diff options
Diffstat (limited to 'Alc/effects')
-rw-r--r-- | Alc/effects/autowah.cpp | 298 | ||||
-rw-r--r-- | Alc/effects/base.h | 196 | ||||
-rw-r--r-- | Alc/effects/chorus.cpp | 538 | ||||
-rw-r--r-- | Alc/effects/compressor.cpp | 222 | ||||
-rw-r--r-- | Alc/effects/dedicated.cpp | 159 | ||||
-rw-r--r-- | Alc/effects/distortion.cpp | 269 | ||||
-rw-r--r-- | Alc/effects/echo.cpp | 271 | ||||
-rw-r--r-- | Alc/effects/equalizer.cpp | 337 | ||||
-rw-r--r-- | Alc/effects/fshifter.cpp | 301 | ||||
-rw-r--r-- | Alc/effects/modulator.cpp | 279 | ||||
-rw-r--r-- | Alc/effects/null.cpp | 164 | ||||
-rw-r--r-- | Alc/effects/pshifter.cpp | 405 | ||||
-rw-r--r-- | Alc/effects/reverb.cpp | 2102 | ||||
-rw-r--r-- | Alc/effects/vmorpher.cpp | 430 |
14 files changed, 0 insertions, 5971 deletions
diff --git a/Alc/effects/autowah.cpp b/Alc/effects/autowah.cpp deleted file mode 100644 index 96292636..00000000 --- a/Alc/effects/autowah.cpp +++ /dev/null @@ -1,298 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> - -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/biquad.h" -#include "vecmat.h" - -namespace { - -#define MIN_FREQ 20.0f -#define MAX_FREQ 2500.0f -#define Q_FACTOR 5.0f - -struct ALautowahState final : public EffectState { - /* Effect parameters */ - ALfloat mAttackRate; - ALfloat mReleaseRate; - ALfloat mResonanceGain; - ALfloat mPeakGain; - ALfloat mFreqMinNorm; - ALfloat mBandwidthNorm; - ALfloat mEnvDelay; - - /* Filter components derived from the envelope. */ - struct { - ALfloat cos_w0; - ALfloat alpha; - } mEnv[BUFFERSIZE]; - - struct { - /* Effect filters' history. */ - struct { - ALfloat z1, z2; - } Filter; - - /* Effect gains for each output channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]; - } mChans[MAX_AMBI_CHANNELS]; - - /* Effects buffers */ - alignas(16) ALfloat mBufferOut[BUFFERSIZE]; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ALautowahState) -}; - -ALboolean ALautowahState::deviceUpdate(const ALCdevice*) -{ - /* (Re-)initializing parameters and clear the buffers. */ - - mAttackRate = 1.0f; - mReleaseRate = 1.0f; - mResonanceGain = 10.0f; - mPeakGain = 4.5f; - mFreqMinNorm = 4.5e-4f; - mBandwidthNorm = 0.05f; - mEnvDelay = 0.0f; - - for(auto &e : mEnv) - { - e.cos_w0 = 0.0f; - e.alpha = 0.0f; - } - - for(auto &chan : mChans) - { - std::fill(std::begin(chan.CurrentGains), std::end(chan.CurrentGains), 0.0f); - chan.Filter.z1 = 0.0f; - chan.Filter.z2 = 0.0f; - } - - return AL_TRUE; -} - -void ALautowahState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device{context->Device}; - - const ALfloat ReleaseTime{clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f)}; - - mAttackRate = expf(-1.0f / (props->Autowah.AttackTime*device->Frequency)); - mReleaseRate = expf(-1.0f / (ReleaseTime*device->Frequency)); - /* 0-20dB Resonance Peak gain */ - mResonanceGain = std::sqrt(std::log10(props->Autowah.Resonance)*10.0f / 3.0f); - mPeakGain = 1.0f - std::log10(props->Autowah.PeakGain/AL_AUTOWAH_MAX_PEAK_GAIN); - mFreqMinNorm = MIN_FREQ / device->Frequency; - mBandwidthNorm = (MAX_FREQ-MIN_FREQ) / device->Frequency; - - mOutTarget = target.Main->Buffer; - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - auto coeffs = GetAmbiIdentityRow(i); - ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains); - } -} - -void ALautowahState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - const ALfloat attack_rate = mAttackRate; - const ALfloat release_rate = mReleaseRate; - const ALfloat res_gain = mResonanceGain; - const ALfloat peak_gain = mPeakGain; - const ALfloat freq_min = mFreqMinNorm; - const ALfloat bandwidth = mBandwidthNorm; - - ALfloat env_delay{mEnvDelay}; - for(ALsizei i{0};i < samplesToDo;i++) - { - ALfloat w0, sample, a; - - /* Envelope follower described on the book: Audio Effects, Theory, - * Implementation and Application. - */ - sample = peak_gain * std::fabs(samplesIn[0][i]); - a = (sample > env_delay) ? attack_rate : release_rate; - env_delay = lerp(sample, env_delay, a); - - /* Calculate the cos and alpha components for this sample's filter. */ - w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * al::MathDefs<float>::Tau(); - mEnv[i].cos_w0 = cosf(w0); - mEnv[i].alpha = sinf(w0)/(2.0f * Q_FACTOR); - } - mEnvDelay = env_delay; - - ASSUME(numInput > 0); - for(ALsizei c{0};c < numInput;++c) - { - /* This effectively inlines BiquadFilter_setParams for a peaking - * filter and BiquadFilter_processC. The alpha and cosine components - * for the filter coefficients were previously calculated with the - * envelope. Because the filter changes for each sample, the - * coefficients are transient and don't need to be held. - */ - ALfloat z1{mChans[c].Filter.z1}; - ALfloat z2{mChans[c].Filter.z2}; - - for(ALsizei i{0};i < samplesToDo;i++) - { - const ALfloat alpha = mEnv[i].alpha; - const ALfloat cos_w0 = mEnv[i].cos_w0; - ALfloat input, output; - ALfloat a[3], b[3]; - - b[0] = 1.0f + alpha*res_gain; - b[1] = -2.0f * cos_w0; - b[2] = 1.0f - alpha*res_gain; - a[0] = 1.0f + alpha/res_gain; - a[1] = -2.0f * cos_w0; - a[2] = 1.0f - alpha/res_gain; - - input = samplesIn[c][i]; - output = input*(b[0]/a[0]) + z1; - z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2; - z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]); - mBufferOut[i] = output; - } - mChans[c].Filter.z1 = z1; - mChans[c].Filter.z2 = z2; - - /* Now, mix the processed sound data to the output. */ - MixSamples(mBufferOut, samplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, - samplesToDo, 0, samplesToDo); - } -} - - -void ALautowah_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_AUTOWAH_ATTACK_TIME: - if(!(val >= AL_AUTOWAH_MIN_ATTACK_TIME && val <= AL_AUTOWAH_MAX_ATTACK_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah attack time out of range"); - props->Autowah.AttackTime = val; - break; - - case AL_AUTOWAH_RELEASE_TIME: - if(!(val >= AL_AUTOWAH_MIN_RELEASE_TIME && val <= AL_AUTOWAH_MAX_RELEASE_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah release time out of range"); - props->Autowah.ReleaseTime = val; - break; - - case AL_AUTOWAH_RESONANCE: - if(!(val >= AL_AUTOWAH_MIN_RESONANCE && val <= AL_AUTOWAH_MAX_RESONANCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah resonance out of range"); - props->Autowah.Resonance = val; - break; - - case AL_AUTOWAH_PEAK_GAIN: - if(!(val >= AL_AUTOWAH_MIN_PEAK_GAIN && val <= AL_AUTOWAH_MAX_PEAK_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Autowah peak gain out of range"); - props->Autowah.PeakGain = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid autowah float property 0x%04x", param); - } -} -void ALautowah_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ ALautowah_setParamf(props, context, param, vals[0]); } - -void ALautowah_setParami(EffectProps*, ALCcontext *context, ALenum param, ALint) -{ alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer property 0x%04x", param); } -void ALautowah_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer vector property 0x%04x", param); } - -void ALautowah_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_AUTOWAH_ATTACK_TIME: - *val = props->Autowah.AttackTime; - break; - - case AL_AUTOWAH_RELEASE_TIME: - *val = props->Autowah.ReleaseTime; - break; - - case AL_AUTOWAH_RESONANCE: - *val = props->Autowah.Resonance; - break; - - case AL_AUTOWAH_PEAK_GAIN: - *val = props->Autowah.PeakGain; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid autowah float property 0x%04x", param); - } - -} -void ALautowah_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ ALautowah_getParamf(props, context, param, vals); } - -void ALautowah_getParami(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer property 0x%04x", param); } -void ALautowah_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid autowah integer vector property 0x%04x", param); } - -DEFINE_ALEFFECT_VTABLE(ALautowah); - - -struct AutowahStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ALautowahState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &ALautowah_vtable; } -}; - -EffectProps AutowahStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Autowah.AttackTime = AL_AUTOWAH_DEFAULT_ATTACK_TIME; - props.Autowah.ReleaseTime = AL_AUTOWAH_DEFAULT_RELEASE_TIME; - props.Autowah.Resonance = AL_AUTOWAH_DEFAULT_RESONANCE; - props.Autowah.PeakGain = AL_AUTOWAH_DEFAULT_PEAK_GAIN; - return props; -} - -} // namespace - -EffectStateFactory *AutowahStateFactory_getFactory() -{ - static AutowahStateFactory AutowahFactory{}; - return &AutowahFactory; -} diff --git a/Alc/effects/base.h b/Alc/effects/base.h deleted file mode 100644 index 4f48de22..00000000 --- a/Alc/effects/base.h +++ /dev/null @@ -1,196 +0,0 @@ -#ifndef EFFECTS_BASE_H -#define EFFECTS_BASE_H - -#include "alcmain.h" -#include "almalloc.h" -#include "alspan.h" -#include "atomic.h" - - -struct ALeffectslot; - - -union EffectProps { - struct { - // Shared Reverb Properties - ALfloat Density; - ALfloat Diffusion; - ALfloat Gain; - ALfloat GainHF; - ALfloat DecayTime; - ALfloat DecayHFRatio; - ALfloat ReflectionsGain; - ALfloat ReflectionsDelay; - ALfloat LateReverbGain; - ALfloat LateReverbDelay; - ALfloat AirAbsorptionGainHF; - ALfloat RoomRolloffFactor; - ALboolean DecayHFLimit; - - // Additional EAX Reverb Properties - ALfloat GainLF; - ALfloat DecayLFRatio; - ALfloat ReflectionsPan[3]; - ALfloat LateReverbPan[3]; - ALfloat EchoTime; - ALfloat EchoDepth; - ALfloat ModulationTime; - ALfloat ModulationDepth; - ALfloat HFReference; - ALfloat LFReference; - } Reverb; - - struct { - ALfloat AttackTime; - ALfloat ReleaseTime; - ALfloat Resonance; - ALfloat PeakGain; - } Autowah; - - struct { - ALint Waveform; - ALint Phase; - ALfloat Rate; - ALfloat Depth; - ALfloat Feedback; - ALfloat Delay; - } Chorus; /* Also Flanger */ - - struct { - ALboolean OnOff; - } Compressor; - - struct { - ALfloat Edge; - ALfloat Gain; - ALfloat LowpassCutoff; - ALfloat EQCenter; - ALfloat EQBandwidth; - } Distortion; - - struct { - ALfloat Delay; - ALfloat LRDelay; - - ALfloat Damping; - ALfloat Feedback; - - ALfloat Spread; - } Echo; - - struct { - ALfloat LowCutoff; - ALfloat LowGain; - ALfloat Mid1Center; - ALfloat Mid1Gain; - ALfloat Mid1Width; - ALfloat Mid2Center; - ALfloat Mid2Gain; - ALfloat Mid2Width; - ALfloat HighCutoff; - ALfloat HighGain; - } Equalizer; - - struct { - ALfloat Frequency; - ALint LeftDirection; - ALint RightDirection; - } Fshifter; - - struct { - ALfloat Frequency; - ALfloat HighPassCutoff; - ALint Waveform; - } Modulator; - - struct { - ALint CoarseTune; - ALint FineTune; - } Pshifter; - - struct { - ALfloat Rate; - ALint PhonemeA; - ALint PhonemeB; - ALint PhonemeACoarseTuning; - ALint PhonemeBCoarseTuning; - ALint Waveform; - } Vmorpher; - - struct { - ALfloat Gain; - } Dedicated; -}; - - -struct EffectVtable { - void (*const setParami)(EffectProps *props, ALCcontext *context, ALenum param, ALint val); - void (*const setParamiv)(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals); - void (*const setParamf)(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val); - void (*const setParamfv)(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals); - - void (*const getParami)(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val); - void (*const getParamiv)(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals); - void (*const getParamf)(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val); - void (*const getParamfv)(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals); -}; - -#define DEFINE_ALEFFECT_VTABLE(T) \ -const EffectVtable T##_vtable = { \ - T##_setParami, T##_setParamiv, \ - T##_setParamf, T##_setParamfv, \ - T##_getParami, T##_getParamiv, \ - T##_getParamf, T##_getParamfv, \ -} - - -struct EffectTarget { - MixParams *Main; - RealMixParams *RealOut; -}; - -struct EffectState { - RefCount mRef{1u}; - - al::span<FloatBufferLine> mOutTarget; - - - virtual ~EffectState() = default; - - virtual ALboolean deviceUpdate(const ALCdevice *device) = 0; - virtual void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) = 0; - virtual void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) = 0; - - void IncRef() noexcept; - void DecRef() noexcept; -}; - - -struct EffectStateFactory { - virtual ~EffectStateFactory() { } - - virtual EffectState *create() = 0; - virtual EffectProps getDefaultProps() const noexcept = 0; - virtual const EffectVtable *getEffectVtable() const noexcept = 0; -}; - - -EffectStateFactory *NullStateFactory_getFactory(void); -EffectStateFactory *ReverbStateFactory_getFactory(void); -EffectStateFactory *StdReverbStateFactory_getFactory(void); -EffectStateFactory *AutowahStateFactory_getFactory(void); -EffectStateFactory *ChorusStateFactory_getFactory(void); -EffectStateFactory *CompressorStateFactory_getFactory(void); -EffectStateFactory *DistortionStateFactory_getFactory(void); -EffectStateFactory *EchoStateFactory_getFactory(void); -EffectStateFactory *EqualizerStateFactory_getFactory(void); -EffectStateFactory *FlangerStateFactory_getFactory(void); -EffectStateFactory *FshifterStateFactory_getFactory(void); -EffectStateFactory *ModulatorStateFactory_getFactory(void); -EffectStateFactory *PshifterStateFactory_getFactory(void); -EffectStateFactory* VmorpherStateFactory_getFactory(void); - -EffectStateFactory *DedicatedStateFactory_getFactory(void); - - -#endif /* EFFECTS_BASE_H */ diff --git a/Alc/effects/chorus.cpp b/Alc/effects/chorus.cpp deleted file mode 100644 index d475b57a..00000000 --- a/Alc/effects/chorus.cpp +++ /dev/null @@ -1,538 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <algorithm> -#include <climits> -#include <cmath> -#include <cstdlib> -#include <iterator> - -#include "AL/al.h" -#include "AL/alc.h" -#include "AL/efx.h" - -#include "alAuxEffectSlot.h" -#include "alcmain.h" -#include "alError.h" -#include "alcontext.h" -#include "almalloc.h" -#include "alnumeric.h" -#include "alspan.h" -#include "alu.h" -#include "ambidefs.h" -#include "effects/base.h" -#include "math_defs.h" -#include "opthelpers.h" -#include "vector.h" - - -namespace { - -static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch"); -static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch"); - -enum class WaveForm { - Sinusoid, - Triangle -}; - -void GetTriangleDelays(ALint *delays, const ALsizei start_offset, const ALsizei lfo_range, - const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const ALsizei todo) -{ - ASSUME(start_offset >= 0); - ASSUME(lfo_range > 0); - ASSUME(todo > 0); - - ALsizei offset{start_offset}; - auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALint - { - offset = (offset+1)%lfo_range; - return fastf2i((1.0f - std::abs(2.0f - lfo_scale*offset)) * depth) + delay; - }; - std::generate_n(delays, todo, gen_lfo); -} - -void GetSinusoidDelays(ALint *delays, const ALsizei start_offset, const ALsizei lfo_range, - const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay, const ALsizei todo) -{ - ASSUME(start_offset >= 0); - ASSUME(lfo_range > 0); - ASSUME(todo > 0); - - ALsizei offset{start_offset}; - auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> ALint - { - ASSUME(delay >= 0); - offset = (offset+1)%lfo_range; - return fastf2i(std::sin(lfo_scale*offset) * depth) + delay; - }; - std::generate_n(delays, todo, gen_lfo); -} - -struct ChorusState final : public EffectState { - al::vector<ALfloat,16> mSampleBuffer; - ALsizei mOffset{0}; - - ALsizei mLfoOffset{0}; - ALsizei mLfoRange{1}; - ALfloat mLfoScale{0.0f}; - ALint mLfoDisp{0}; - - /* Gains for left and right sides */ - struct { - ALfloat Current[MAX_OUTPUT_CHANNELS]{}; - ALfloat Target[MAX_OUTPUT_CHANNELS]{}; - } mGains[2]; - - /* effect parameters */ - WaveForm mWaveform{}; - ALint mDelay{0}; - ALfloat mDepth{0.0f}; - ALfloat mFeedback{0.0f}; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ChorusState) -}; - -ALboolean ChorusState::deviceUpdate(const ALCdevice *Device) -{ - const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY); - size_t maxlen; - - maxlen = NextPowerOf2(float2int(max_delay*2.0f*Device->Frequency) + 1u); - if(maxlen <= 0) return AL_FALSE; - - if(maxlen != mSampleBuffer.size()) - { - mSampleBuffer.resize(maxlen); - mSampleBuffer.shrink_to_fit(); - } - - std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); - for(auto &e : mGains) - { - std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); - std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); - } - - return AL_TRUE; -} - -void ChorusState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target) -{ - static constexpr ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS; - - switch(props->Chorus.Waveform) - { - case AL_CHORUS_WAVEFORM_TRIANGLE: - mWaveform = WaveForm::Triangle; - break; - case AL_CHORUS_WAVEFORM_SINUSOID: - mWaveform = WaveForm::Sinusoid; - break; - } - - /* The LFO depth is scaled to be relative to the sample delay. Clamp the - * delay and depth to allow enough padding for resampling. - */ - const ALCdevice *device{Context->Device}; - const auto frequency = static_cast<ALfloat>(device->Frequency); - mDelay = maxi(float2int(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f), mindelay); - mDepth = minf(props->Chorus.Depth * mDelay, static_cast<ALfloat>(mDelay - mindelay)); - - mFeedback = props->Chorus.Feedback; - - /* Gains for left and right sides */ - ALfloat coeffs[2][MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f, coeffs[0]); - CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f, coeffs[1]); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs[0], Slot->Params.Gain, mGains[0].Target); - ComputePanGains(target.Main, coeffs[1], Slot->Params.Gain, mGains[1].Target); - - ALfloat rate{props->Chorus.Rate}; - if(!(rate > 0.0f)) - { - mLfoOffset = 0; - mLfoRange = 1; - mLfoScale = 0.0f; - mLfoDisp = 0; - } - else - { - /* Calculate LFO coefficient (number of samples per cycle). Limit the - * max range to avoid overflow when calculating the displacement. - */ - ALsizei lfo_range = float2int(minf(frequency/rate + 0.5f, static_cast<ALfloat>(INT_MAX/360 - 180))); - - mLfoOffset = float2int(static_cast<ALfloat>(mLfoOffset)/mLfoRange*lfo_range + 0.5f) % lfo_range; - mLfoRange = lfo_range; - switch(mWaveform) - { - case WaveForm::Triangle: - mLfoScale = 4.0f / mLfoRange; - break; - case WaveForm::Sinusoid: - mLfoScale = al::MathDefs<float>::Tau() / mLfoRange; - break; - } - - /* Calculate lfo phase displacement */ - ALint phase{props->Chorus.Phase}; - if(phase < 0) phase = 360 + phase; - mLfoDisp = (mLfoRange*phase + 180) / 360; - } -} - -void ChorusState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - const auto bufmask = static_cast<ALsizei>(mSampleBuffer.size()-1); - const ALfloat feedback{mFeedback}; - const ALsizei avgdelay{(mDelay + (FRACTIONONE>>1)) >> FRACTIONBITS}; - ALfloat *RESTRICT delaybuf{mSampleBuffer.data()}; - ALsizei offset{mOffset}; - - for(ALsizei base{0};base < samplesToDo;) - { - const ALsizei todo = mini(256, samplesToDo-base); - ALint moddelays[2][256]; - alignas(16) ALfloat temps[2][256]; - - if(mWaveform == WaveForm::Sinusoid) - { - GetSinusoidDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay, - todo); - GetSinusoidDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale, - mDepth, mDelay, todo); - } - else /*if(mWaveform == WaveForm::Triangle)*/ - { - GetTriangleDelays(moddelays[0], mLfoOffset, mLfoRange, mLfoScale, mDepth, mDelay, - todo); - GetTriangleDelays(moddelays[1], (mLfoOffset+mLfoDisp)%mLfoRange, mLfoRange, mLfoScale, - mDepth, mDelay, todo); - } - mLfoOffset = (mLfoOffset+todo) % mLfoRange; - - for(ALsizei i{0};i < todo;i++) - { - // Feed the buffer's input first (necessary for delays < 1). - delaybuf[offset&bufmask] = samplesIn[0][base+i]; - - // Tap for the left output. - ALint delay{offset - (moddelays[0][i]>>FRACTIONBITS)}; - ALfloat mu{(moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE)}; - temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], - delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], - mu); - - // Tap for the right output. - delay = offset - (moddelays[1][i]>>FRACTIONBITS); - mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE); - temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask], - delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], - mu); - - // Accumulate feedback from the average delay of the taps. - delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; - offset++; - } - - for(ALsizei c{0};c < 2;c++) - MixSamples(temps[c], samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo-base, - base, todo); - - base += todo; - } - - mOffset = offset; -} - - -void Chorus_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_CHORUS_WAVEFORM: - if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid chorus waveform"); - props->Chorus.Waveform = val; - break; - - case AL_CHORUS_PHASE: - if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus phase out of range"); - props->Chorus.Phase = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); - } -} -void Chorus_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Chorus_setParami(props, context, param, vals[0]); } -void Chorus_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_CHORUS_RATE: - if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus rate out of range"); - props->Chorus.Rate = val; - break; - - case AL_CHORUS_DEPTH: - if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus depth out of range"); - props->Chorus.Depth = val; - break; - - case AL_CHORUS_FEEDBACK: - if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus feedback out of range"); - props->Chorus.Feedback = val; - break; - - case AL_CHORUS_DELAY: - if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Chorus delay out of range"); - props->Chorus.Delay = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); - } -} -void Chorus_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Chorus_setParamf(props, context, param, vals[0]); } - -void Chorus_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_CHORUS_WAVEFORM: - *val = props->Chorus.Waveform; - break; - - case AL_CHORUS_PHASE: - *val = props->Chorus.Phase; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus integer property 0x%04x", param); - } -} -void Chorus_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Chorus_getParami(props, context, param, vals); } -void Chorus_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_CHORUS_RATE: - *val = props->Chorus.Rate; - break; - - case AL_CHORUS_DEPTH: - *val = props->Chorus.Depth; - break; - - case AL_CHORUS_FEEDBACK: - *val = props->Chorus.Feedback; - break; - - case AL_CHORUS_DELAY: - *val = props->Chorus.Delay; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid chorus float property 0x%04x", param); - } -} -void Chorus_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Chorus_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Chorus); - - -struct ChorusStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ChorusState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Chorus_vtable; } -}; - -EffectProps ChorusStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Chorus.Waveform = AL_CHORUS_DEFAULT_WAVEFORM; - props.Chorus.Phase = AL_CHORUS_DEFAULT_PHASE; - props.Chorus.Rate = AL_CHORUS_DEFAULT_RATE; - props.Chorus.Depth = AL_CHORUS_DEFAULT_DEPTH; - props.Chorus.Feedback = AL_CHORUS_DEFAULT_FEEDBACK; - props.Chorus.Delay = AL_CHORUS_DEFAULT_DELAY; - return props; -} - - -void Flanger_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_FLANGER_WAVEFORM: - if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid flanger waveform"); - props->Chorus.Waveform = val; - break; - - case AL_FLANGER_PHASE: - if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger phase out of range"); - props->Chorus.Phase = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); - } -} -void Flanger_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Flanger_setParami(props, context, param, vals[0]); } -void Flanger_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_FLANGER_RATE: - if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger rate out of range"); - props->Chorus.Rate = val; - break; - - case AL_FLANGER_DEPTH: - if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger depth out of range"); - props->Chorus.Depth = val; - break; - - case AL_FLANGER_FEEDBACK: - if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger feedback out of range"); - props->Chorus.Feedback = val; - break; - - case AL_FLANGER_DELAY: - if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Flanger delay out of range"); - props->Chorus.Delay = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); - } -} -void Flanger_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Flanger_setParamf(props, context, param, vals[0]); } - -void Flanger_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_FLANGER_WAVEFORM: - *val = props->Chorus.Waveform; - break; - - case AL_FLANGER_PHASE: - *val = props->Chorus.Phase; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger integer property 0x%04x", param); - } -} -void Flanger_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Flanger_getParami(props, context, param, vals); } -void Flanger_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_FLANGER_RATE: - *val = props->Chorus.Rate; - break; - - case AL_FLANGER_DEPTH: - *val = props->Chorus.Depth; - break; - - case AL_FLANGER_FEEDBACK: - *val = props->Chorus.Feedback; - break; - - case AL_FLANGER_DELAY: - *val = props->Chorus.Delay; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid flanger float property 0x%04x", param); - } -} -void Flanger_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Flanger_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Flanger); - - -/* Flanger is basically a chorus with a really short delay. They can both use - * the same processing functions, so piggyback flanger on the chorus functions. - */ -struct FlangerStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ChorusState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Flanger_vtable; } -}; - -EffectProps FlangerStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Chorus.Waveform = AL_FLANGER_DEFAULT_WAVEFORM; - props.Chorus.Phase = AL_FLANGER_DEFAULT_PHASE; - props.Chorus.Rate = AL_FLANGER_DEFAULT_RATE; - props.Chorus.Depth = AL_FLANGER_DEFAULT_DEPTH; - props.Chorus.Feedback = AL_FLANGER_DEFAULT_FEEDBACK; - props.Chorus.Delay = AL_FLANGER_DEFAULT_DELAY; - return props; -} - -} // namespace - -EffectStateFactory *ChorusStateFactory_getFactory() -{ - static ChorusStateFactory ChorusFactory{}; - return &ChorusFactory; -} - -EffectStateFactory *FlangerStateFactory_getFactory() -{ - static FlangerStateFactory FlangerFactory{}; - return &FlangerFactory; -} diff --git a/Alc/effects/compressor.cpp b/Alc/effects/compressor.cpp deleted file mode 100644 index 4a487097..00000000 --- a/Alc/effects/compressor.cpp +++ /dev/null @@ -1,222 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Anis A. Hireche - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cstdlib> - -#include "alcmain.h" -#include "alcontext.h" -#include "alu.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "vecmat.h" - - -namespace { - -#define AMP_ENVELOPE_MIN 0.5f -#define AMP_ENVELOPE_MAX 2.0f - -#define ATTACK_TIME 0.1f /* 100ms to rise from min to max */ -#define RELEASE_TIME 0.2f /* 200ms to drop from max to min */ - - -struct CompressorState final : public EffectState { - /* Effect gains for each channel */ - ALfloat mGain[MAX_AMBI_CHANNELS][MAX_OUTPUT_CHANNELS]{}; - - /* Effect parameters */ - ALboolean mEnabled{AL_TRUE}; - ALfloat mAttackMult{1.0f}; - ALfloat mReleaseMult{1.0f}; - ALfloat mEnvFollower{1.0f}; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(CompressorState) -}; - -ALboolean CompressorState::deviceUpdate(const ALCdevice *device) -{ - /* Number of samples to do a full attack and release (non-integer sample - * counts are okay). - */ - const ALfloat attackCount = static_cast<ALfloat>(device->Frequency) * ATTACK_TIME; - const ALfloat releaseCount = static_cast<ALfloat>(device->Frequency) * RELEASE_TIME; - - /* Calculate per-sample multipliers to attack and release at the desired - * rates. - */ - mAttackMult = std::pow(AMP_ENVELOPE_MAX/AMP_ENVELOPE_MIN, 1.0f/attackCount); - mReleaseMult = std::pow(AMP_ENVELOPE_MIN/AMP_ENVELOPE_MAX, 1.0f/releaseCount); - - return AL_TRUE; -} - -void CompressorState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - mEnabled = props->Compressor.OnOff; - - mOutTarget = target.Main->Buffer; - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - auto coeffs = GetAmbiIdentityRow(i); - ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mGain[i]); - } -} - -void CompressorState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - for(ALsizei base{0};base < samplesToDo;) - { - ALfloat gains[256]; - const ALsizei td{mini(256, samplesToDo-base)}; - - /* Generate the per-sample gains from the signal envelope. */ - ALfloat env{mEnvFollower}; - if(mEnabled) - { - for(ALsizei i{0};i < td;++i) - { - /* Clamp the absolute amplitude to the defined envelope limits, - * then attack or release the envelope to reach it. - */ - const ALfloat amplitude{clampf(std::fabs(samplesIn[0][base+i]), AMP_ENVELOPE_MIN, - AMP_ENVELOPE_MAX)}; - if(amplitude > env) - env = minf(env*mAttackMult, amplitude); - else if(amplitude < env) - env = maxf(env*mReleaseMult, amplitude); - - /* Apply the reciprocal of the envelope to normalize the volume - * (compress the dynamic range). - */ - gains[i] = 1.0f / env; - } - } - else - { - /* Same as above, except the amplitude is forced to 1. This helps - * ensure smooth gain changes when the compressor is turned on and - * off. - */ - for(ALsizei i{0};i < td;++i) - { - const ALfloat amplitude{1.0f}; - if(amplitude > env) - env = minf(env*mAttackMult, amplitude); - else if(amplitude < env) - env = maxf(env*mReleaseMult, amplitude); - - gains[i] = 1.0f / env; - } - } - mEnvFollower = env; - - /* Now compress the signal amplitude to output. */ - ASSUME(numInput > 0); - for(ALsizei j{0};j < numInput;j++) - { - const ALfloat *outgains{mGain[j]}; - for(FloatBufferLine &output : samplesOut) - { - const ALfloat gain{*(outgains++)}; - if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) - continue; - - for(ALsizei i{0};i < td;i++) - output[base+i] += samplesIn[j][base+i] * gains[i] * gain; - } - } - - base += td; - } -} - - -void Compressor_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_COMPRESSOR_ONOFF: - if(!(val >= AL_COMPRESSOR_MIN_ONOFF && val <= AL_COMPRESSOR_MAX_ONOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Compressor state out of range"); - props->Compressor.OnOff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid compressor integer property 0x%04x", - param); - } -} -void Compressor_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Compressor_setParami(props, context, param, vals[0]); } -void Compressor_setParamf(EffectProps*, ALCcontext *context, ALenum param, ALfloat) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float property 0x%04x", param); } -void Compressor_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float-vector property 0x%04x", param); } - -void Compressor_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_COMPRESSOR_ONOFF: - *val = props->Compressor.OnOff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid compressor integer property 0x%04x", - param); - } -} -void Compressor_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Compressor_getParami(props, context, param, vals); } -void Compressor_getParamf(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float property 0x%04x", param); } -void Compressor_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid compressor float-vector property 0x%04x", param); } - -DEFINE_ALEFFECT_VTABLE(Compressor); - - -struct CompressorStateFactory final : public EffectStateFactory { - EffectState *create() override { return new CompressorState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Compressor_vtable; } -}; - -EffectProps CompressorStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Compressor.OnOff = AL_COMPRESSOR_DEFAULT_ONOFF; - return props; -} - -} // namespace - -EffectStateFactory *CompressorStateFactory_getFactory() -{ - static CompressorStateFactory CompressorFactory{}; - return &CompressorFactory; -} diff --git a/Alc/effects/dedicated.cpp b/Alc/effects/dedicated.cpp deleted file mode 100644 index