length*frequency + 0.5f); - - /* Approximate the absorption that the vector all-pass would exhibit - * given the current diffusion so we don't have to process a full T60 - * filter for each of its four lines. - */ - length += lerp(LATE_ALLPASS_LENGTHS[i], - (LATE_ALLPASS_LENGTHS[0] + LATE_ALLPASS_LENGTHS[1] + - LATE_ALLPASS_LENGTHS[2] + LATE_ALLPASS_LENGTHS[3]) / 4.0f, - diffusion) * multiplier; - - /* Calculate the T60 damping coefficients for each line. */ - CalcT60DampingCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, - lf0norm, hf0norm, &Late->T60[i]); - } -} - -/* Creates a transform matrix given a reverb vector. The vector pans the reverb - * reflections toward the given direction, using its magnitude (up to 1) as a - * focal strength. This function results in a B-Format transformation matrix - * that spatially focuses the signal in the desired direction. - */ -static aluMatrixf GetTransformFromVector(const ALfloat *vec) -{ - aluMatrixf focus; - ALfloat norm[3]; - ALfloat mag; - - /* Normalize the panning vector according to the N3D scale, which has an - * extra sqrt(3) term on the directional components. Converting from OpenAL - * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however - * that the reverb panning vectors use left-handed coordinates, unlike the - * rest of OpenAL which use right-handed. This is fixed by negating Z, - * which cancels out with the B-Format Z negation. - */ - mag = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); - if(mag > 1.0f) - { - norm[0] = vec[0] / mag * -SQRTF_3; - norm[1] = vec[1] / mag * SQRTF_3; - norm[2] = vec[2] / mag * SQRTF_3; - mag = 1.0f; - } - else - { - /* If the magnitude is less than or equal to 1, just apply the sqrt(3) - * term. There's no need to renormalize the magnitude since it would - * just be reapplied in the matrix. - */ - norm[0] = vec[0] * -SQRTF_3; - norm[1] = vec[1] * SQRTF_3; - norm[2] = vec[2] * SQRTF_3; - } - - aluMatrixfSet(&focus, - 1.0f, 0.0f, 0.0f, 0.0f, - norm[0], 1.0f-mag, 0.0f, 0.0f, - norm[1], 0.0f, 1.0f-mag, 0.0f, - norm[2], 0.0f, 0.0f, 1.0f-mag - ); - - return focus; -} - -/* Update the early and late 3D panning gains. */ -static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, const ALfloat earlyGain, const ALfloat lateGain, ReverbState *State) -{ - aluMatrixf transform, rot; - ALsizei i; - - STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer; - STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels; - - /* Note: _res is transposed. */ -#define MATRIX_MULT(_res, _m1, _m2) do { \ - int row, col; \ - for(col = 0;col < 4;col++) \ - { \ - for(row = 0;row < 4;row++) \ - _res.m[col][row] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \ - _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \ - } \ -} while(0) - /* Create a matrix that first converts A-Format to B-Format, then - * transforms the B-Format signal according to the panning vector. - */ - rot = GetTransformFromVector(ReflectionsPan); - MATRIX_MULT(transform, rot, A2B); - memset(&State->Early.PanGain, 0, sizeof(State->Early.PanGain)); - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&Device->FOAOut, transform.m[i], earlyGain, - State->Early.PanGain[i]); - - rot = GetTransformFromVector(LateReverbPan); - MATRIX_MULT(transform, rot, A2B); - memset(&State->Late.PanGain, 0, sizeof(State->Late.PanGain)); - for(i = 0;i < MAX_EFFECT_CHANNELS;i++) - ComputePanGains(&Device->FOAOut, transform.m[i], lateGain, - State->Late.PanGain[i]); -#undef MATRIX_MULT -} - -static void ReverbState_update(ReverbState *State, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props) -{ - const ALCdevice *Device = Context->Device; - const ALlistener *Listener = Context->Listener; - ALuint frequency = Device->Frequency; - ALfloat lf0norm, hf0norm, hfRatio; - ALfloat lfDecayTime, hfDecayTime; - ALfloat gain, gainlf, gainhf; - ALsizei i; - - /* Calculate the master filters */ - hf0norm = minf(props->Reverb.HFReference / frequency, 0.49f); - /* Restrict the filter gains from going below -60dB to keep the filter from - * killing most of the signal. - */ - gainhf = maxf(props->Reverb.GainHF, 0.001f); - BiquadFilter_setParams(&State->Filter[0].Lp, BiquadType_HighShelf, gainhf, hf0norm, - calc_rcpQ_from_slope(gainhf, 1.0f)); - lf0norm = minf(props->Reverb.LFReference / frequency, 0.49f); - gainlf = maxf(props->Reverb.GainLF, 0.001f); - BiquadFilter_setParams(&State->Filter[0].Hp, BiquadType_LowShelf, gainlf, lf0norm, - calc_rcpQ_from_slope(gainlf, 1.0f)); - for(i = 1;i < NUM_LINES;i++) - { - BiquadFilter_copyParams(&State->Filter[i].Lp, &State->Filter[0].Lp); - BiquadFilter_copyParams(&State->Filter[i].Hp, &State->Filter[0].Hp); - } - - /* Update the main effect delay and associated taps. */ - UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, - props->Reverb.Density, props->Reverb.DecayTime, frequency, - State); - - /* Update the early lines. */ - UpdateEarlyLines(props->Reverb.Density, props->Reverb.Diffusion, - props->Reverb.DecayTime, frequency, &State->Early); - - /* Get the mixing matrix coefficients. */ - CalcMatrixCoeffs(props->Reverb.Diffusion, &State->MixX, &State->MixY); - - /* If the HF limit parameter is flagged, calculate an appropriate limit - * based on the air absorption parameter. - */ - hfRatio = props->Reverb.DecayHFRatio; - if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) - hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, - props->Reverb.DecayTime, Listener->Params.ReverbSpeedOfSound - ); - - /* Calculate the LF/HF decay times. */ - lfDecayTime = clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME); - hfDecayTime = clampf(props->Reverb.DecayTime * hfRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME); - - /* Update the late lines. */ - UpdateLateLines(props->Reverb.Density, props->Reverb.Diffusion, - lfDecayTime, props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, - frequency, &State->Late - ); - - /* Update early and late 3D panning. */ - gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost; - Update3DPanning(Device, props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, - props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, - State); - - /* Calculate the max update size from the smallest relevant delay. */ - State->MaxUpdate[1] = mini(MAX_UPDATE_SAMPLES, - mini(State->Early.Offset[0][1], State->Late.Offset[0][1]) - ); - - /* Determine if delay-line cross-fading is required. Density is essentially - * a master control for the feedback delays, so changes the offsets of many - * delay lines. - */ - if(State->Params.Density != props->Reverb.Density || - /* Diffusion and decay times influences the decay rate (gain) of the - * late reverb T60 filter. - */ - State->Params.Diffusion != props->Reverb.Diffusion || - State->Params.DecayTime != props->Reverb.DecayTime || - State->Params.HFDecayTime != hfDecayTime || - State->Params.LFDecayTime != lfDecayTime || - /* HF/LF References control the weighting used to calculate the density - * gain. - */ - State->Params.HFReference != props->Reverb.HFReference || - State->Params.LFReference != props->Reverb.LFReference) - State->FadeCount = 0; - State->Params.Density = props->Reverb.Density; - State->Params.Diffusion = props->Reverb.Diffusion; - State->Params.DecayTime = props->Reverb.DecayTime; - State->Params.HFDecayTime = hfDecayTime; - State->Params.LFDecayTime = lfDecayTime; - State->Params.HFReference = props->Reverb.HFReference; - State->Params.LFReference = props->Reverb.LFReference; -} - - -/************************************** - * Effect Processing * - **************************************/ - -/* Basic delay line input/output routines. */ -static inline ALfloat DelayLineOut(const DelayLineI *Delay, const ALsizei offset, const ALsizei c) -{ - return Delay->Line[offset&Delay->Mask][c]; -} - -/* Cross-faded delay line output routine. Instead of interpolating the - * offsets, this interpolates (cross-fades) the outputs at each offset. - */ -static inline ALfloat FadedDelayLineOut(const DelayLineI *Delay, const ALsizei off0, - const ALsizei off1, const ALsizei c, - const ALfloat sc0, const ALfloat sc1) -{ - return Delay->Line[off0&Delay->Mask][c]*sc0 + - Delay->Line[off1&Delay->Mask][c]*sc1; -} - - -static inline void DelayLineIn(const DelayLineI *Delay, ALsizei offset, const ALsizei c, - const ALfloat *restrict in, ALsizei count) -{ - ALsizei i; - for(i = 0;i < count;i++) - Delay->Line[(offset++)&Delay->Mask][c] = *(in++); -} - -/* Applies a scattering matrix to the 4-line (vector) input. This is used - * for both the below vector all-pass model and to perform modal feed-back - * delay network (FDN) mixing. - * - * The