b31b3750..00000000 --- a/Alc/effects/dedicated.cpp +++ /dev/null @@ -1,159 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2011 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cstdlib> -#include <cmath> -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" - - -namespace { - -struct DedicatedState final : public EffectState { - ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(DedicatedState) -}; - -ALboolean DedicatedState::deviceUpdate(const ALCdevice*) -{ - std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); - return AL_TRUE; -} - -void DedicatedState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); - - const ALfloat Gain{slot->Params.Gain * props->Dedicated.Gain}; - - if(slot->Params.EffectType == AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT) - { - const int idx{!target.RealOut ? -1 : GetChannelIdxByName(*target.RealOut, LFE)}; - if(idx != -1) - { - mOutTarget = target.RealOut->Buffer; - mTargetGains[idx] = Gain; - } - } - else if(slot->Params.EffectType == AL_EFFECT_DEDICATED_DIALOGUE) - { - /* Dialog goes to the front-center speaker if it exists, otherwise it - * plays from the front-center location. */ - const int idx{!target.RealOut ? -1 : GetChannelIdxByName(*target.RealOut, FrontCenter)}; - if(idx != -1) - { - mOutTarget = target.RealOut->Buffer; - mTargetGains[idx] = Gain; - } - else - { - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, Gain, mTargetGains); - } - } -} - -void DedicatedState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - MixSamples(samplesIn[0].data(), samplesOut, mCurrentGains, mTargetGains, samplesToDo, 0, - samplesToDo); -} - - -void Dedicated_setParami(EffectProps*, ALCcontext *context, ALenum param, ALint) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer property 0x%04x", param); } -void Dedicated_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer-vector property 0x%04x", param); } -void Dedicated_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_DEDICATED_GAIN: - if(!(val >= 0.0f && std::isfinite(val))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Dedicated gain out of range"); - props->Dedicated.Gain = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid dedicated float property 0x%04x", param); - } -} -void Dedicated_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Dedicated_setParamf(props, context, param, vals[0]); } - -void Dedicated_getParami(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer property 0x%04x", param); } -void Dedicated_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid dedicated integer-vector property 0x%04x", param); } -void Dedicated_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_DEDICATED_GAIN: - *val = props->Dedicated.Gain; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid dedicated float property 0x%04x", param); - } -} -void Dedicated_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Dedicated_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Dedicated); - - -struct DedicatedStateFactory final : public EffectStateFactory { - EffectState *create() override { return new DedicatedState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Dedicated_vtable; } -}; - -EffectProps DedicatedStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Dedicated.Gain = 1.0f; - return props; -} - -} // namespace - -EffectStateFactory *DedicatedStateFactory_getFactory() -{ - static DedicatedStateFactory DedicatedFactory{}; - return &DedicatedFactory; -} diff --git a/Alc/effects/distortion.cpp b/Alc/effects/distortion.cpp deleted file mode 100644 index 59557395..00000000 --- a/Alc/effects/distortion.cpp +++ /dev/null @@ -1,269 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> - -#include <cmath> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/biquad.h" - - -namespace { - -struct DistortionState final : public EffectState { - /* Effect gains for each channel */ - ALfloat mGain[MAX_OUTPUT_CHANNELS]{}; - - /* Effect parameters */ - BiquadFilter mLowpass; - BiquadFilter mBandpass; - ALfloat mAttenuation{}; - ALfloat mEdgeCoeff{}; - - ALfloat mBuffer[2][BUFFERSIZE]{}; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(DistortionState) -}; - -ALboolean DistortionState::deviceUpdate(const ALCdevice*) -{ - mLowpass.clear(); - mBandpass.clear(); - return AL_TRUE; -} - -void DistortionState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device{context->Device}; - - /* Store waveshaper edge settings. */ - const ALfloat edge{ - minf(std::sin(al::MathDefs<float>::Pi()*0.5f * props->Distortion.Edge), 0.99f)}; - mEdgeCoeff = 2.0f * edge / (1.0f-edge); - - ALfloat cutoff{props->Distortion.LowpassCutoff}; - /* Bandwidth value is constant in octaves. */ - ALfloat bandwidth{(cutoff / 2.0f) / (cutoff * 0.67f)}; - /* Multiply sampling frequency by the amount of oversampling done during - * processing. - */ - auto frequency = static_cast<ALfloat>(device->Frequency); - mLowpass.setParams(BiquadType::LowPass, 1.0f, cutoff / (frequency*4.0f), - mLowpass.rcpQFromBandwidth(cutoff / (frequency*4.0f), bandwidth)); - - cutoff = props->Distortion.EQCenter; - /* Convert bandwidth in Hz to octaves. */ - bandwidth = props->Distortion.EQBandwidth / (cutoff * 0.67f); - mBandpass.setParams(BiquadType::BandPass, 1.0f, cutoff / (frequency*4.0f), - mBandpass.rcpQFromBandwidth(cutoff / (frequency*4.0f), bandwidth)); - - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, slot->Params.Gain*props->Distortion.Gain, mGain); -} - -void DistortionState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - const ALfloat fc{mEdgeCoeff}; - for(ALsizei base{0};base < samplesToDo;) - { - /* Perform 4x oversampling to avoid aliasing. Oversampling greatly - * improves distortion quality and allows to implement lowpass and - * bandpass filters using high frequencies, at which classic IIR - * filters became unstable. - */ - ALsizei todo{mini(BUFFERSIZE, (samplesToDo-base) * 4)}; - - /* Fill oversample buffer using zero stuffing. Multiply the sample by - * the amount of oversampling to maintain the signal's power. - */ - for(ALsizei i{0};i < todo;i++) - mBuffer[0][i] = !(i&3) ? samplesIn[0][(i>>2)+base] * 4.0f : 0.0f; - - /* First step, do lowpass filtering of original signal. Additionally - * perform buffer interpolation and lowpass cutoff for oversampling - * (which is fortunately first step of distortion). So combine three - * operations into the one. - */ - mLowpass.process(mBuffer[1], mBuffer[0], todo); - - /* Second step, do distortion using waveshaper function to emulate - * signal processing during tube overdriving. Three steps of - * waveshaping are intended to modify waveform without boost/clipping/ - * attenuation process. - */ - for(ALsizei i{0};i < todo;i++) - { - ALfloat smp{mBuffer[1][i]}; - - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)) * -1.0f; - smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); - - mBuffer[0][i] = smp; - } - - /* Third step, do bandpass filtering of distorted signal. */ - mBandpass.process(mBuffer[1], mBuffer[0], todo); - - todo >>= 2; - const ALfloat *outgains{mGain}; - for(FloatBufferLine &output : samplesOut) - { - /* Fourth step, final, do attenuation and perform decimation, - * storing only one sample out of four. - */ - const ALfloat gain{*(outgains++)}; - if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD)) - continue; - - for(ALsizei i{0};i < todo;i++) - output[base+i] += gain * mBuffer[1][i*4]; - } - - base += todo; - } -} - - -void Distortion_setParami(EffectProps*, ALCcontext *context, ALenum param, ALint) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer property 0x%04x", param); } -void Distortion_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer-vector property 0x%04x", param); } -void Distortion_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_DISTORTION_EDGE: - if(!(val >= AL_DISTORTION_MIN_EDGE && val <= AL_DISTORTION_MAX_EDGE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion edge out of range"); - props->Distortion.Edge = val; - break; - - case AL_DISTORTION_GAIN: - if(!(val >= AL_DISTORTION_MIN_GAIN && val <= AL_DISTORTION_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion gain out of range"); - props->Distortion.Gain = val; - break; - - case AL_DISTORTION_LOWPASS_CUTOFF: - if(!(val >= AL_DISTORTION_MIN_LOWPASS_CUTOFF && val <= AL_DISTORTION_MAX_LOWPASS_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion low-pass cutoff out of range"); - props->Distortion.LowpassCutoff = val; - break; - - case AL_DISTORTION_EQCENTER: - if(!(val >= AL_DISTORTION_MIN_EQCENTER && val <= AL_DISTORTION_MAX_EQCENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion EQ center out of range"); - props->Distortion.EQCenter = val; - break; - - case AL_DISTORTION_EQBANDWIDTH: - if(!(val >= AL_DISTORTION_MIN_EQBANDWIDTH && val <= AL_DISTORTION_MAX_EQBANDWIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Distortion EQ bandwidth out of range"); - props->Distortion.EQBandwidth = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid distortion float property 0x%04x", - param); - } -} -void Distortion_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Distortion_setParamf(props, context, param, vals[0]); } - -void Distortion_getParami(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer property 0x%04x", param); } -void Distortion_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid distortion integer-vector property 0x%04x", param); } -void Distortion_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_DISTORTION_EDGE: - *val = props->Distortion.Edge; - break; - - case AL_DISTORTION_GAIN: - *val = props->Distortion.Gain; - break; - - case AL_DISTORTION_LOWPASS_CUTOFF: - *val = props->Distortion.LowpassCutoff; - break; - - case AL_DISTORTION_EQCENTER: - *val = props->Distortion.EQCenter; - break; - - case AL_DISTORTION_EQBANDWIDTH: - *val = props->Distortion.EQBandwidth; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid distortion float property 0x%04x", - param); - } -} -void Distortion_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Distortion_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Distortion); - - -struct DistortionStateFactory final : public EffectStateFactory { - EffectState *create() override { return new DistortionState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Distortion_vtable; } -}; - -EffectProps DistortionStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Distortion.Edge = AL_DISTORTION_DEFAULT_EDGE; - props.Distortion.Gain = AL_DISTORTION_DEFAULT_GAIN; - props.Distortion.LowpassCutoff = AL_DISTORTION_DEFAULT_LOWPASS_CUTOFF; - props.Distortion.EQCenter = AL_DISTORTION_DEFAULT_EQCENTER; - props.Distortion.EQBandwidth = AL_DISTORTION_DEFAULT_EQBANDWIDTH; - return props; -} - -} // namespace - -EffectStateFactory *DistortionStateFactory_getFactory() -{ - static DistortionStateFactory DistortionFactory{}; - return &DistortionFactory; -} diff --git a/Alc/effects/echo.cpp b/Alc/effects/echo.cpp deleted file mode 100644 index c10f2eb2..00000000 --- a/Alc/effects/echo.cpp +++ /dev/null @@ -1,271 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2009 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> - -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alFilter.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/biquad.h" -#include "vector.h" - - -namespace { - -struct EchoState final : public EffectState { - al::vector<ALfloat,16> mSampleBuffer; - - // The echo is two tap. The delay is the number of samples from before the - // current offset - struct { - ALsizei delay{0}; - } mTap[2]; - ALsizei mOffset{0}; - - /* The panning gains for the two taps */ - struct { - ALfloat Current[MAX_OUTPUT_CHANNELS]{}; - ALfloat Target[MAX_OUTPUT_CHANNELS]{}; - } mGains[2]; - - BiquadFilter mFilter; - ALfloat mFeedGain{0.0f}; - - alignas(16) ALfloat mTempBuffer[2][BUFFERSIZE]; - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(EchoState) -}; - -ALboolean EchoState::deviceUpdate(const ALCdevice *Device) -{ - ALuint maxlen; - - // Use the next power of 2 for the buffer length, so the tap offsets can be - // wrapped using a mask instead of a modulo - maxlen = float2int(AL_ECHO_MAX_DELAY*Device->Frequency + 0.5f) + - float2int(AL_ECHO_MAX_LRDELAY*Device->Frequency + 0.5f); - maxlen = NextPowerOf2(maxlen); - if(maxlen <= 0) return AL_FALSE; - - if(maxlen != mSampleBuffer.size()) - { - mSampleBuffer.resize(maxlen); - mSampleBuffer.shrink_to_fit(); - } - - std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); - for(auto &e : mGains) - { - std::fill(std::begin(e.Current), std::end(e.Current), 0.0f); - std::fill(std::begin(e.Target), std::end(e.Target), 0.0f); - } - - return AL_TRUE; -} - -void EchoState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device = context->Device; - const auto frequency = static_cast<ALfloat>(device->Frequency); - - mTap[0].delay = maxi(float2int(props->Echo.Delay*frequency + 0.5f), 1); - mTap[1].delay = float2int(props->Echo.LRDelay*frequency + 0.5f) + mTap[0].delay; - - const ALfloat gainhf{maxf(1.0f - props->Echo.Damping, 0.0625f)}; /* Limit -24dB */ - mFilter.setParams(BiquadType::HighShelf, gainhf, LOWPASSFREQREF/frequency, - mFilter.rcpQFromSlope(gainhf, 1.0f)); - - mFeedGain = props->Echo.Feedback; - - /* Convert echo spread (where 0 = center, +/-1 = sides) to angle. */ - const ALfloat angle{std::asin(props->Echo.Spread)}; - - ALfloat coeffs[2][MAX_AMBI_CHANNELS]; - CalcAngleCoeffs(-angle, 0.0f, 0.0f, coeffs[0]); - CalcAngleCoeffs( angle, 0.0f, 0.0f, coeffs[1]); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs[0], slot->Params.Gain, mGains[0].Target); - ComputePanGains(target.Main, coeffs[1], slot->Params.Gain, mGains[1].Target); -} - -void EchoState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - const auto mask = static_cast<ALsizei>(mSampleBuffer.size()-1); - ALfloat *RESTRICT delaybuf{mSampleBuffer.data()}; - ALsizei offset{mOffset}; - ALsizei tap1{offset - mTap[0].delay}; - ALsizei tap2{offset - mTap[1].delay}; - ALfloat z1, z2; - - ASSUME(samplesToDo > 0); - ASSUME(mask > 0); - - std::tie(z1, z2) = mFilter.getComponents(); - for(ALsizei i{0};i < samplesToDo;) - { - offset &= mask; - tap1 &= mask; - tap2 &= mask; - - ALsizei td{mini(mask+1 - maxi(offset, maxi(tap1, tap2)), samplesToDo-i)}; - do { - /* Feed the delay buffer's input first. */ - delaybuf[offset] = samplesIn[0][i]; - - /* Get delayed output from the first and second taps. Use the - * second tap for feedback. - */ - mTempBuffer[0][i] = delaybuf[tap1++]; - mTempBuffer[1][i] = delaybuf[tap2++]; - const float feedb{mTempBuffer[1][i++]}; - - /* Add feedback to the delay buffer with damping and attenuation. */ - delaybuf[offset++] += mFilter.processOne(feedb, z1, z2) * mFeedGain; - } while(--td); - } - mFilter.setComponents(z1, z2); - mOffset = offset; - - for(ALsizei c{0};c < 2;c++) - MixSamples(mTempBuffer[c], samplesOut, mGains[c].Current, mGains[c].Target, samplesToDo, 0, - samplesToDo); -} - - -void Echo_setParami(EffectProps*, ALCcontext *context, ALenum param, ALint) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer property 0x%04x", param); } -void Echo_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer-vector property 0x%04x", param); } -void Echo_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_ECHO_DELAY: - if(!(val >= AL_ECHO_MIN_DELAY && val <= AL_ECHO_MAX_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo delay out of range"); - props->Echo.Delay = val; - break; - - case AL_ECHO_LRDELAY: - if(!(val >= AL_ECHO_MIN_LRDELAY && val <= AL_ECHO_MAX_LRDELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo LR delay out of range"); - props->Echo.LRDelay = val; - break; - - case AL_ECHO_DAMPING: - if(!(val >= AL_ECHO_MIN_DAMPING && val <= AL_ECHO_MAX_DAMPING)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo damping out of range"); - props->Echo.Damping = val; - break; - - case AL_ECHO_FEEDBACK: - if(!(val >= AL_ECHO_MIN_FEEDBACK && val <= AL_ECHO_MAX_FEEDBACK)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo feedback out of range"); - props->Echo.Feedback = val; - break; - - case AL_ECHO_SPREAD: - if(!