matrix is derived from a skew-symmetric matrix to form a 4D rotation - * matrix with a single unitary rotational parameter: - * - * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 - * [ -a, d, c, -b ] - * [ -b, -c, d, a ] - * [ -c, b, -a, d ] - * - * The rotation is constructed from the effect's diffusion parameter, - * yielding: - * - * 1 = x^2 + 3 y^2 - * - * Where a, b, and c are the coefficient y with differing signs, and d is the - * coefficient x. The final matrix is thus: - * - * [ x, y, -y, y ] n = sqrt(matrix_order - 1) - * [ -y, x, y, y ] t = diffusion_parameter * atan(n) - * [ y, -y, x, y ] x = cos(t) - * [ -y, -y, -y, x ] y = sin(t) / n - * - * Any square orthogonal matrix with an order that is a power of two will - * work (where ^T is transpose, ^-1 is inverse): - * - * M^T = M^-1 - * - * Using that knowledge, finding an appropriate matrix can be accomplished - * naively by searching all combinations of: - * - * M = D + S - S^T - * - * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) - * whose combination of signs are being iterated. - */ -static inline void VectorPartialScatter(ALfloat *restrict out, const ALfloat *restrict in, - const ALfloat xCoeff, const ALfloat yCoeff) -{ - out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]); - out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]); - out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]); - out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ); -} -#define VectorScatterDelayIn(delay, o, in, xcoeff, ycoeff) \ - VectorPartialScatter((delay)->Line[(o)&(delay)->Mask], in, xcoeff, ycoeff) - -/* Utilizes the above, but reverses the input channels. */ -static inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset, - const ALfloat xCoeff, const ALfloat yCoeff, - const ALfloat (*restrict in)[MAX_UPDATE_SAMPLES], - const ALsizei count) -{ - const DelayLineI delay = *Delay; - ALsizei i, j; - - for(i = 0;i < count;++i) - { - ALfloat f[NUM_LINES]; - for(j = 0;j < NUM_LINES;j++) - f[NUM_LINES-1-j] = in[j][i]; - - VectorScatterDelayIn(&delay, offset++, f, xCoeff, yCoeff); - } -} - -/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass - * filter to the 4-line input. - * - * It works by vectorizing a regular all-pass filter and replacing the delay - * element with a scattering matrix (like the one above) and a diagonal - * matrix of delay elements. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -static void VectorAllpass_Unfaded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALsizei todo, - VecAllpass *Vap) -{ - const DelayLineI delay = Vap->Delay; - const ALfloat feedCoeff = Vap->Coeff; - ALsizei vap_offset[NUM_LINES]; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - vap_offset[j] = offset-Vap->Offset[j][0]; - for(i = 0;i < todo;i++) - { - ALfloat f[NUM_LINES]; - - for(j = 0;j < NUM_LINES;j++) - { - ALfloat input = samples[j][i]; - ALfloat out = DelayLineOut(&delay, vap_offset[j]++, j) - feedCoeff*input; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - - VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff); - ++offset; - } -} -static void VectorAllpass_Faded(ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES], ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, - ALsizei todo, VecAllpass *Vap) -{ - const DelayLineI delay = Vap->Delay; - const ALfloat feedCoeff = Vap->Coeff; - ALsizei vap_offset[NUM_LINES][2]; - ALsizei i, j; - - ASSUME(todo > 0); - - fade *= 1.0f/FADE_SAMPLES; - for(j = 0;j < NUM_LINES;j++) - { - vap_offset[j][0] = offset-Vap->Offset[j][0]; - vap_offset[j][1] = offset-Vap->Offset[j][1]; - } - for(i = 0;i < todo;i++) - { - ALfloat f[NUM_LINES]; - - for(j = 0;j < NUM_LINES;j++) - { - ALfloat input = samples[j][i]; - ALfloat out = - FadedDelayLineOut(&delay, vap_offset[j][0]++, vap_offset[j][1]++, j, - 1.0f-fade, fade - ) - feedCoeff*input; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - fade += FadeStep; - - VectorScatterDelayIn(&delay, offset, f, xCoeff, yCoeff); - ++offset; - } -} - -/* This generates early reflections. - * - * This is done by obtaining the primary reflections (those arriving from the - * same direction as the source) from the main delay line. These are - * attenuated and all-pass filtered (based on the diffusion parameter). - * - * The early lines are then fed in reverse (according to the approximately - * opposite spatial location of the A-Format lines) to create the secondary - * reflections (those arriving from the opposite direction as the source). - * - * The early response is then completed by combining the primary reflections - * with the delayed and attenuated output from the early lines. - * - * Finally, the early response is reversed, scattered (based on diffusion), - * and fed into the late reverb section of the main delay line. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -static void EarlyReflection_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo, - ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI early_delay = State->Early.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei late_feed_tap; - ALsizei i, j; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main delay line as the primary - * reflections. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALsizei early_delay_tap = offset - State->EarlyDelayTap[j][0]; - ALfloat coeff = State->EarlyDelayCoeff[j][0]; - for(i = 0;i < todo;i++) - temps[j][i] = DelayLineOut(&main_delay, early_delay_tap++, j) * coeff; - } - - /* Apply a vector all-pass, to help color the initial reflections based on - * the diffusion strength. - */ - VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Early.VecAp); - - /* Apply a delay and bounce to generate secondary reflections, combine with - * the primary reflections and write out the result for mixing. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALint early_feedb_tap = offset - State->Early.Offset[j][0]; - ALfloat early_feedb_coeff = State->Early.Coeff[j][0]; - - for(i = 0;i < todo;i++) - out[j][i] = DelayLineOut(&early_delay, early_feedb_tap++, j)*early_feedb_coeff + - temps[j][i]; - } - for(j = 0;j < NUM_LINES;j++) - DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo); - - /* Also write the result back to the main delay line for the late reverb - * stage to pick up at the appropriate time, appplying a scatter and - * bounce to improve the initial diffusion in the late reverb. - */ - late_feed_tap = offset - State->LateFeedTap; - VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo); -} -static void EarlyReflection_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, - const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI early_delay = State->Early.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei late_feed_tap; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - { - ALsizei early_delay_tap0 = offset - State->EarlyDelayTap[j][0]; - ALsizei early_delay_tap1 = offset - State->EarlyDelayTap[j][1]; - ALfloat oldCoeff = State->EarlyDelayCoeff[j][0]; - ALfloat oldCoeffStep = -oldCoeff / FADE_SAMPLES; - ALfloat newCoeffStep = State->EarlyDelayCoeff[j][1] / FADE_SAMPLES; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = oldCoeff + oldCoeffStep*fadeCount; - const ALfloat fade1 = newCoeffStep*fadeCount; - temps[j][i] = FadedDelayLineOut(&main_delay, - early_delay_tap0++, early_delay_tap1++, j, fade0, fade1 - ); - fadeCount += 1.0f; - } - } - - VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Early.VecAp); - - for(j = 0;j < NUM_LINES;j++) - { - ALint feedb_tap0 = offset - State->Early.Offset[j][0]; - ALint feedb_tap1 = offset - State->Early.Offset[j][1]; - ALfloat feedb_oldCoeff = State->Early.Coeff[j][0]; - ALfloat feedb_oldCoeffStep = -feedb_oldCoeff / FADE_SAMPLES; - ALfloat feedb_newCoeffStep = State->Early.Coeff[j][1] / FADE_SAMPLES; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = feedb_oldCoeff + feedb_oldCoeffStep*fadeCount; - const ALfloat fade1 = feedb_newCoeffStep*fadeCount; - out[j][i] = FadedDelayLineOut(&early_delay, - feedb_tap0++, feedb_tap1++, j, fade0, fade1 - ) + temps[j][i]; - fadeCount += 1.0f; - } - } - for(j = 0;j < NUM_LINES;j++) - DelayLineIn(&early_delay, offset, NUM_LINES-1-j, temps[j], todo); - - late_feed_tap = offset - State->LateFeedTap; - VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, out, todo); -} - -/* Applies the two T60 damping filter sections. */ -static inline void LateT60Filter(ALfloat *restrict samples, const ALsizei todo, T60Filter *filter) -{ - ALfloat temp[MAX_UPDATE_SAMPLES]; - BiquadFilter_process(&filter->HFFilter, temp, samples, todo); - BiquadFilter_process(&filter->LFFilter, samples, temp, todo); -} - -/* This