(val >= AL_ECHO_MIN_SPREAD && val <= AL_ECHO_MAX_SPREAD)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Echo spread out of range"); - props->Echo.Spread = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid echo float property 0x%04x", param); - } -} -void Echo_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Echo_setParamf(props, context, param, vals[0]); } - -void Echo_getParami(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer property 0x%04x", param); } -void Echo_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid echo integer-vector property 0x%04x", param); } -void Echo_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_ECHO_DELAY: - *val = props->Echo.Delay; - break; - - case AL_ECHO_LRDELAY: - *val = props->Echo.LRDelay; - break; - - case AL_ECHO_DAMPING: - *val = props->Echo.Damping; - break; - - case AL_ECHO_FEEDBACK: - *val = props->Echo.Feedback; - break; - - case AL_ECHO_SPREAD: - *val = props->Echo.Spread; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid echo float property 0x%04x", param); - } -} -void Echo_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Echo_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Echo); - - -struct EchoStateFactory final : public EffectStateFactory { - EffectState *create() override { return new EchoState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Echo_vtable; } -}; - -EffectProps EchoStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Echo.Delay = AL_ECHO_DEFAULT_DELAY; - props.Echo.LRDelay = AL_ECHO_DEFAULT_LRDELAY; - props.Echo.Damping = AL_ECHO_DEFAULT_DAMPING; - props.Echo.Feedback = AL_ECHO_DEFAULT_FEEDBACK; - props.Echo.Spread = AL_ECHO_DEFAULT_SPREAD; - return props; -} - -} // namespace - -EffectStateFactory *EchoStateFactory_getFactory() -{ - static EchoStateFactory EchoFactory{}; - return &EchoFactory; -} diff --git a/Alc/effects/equalizer.cpp b/Alc/effects/equalizer.cpp deleted file mode 100644 index 69ab5021..00000000 --- a/Alc/effects/equalizer.cpp +++ /dev/null @@ -1,337 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2013 by Mike Gorchak - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> - -#include <algorithm> -#include <functional> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/biquad.h" -#include "vecmat.h" - - -namespace { - -/* The document "Effects Extension Guide.pdf" says that low and high * - * frequencies are cutoff frequencies. This is not fully correct, they * - * are corner frequencies for low and high shelf filters. If they were * - * just cutoff frequencies, there would be no need in cutoff frequency * - * gains, which are present. Documentation for "Creative Proteus X2" * - * software describes 4-band equalizer functionality in a much better * - * way. This equalizer seems to be a predecessor of OpenAL 4-band * - * equalizer. With low and high shelf filters we are able to cutoff * - * frequencies below and/or above corner frequencies using attenuation * - * gains (below 1.0) and amplify all low and/or high frequencies using * - * gains above 1.0. * - * * - * Low-shelf Low Mid Band High Mid Band High-shelf * - * corner center center corner * - * frequency frequency frequency frequency * - * 50Hz..800Hz 200Hz..3000Hz 1000Hz..8000Hz 4000Hz..16000Hz * - * * - * | | | | * - * | | | | * - * B -----+ /--+--\ /--+--\ +----- * - * O |\ | | | | | | /| * - * O | \ - | - - | - / | * - * S + | \ | | | | | | / | * - * T | | | | | | | | | | * - * ---------+---------------+------------------+---------------+-------- * - * C | | | | | | | | | | * - * U - | / | | | | | | \ | * - * T | / - | - - | - \ | * - * O |/ | | | | | | \| * - * F -----+ \--+--/ \--+--/ +----- * - * F | | | | * - * | | | | * - * * - * Gains vary from 0.126 up to 7.943, which means from -18dB attenuation * - * up to +18dB amplification. Band width varies from 0.01 up to 1.0 in * - * octaves for two mid bands. * - * * - * Implementation is based on the "Cookbook formulae for audio EQ biquad * - * filter coefficients" by Robert Bristow-Johnson * - * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */ - - -struct EqualizerState final : public EffectState { - struct { - /* Effect parameters */ - BiquadFilter filter[4]; - - /* Effect gains for each channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{}; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{}; - } mChans[MAX_AMBI_CHANNELS]; - - ALfloat mSampleBuffer[BUFFERSIZE]{}; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(EqualizerState) -}; - -ALboolean EqualizerState::deviceUpdate(const ALCdevice*) -{ - for(auto &e : mChans) - { - std::for_each(std::begin(e.filter), std::end(e.filter), - std::mem_fn(&BiquadFilter::clear)); - std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f); - } - return AL_TRUE; -} - -void EqualizerState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device = context->Device; - auto frequency = static_cast<ALfloat>(device->Frequency); - ALfloat gain, f0norm; - - /* Calculate coefficients for the each type of filter. Note that the shelf - * filters' gain is for the reference frequency, which is the centerpoint - * of the transition band. - */ - gain = maxf(sqrtf(props->Equalizer.LowGain), 0.0625f); /* Limit -24dB */ - f0norm = props->Equalizer.LowCutoff/frequency; - mChans[0].filter[0].setParams(BiquadType::LowShelf, gain, f0norm, - BiquadFilter::rcpQFromSlope(gain, 0.75f)); - - gain = maxf(props->Equalizer.Mid1Gain, 0.0625f); - f0norm = props->Equalizer.Mid1Center/frequency; - mChans[0].filter[1].setParams(BiquadType::Peaking, gain, f0norm, - BiquadFilter::rcpQFromBandwidth(f0norm, props->Equalizer.Mid1Width)); - - gain = maxf(props->Equalizer.Mid2Gain, 0.0625f); - f0norm = props->Equalizer.Mid2Center/frequency; - mChans[0].filter[2].setParams(BiquadType::Peaking, gain, f0norm, - BiquadFilter::rcpQFromBandwidth(f0norm, props->Equalizer.Mid2Width)); - - gain = maxf(sqrtf(props->Equalizer.HighGain), 0.0625f); - f0norm = props->Equalizer.HighCutoff/frequency; - mChans[0].filter[3].setParams(BiquadType::HighShelf, gain, f0norm, - BiquadFilter::rcpQFromSlope(gain, 0.75f)); - - /* Copy the filter coefficients for the other input channels. */ - for(size_t i{1u};i < slot->Wet.Buffer.size();++i) - { - mChans[i].filter[0].copyParamsFrom(mChans[0].filter[0]); - mChans[i].filter[1].copyParamsFrom(mChans[0].filter[1]); - mChans[i].filter[2].copyParamsFrom(mChans[0].filter[2]); - mChans[i].filter[3].copyParamsFrom(mChans[0].filter[3]); - } - - mOutTarget = target.Main->Buffer; - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - auto coeffs = GetAmbiIdentityRow(i); - ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains); - } -} - -void EqualizerState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - ASSUME(numInput > 0); - for(ALsizei c{0};c < numInput;c++) - { - mChans[c].filter[0].process(mSampleBuffer, samplesIn[c].data(), samplesToDo); - mChans[c].filter[1].process(mSampleBuffer, mSampleBuffer, samplesToDo); - mChans[c].filter[2].process(mSampleBuffer, mSampleBuffer, samplesToDo); - mChans[c].filter[3].process(mSampleBuffer, mSampleBuffer, samplesToDo); - - MixSamples(mSampleBuffer, samplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, - samplesToDo, 0, samplesToDo); - } -} - - -void Equalizer_setParami(EffectProps*, ALCcontext *context, ALenum param, ALint) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer property 0x%04x", param); } -void Equalizer_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer-vector property 0x%04x", param); } -void Equalizer_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_EQUALIZER_LOW_GAIN: - if(!(val >= AL_EQUALIZER_MIN_LOW_GAIN && val <= AL_EQUALIZER_MAX_LOW_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer low-band gain out of range"); - props->Equalizer.LowGain = val; - break; - - case AL_EQUALIZER_LOW_CUTOFF: - if(!(val >= AL_EQUALIZER_MIN_LOW_CUTOFF && val <= AL_EQUALIZER_MAX_LOW_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer low-band cutoff out of range"); - props->Equalizer.LowCutoff = val; - break; - - case AL_EQUALIZER_MID1_GAIN: - if(!(val >= AL_EQUALIZER_MIN_MID1_GAIN && val <= AL_EQUALIZER_MAX_MID1_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band gain out of range"); - props->Equalizer.Mid1Gain = val; - break; - - case AL_EQUALIZER_MID1_CENTER: - if(!