generates the reverb tail using a modified feed-back delay network - * (FDN). - * - * Results from the early reflections are mixed with the output from the late - * delay lines. - * - * The late response is then completed by T60 and all-pass filtering the mix. - * - * Finally, the lines are reversed (so they feed their opposite directions) - * and scattered with the FDN matrix before re-feeding the delay lines. - * - * Two variations are made, one for for transitional (cross-faded) delay line - * processing and one for non-transitional processing. - */ -static void LateReverb_Unfaded(ReverbState *State, ALsizei offset, const ALsizei todo, - ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI late_delay = State->Late.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei i, j; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main and feedback delay lines. - * Filter the signal to apply its frequency-dependent decay. - */ - for(j = 0;j < NUM_LINES;j++) - { - ALsizei late_delay_tap = offset - State->LateDelayTap[j][0]; - ALsizei late_feedb_tap = offset - State->Late.Offset[j][0]; - ALfloat midGain = State->Late.T60[j].MidGain[0]; - const ALfloat densityGain = State->Late.DensityGain[0] * midGain; - for(i = 0;i < todo;i++) - temps[j][i] = DelayLineOut(&main_delay, late_delay_tap++, j)*densityGain + - DelayLineOut(&late_delay, late_feedb_tap++, j)*midGain; - LateT60Filter(temps[j], todo, &State->Late.T60[j]); - } - - /* Apply a vector all-pass to improve micro-surface diffusion, and write - * out the results for mixing. - */ - VectorAllpass_Unfaded(temps, offset, mixX, mixY, todo, &State->Late.VecAp); - - for(j = 0;j < NUM_LINES;j++) - memcpy(out[j], temps[j], todo*sizeof(ALfloat)); - - /* Finally, scatter and bounce the results to refeed the feedback buffer. */ - VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, out, todo); -} -static void LateReverb_Faded(ReverbState *State, ALsizei offset, const ALsizei todo, - const ALfloat fade, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES]) -{ - ALfloat (*restrict temps)[MAX_UPDATE_SAMPLES] = State->TempSamples; - const DelayLineI late_delay = State->Late.Delay; - const DelayLineI main_delay = State->Delay; - const ALfloat mixX = State->MixX; - const ALfloat mixY = State->MixY; - ALsizei i, j; - - ASSUME(todo > 0); - - for(j = 0;j < NUM_LINES;j++) - { - const ALfloat oldMidGain = State->Late.T60[j].MidGain[0]; - const ALfloat midGain = State->Late.T60[j].MidGain[1]; - const ALfloat oldMidStep = -oldMidGain / FADE_SAMPLES; - const ALfloat midStep = midGain / FADE_SAMPLES; - const ALfloat oldDensityGain = State->Late.DensityGain[0] * oldMidGain; - const ALfloat densityGain = State->Late.DensityGain[1] * midGain; - const ALfloat oldDensityStep = -oldDensityGain / FADE_SAMPLES; - const ALfloat densityStep = densityGain / FADE_SAMPLES; - ALsizei late_delay_tap0 = offset - State->LateDelayTap[j][0]; - ALsizei late_delay_tap1 = offset - State->LateDelayTap[j][1]; - ALsizei late_feedb_tap0 = offset - State->Late.Offset[j][0]; - ALsizei late_feedb_tap1 = offset - State->Late.Offset[j][1]; - ALfloat fadeCount = fade; - - for(i = 0;i < todo;i++) - { - const ALfloat fade0 = oldDensityGain + oldDensityStep*fadeCount; - const ALfloat fade1 = densityStep*fadeCount; - const ALfloat gfade0 = oldMidGain + oldMidStep*fadeCount; - const ALfloat gfade1 = midStep*fadeCount; - temps[j][i] = - FadedDelayLineOut(&main_delay, late_delay_tap0++, late_delay_tap1++, j, - fade0, fade1) + - FadedDelayLineOut(&late_delay, late_feedb_tap0++, late_feedb_tap1++, j, - gfade0, gfade1); - fadeCount += 1.0f; - } - LateT60Filter(temps[j], todo, &State->Late.T60[j]); - } - - VectorAllpass_Faded(temps, offset, mixX, mixY, fade, todo, &State->Late.VecAp); - - for(j = 0;j < NUM_LINES;j++) - memcpy(out[j], temps[j], todo*sizeof(ALfloat)); - - VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, temps, todo); -} - -static ALvoid ReverbState_process(ReverbState *State, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) -{ - ALfloat (*restrict afmt)[MAX_UPDATE_SAMPLES] = State->TempSamples; - ALfloat (*restrict samples)[MAX_UPDATE_SAMPLES] = State->MixSamples; - ALsizei fadeCount = State->FadeCount; - ALsizei offset = State->Offset; - ALsizei base, c; - - /* Process reverb for these samples. */ - for(base = 0;base < SamplesToDo;) - { - ALsizei todo = SamplesToDo - base; - /* If cross-fading, don't do more samples than there are to fade. */ - if(FADE_SAMPLES-fadeCount > 0) - { - todo = mini(todo, FADE_SAMPLES-fadeCount); - todo = mini(todo, State->MaxUpdate[0]); - } - todo = mini(todo, State->MaxUpdate[1]); - /* If this is not the final update, ensure the update size is a - * multiple of 4 for the SIMD mixers. - */ - if(todo < SamplesToDo-base) - todo &= ~3; - - /* Convert B-Format to A-Format for processing. */ - memset(afmt, 0, sizeof(*afmt)*NUM_LINES); - for(c = 0;c < NUM_LINES;c++) - MixRowSamples(afmt[c], B2A.m[c], - SamplesIn, MAX_EFFECT_CHANNELS, base, todo - ); - - /* Process the samples for reverb. */ - for(c = 0;c < NUM_LINES;c++) - { - /* Band-pass the incoming samples. */ - BiquadFilter_process(&State->Filter[c].Lp, samples[0], afmt[c], todo); - BiquadFilter_process(&State->Filter[c].Hp, samples[1], samples[0], todo); - - /* Feed the initial delay line. */ - DelayLineIn(&State->Delay, offset, c, samples[1], todo); - } - - if(UNLIKELY(fadeCount < FADE_SAMPLES)) - { - ALfloat fade = (ALfloat)fadeCount; - - /* Generate early reflections. */ - EarlyReflection_Faded(State, offset, todo, fade, samples); - /* Mix the A-Format results to output, implicitly converting back - * to B-Format. - */ - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Early.CurrentGain[c], State->Early.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Generate and mix late reverb. */ - LateReverb_Faded(State, offset, todo, fade, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Late.CurrentGain[c], State->Late.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Step fading forward. */ - fadeCount += todo; - if(LIKELY(fadeCount >= FADE_SAMPLES)) - { - /* Update the cross-fading delay line taps. */ - fadeCount = FADE_SAMPLES; - for(c = 0;c < NUM_LINES;c++) - { - State->EarlyDelayTap[c][0] = State->EarlyDelayTap[c][1]; - State->EarlyDelayCoeff[c][0] = State->EarlyDelayCoeff[c][1]; - State->Early.VecAp.Offset[c][0] = State->Early.VecAp.Offset[c][1]; - State->Early.Offset[c][0] = State->Early.Offset[c][1]; - State->Early.Coeff[c][0] = State->Early.Coeff[c][1]; - State->LateDelayTap[c][0] = State->LateDelayTap[c][1]; - State->Late.VecAp.Offset[c][0] = State->Late.VecAp.Offset[c][1]; - State->Late.Offset[c][0] = State->Late.Offset[c][1]; - State->Late.T60[c].MidGain[0] = State->Late.T60[c].MidGain[1]; - } - State->Late.DensityGain[0] = State->Late.DensityGain[1]; - State->MaxUpdate[0] = State->MaxUpdate[1]; - } - } - else - { - /* Generate and mix early reflections. */ - EarlyReflection_Unfaded(State, offset, todo, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Early.CurrentGain[c], State->Early.PanGain[c], - SamplesToDo-base, base, todo - ); - - /* Generate and mix late reverb. */ - LateReverb_Unfaded(State, offset, todo, samples); - for(c = 0;c < NUM_LINES;c++) - MixSamples(samples[c], NumChannels, SamplesOut, - State->Late.CurrentGain[c], State->Late.PanGain[c], - SamplesToDo-base, base, todo - ); - } - - /* Step all delays forward. */ - offset += todo; - - base += todo; - } - State->Offset = offset; - State->FadeCount = fadeCount; -} - - -typedef struct ReverbStateFactory { - DERIVE_FROM_TYPE(EffectStateFactory); -} ReverbStateFactory; - -static ALeffectState *ReverbStateFactory_create(ReverbStateFactory* UNUSED(factory)) -{ - ReverbState *state; - - NEW_OBJ0(state, ReverbState)(); - if(!state) return NULL; - - return STATIC_CAST(ALeffectState, state); -} - -DEFINE_EFFECTSTATEFACTORY_VTABLE(ReverbStateFactory); - -EffectStateFactory *ReverbStateFactory_getFactory(void) -{ - static ReverbStateFactory ReverbFactory = { { GET_VTABLE2(ReverbStateFactory, EffectStateFactory) } }; - - return STATIC_CAST(EffectStateFactory, &ReverbFactory); -} - - -void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALeaxreverb_setParami(effect, context, param, vals[0]); } -void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DENSITY: - if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_EAXREVERB_DIFFUSION: - if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_EAXREVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_EAXREVERB_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_EAXREVERB_GAINLF: - if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range"); - props->Reverb.GainLF = val; - break; - - case AL_EAXREVERB_DECAY_TIME: - if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range"); - props->Reverb.DecayLFRatio = val; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_EAXREVERB_ECHO_TIME: - if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range"); - props->Reverb.EchoTime = val; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range"); - props->Reverb.EchoDepth = val; - break; - - case AL_EAXREVERB_MODULATION_TIME: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range"); - props->Reverb.ModulationTime = val; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range"); - props->Reverb.ModulationDepth = val; - break; - - case AL_EAXREVERB_HFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range"); - props->Reverb.HFReference = val; - break; - - case AL_EAXREVERB_LFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range"); - props->Reverb.LFReference = val; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range"); - props->Reverb.ReflectionsPan[0] = vals[0]; - props->Reverb.ReflectionsPan[1] = vals[1]; - props->Reverb.ReflectionsPan[2] = vals[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range"); - props->Reverb.LateReverbPan[0] = vals[0]; - props->Reverb.LateReverbPan[1] = vals[1]; - props->Reverb.LateReverbPan[2] = vals[2]; - break; - - default: - ALeaxreverb_setParamf(effect, context, param, vals[0]); - break; - } -} - -void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALeaxreverb_getParami(effect, context, param, vals); } -void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_EAXREVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_EAXREVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_EAXREVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_EAXREVERB_GAINLF: - *val = props->Reverb.GainLF; - break; - - case AL_EAXREVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - *val = props->Reverb.DecayLFRatio; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_EAXREVERB_ECHO_TIME: - *val = props->Reverb.EchoTime; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - *val = props->Reverb.EchoDepth; - break; - - case AL_EAXREVERB_MODULATION_TIME: - *val = props->Reverb.ModulationTime; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - *val = props->Reverb.ModulationDepth; - break; - - case AL_EAXREVERB_HFREFERENCE: - *val = props->Reverb.HFReference; - break; - - case AL_EAXREVERB_LFREFERENCE: - *val = props->Reverb.LFReference; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - vals[0] = props->Reverb.ReflectionsPan[0]; - vals[1] = props->Reverb.ReflectionsPan[1]; - vals[2] = props->Reverb.ReflectionsPan[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - vals[0] = props->Reverb.LateReverbPan[0]; - vals[1] = props->Reverb.LateReverbPan[1]; - vals[2] = props->Reverb.LateReverbPan[2]; - break; - - default: - ALeaxreverb_getParamf(effect, context, param, vals); - break; - } -} - -DEFINE_ALEFFECT_VTABLE(ALeaxreverb); - -void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) -{ ALreverb_setParami(effect, context, param, vals[0]); } -void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) -{ - ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DENSITY: - if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_REVERB_DIFFUSION: - if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_REVERB_GAINHF: - if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_REVERB_DECAY_TIME: - if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_REVERB_DECAY_HFRATIO: - if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALreverb_setParamf(effect, context, param, vals[0]); } - -void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) -{ ALreverb_getParami(effect, context, param, vals); } -void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) -{ - const ALeffectProps *props = &effect->Props; - switch(param) - { - case AL_REVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_REVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_REVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_REVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_REVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_REVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALreverb_getParamf(effect, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(ALreverb); |