(val >= AL_EQUALIZER_MIN_MID1_CENTER && val <= AL_EQUALIZER_MAX_MID1_CENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band center out of range"); - props->Equalizer.Mid1Center = val; - break; - - case AL_EQUALIZER_MID1_WIDTH: - if(!(val >= AL_EQUALIZER_MIN_MID1_WIDTH && val <= AL_EQUALIZER_MAX_MID1_WIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid1-band width out of range"); - props->Equalizer.Mid1Width = val; - break; - - case AL_EQUALIZER_MID2_GAIN: - if(!(val >= AL_EQUALIZER_MIN_MID2_GAIN && val <= AL_EQUALIZER_MAX_MID2_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band gain out of range"); - props->Equalizer.Mid2Gain = val; - break; - - case AL_EQUALIZER_MID2_CENTER: - if(!(val >= AL_EQUALIZER_MIN_MID2_CENTER && val <= AL_EQUALIZER_MAX_MID2_CENTER)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band center out of range"); - props->Equalizer.Mid2Center = val; - break; - - case AL_EQUALIZER_MID2_WIDTH: - if(!(val >= AL_EQUALIZER_MIN_MID2_WIDTH && val <= AL_EQUALIZER_MAX_MID2_WIDTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer mid2-band width out of range"); - props->Equalizer.Mid2Width = val; - break; - - case AL_EQUALIZER_HIGH_GAIN: - if(!(val >= AL_EQUALIZER_MIN_HIGH_GAIN && val <= AL_EQUALIZER_MAX_HIGH_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer high-band gain out of range"); - props->Equalizer.HighGain = val; - break; - - case AL_EQUALIZER_HIGH_CUTOFF: - if(!(val >= AL_EQUALIZER_MIN_HIGH_CUTOFF && val <= AL_EQUALIZER_MAX_HIGH_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Equalizer high-band cutoff out of range"); - props->Equalizer.HighCutoff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid equalizer float property 0x%04x", param); - } -} -void Equalizer_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Equalizer_setParamf(props, context, param, vals[0]); } - -void Equalizer_getParami(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer property 0x%04x", param); } -void Equalizer_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid equalizer integer-vector property 0x%04x", param); } -void Equalizer_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_EQUALIZER_LOW_GAIN: - *val = props->Equalizer.LowGain; - break; - - case AL_EQUALIZER_LOW_CUTOFF: - *val = props->Equalizer.LowCutoff; - break; - - case AL_EQUALIZER_MID1_GAIN: - *val = props->Equalizer.Mid1Gain; - break; - - case AL_EQUALIZER_MID1_CENTER: - *val = props->Equalizer.Mid1Center; - break; - - case AL_EQUALIZER_MID1_WIDTH: - *val = props->Equalizer.Mid1Width; - break; - - case AL_EQUALIZER_MID2_GAIN: - *val = props->Equalizer.Mid2Gain; - break; - - case AL_EQUALIZER_MID2_CENTER: - *val = props->Equalizer.Mid2Center; - break; - - case AL_EQUALIZER_MID2_WIDTH: - *val = props->Equalizer.Mid2Width; - break; - - case AL_EQUALIZER_HIGH_GAIN: - *val = props->Equalizer.HighGain; - break; - - case AL_EQUALIZER_HIGH_CUTOFF: - *val = props->Equalizer.HighCutoff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid equalizer float property 0x%04x", param); - } -} -void Equalizer_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Equalizer_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Equalizer); - - -struct EqualizerStateFactory final : public EffectStateFactory { - EffectState *create() override { return new EqualizerState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Equalizer_vtable; } -}; - -EffectProps EqualizerStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Equalizer.LowCutoff = AL_EQUALIZER_DEFAULT_LOW_CUTOFF; - props.Equalizer.LowGain = AL_EQUALIZER_DEFAULT_LOW_GAIN; - props.Equalizer.Mid1Center = AL_EQUALIZER_DEFAULT_MID1_CENTER; - props.Equalizer.Mid1Gain = AL_EQUALIZER_DEFAULT_MID1_GAIN; - props.Equalizer.Mid1Width = AL_EQUALIZER_DEFAULT_MID1_WIDTH; - props.Equalizer.Mid2Center = AL_EQUALIZER_DEFAULT_MID2_CENTER; - props.Equalizer.Mid2Gain = AL_EQUALIZER_DEFAULT_MID2_GAIN; - props.Equalizer.Mid2Width = AL_EQUALIZER_DEFAULT_MID2_WIDTH; - props.Equalizer.HighCutoff = AL_EQUALIZER_DEFAULT_HIGH_CUTOFF; - props.Equalizer.HighGain = AL_EQUALIZER_DEFAULT_HIGH_GAIN; - return props; -} - -} // namespace - -EffectStateFactory *EqualizerStateFactory_getFactory() -{ - static EqualizerStateFactory EqualizerFactory{}; - return &EqualizerFactory; -} diff --git a/Alc/effects/fshifter.cpp b/Alc/effects/fshifter.cpp deleted file mode 100644 index b47aa00e..00000000 --- a/Alc/effects/fshifter.cpp +++ /dev/null @@ -1,301 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> -#include <array> -#include <complex> -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" - -#include "alcomplex.h" - -namespace { - -using complex_d = std::complex<double>; - -#define HIL_SIZE 1024 -#define OVERSAMP (1<<2) - -#define HIL_STEP (HIL_SIZE / OVERSAMP) -#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1)) - -/* Define a Hann window, used to filter the HIL input and output. */ -/* Making this constexpr seems to require C++14. */ -std::array<ALdouble,HIL_SIZE> InitHannWindow() -{ - std::array<ALdouble,HIL_SIZE> ret; - /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ - for(ALsizei i{0};i < HIL_SIZE>>1;i++) - { - ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{HIL_SIZE-1}); - ret[i] = ret[HIL_SIZE-1-i] = val * val; - } - return ret; -} -alignas(16) const std::array<ALdouble,HIL_SIZE> HannWindow = InitHannWindow(); - - -struct FshifterState final : public EffectState { - /* Effect parameters */ - ALsizei mCount{}; - ALsizei mPhaseStep{}; - ALsizei mPhase{}; - ALdouble mLdSign{}; - - /*Effects buffers*/ - ALfloat mInFIFO[HIL_SIZE]{}; - complex_d mOutFIFO[HIL_SIZE]{}; - complex_d mOutputAccum[HIL_SIZE]{}; - complex_d mAnalytic[HIL_SIZE]{}; - complex_d mOutdata[BUFFERSIZE]{}; - - alignas(16) ALfloat mBufferOut[BUFFERSIZE]{}; - - /* Effect gains for each output channel */ - ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]{}; - ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]{}; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(FshifterState) -}; - -ALboolean FshifterState::deviceUpdate(const ALCdevice*) -{ - /* (Re-)initializing parameters and clear the buffers. */ - mCount = FIFO_LATENCY; - mPhaseStep = 0; - mPhase = 0; - mLdSign = 1.0; - - std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f); - std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{}); - std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{}); - std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{}); - - std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); - std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); - - return AL_TRUE; -} - -void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device{context->Device}; - - ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)}; - mPhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE); - - switch(props->Fshifter.LeftDirection) - { - case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: - mLdSign = -1.0; - break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_UP: - mLdSign = 1.0; - break; - - case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: - mPhase = 0; - mPhaseStep = 0; - break; - } - - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains); -} - -void FshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - static constexpr complex_d complex_zero{0.0, 0.0}; - ALfloat *RESTRICT BufferOut = mBufferOut; - ALsizei j, k, base; - - for(base = 0;base < samplesToDo;) - { - const ALsizei todo{mini(HIL_SIZE-mCount, samplesToDo-base)}; - - ASSUME(todo > 0); - - /* Fill FIFO buffer with samples data */ - k = mCount; - for(j = 0;j < todo;j++,k++) - { - mInFIFO[k] = samplesIn[0][base+j]; - mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY]; - } - mCount += todo; - base += todo; - - /* Check whether FIFO buffer is filled */ - if(mCount < HIL_SIZE) continue; - mCount = FIFO_LATENCY; - - /* Real signal windowing and store in Analytic buffer */ - for(k = 0;k < HIL_SIZE;k++) - { - mAnalytic[k].real(mInFIFO[k] * HannWindow[k]); - mAnalytic[k].imag(0.0); - } - - /* Processing signal by Discrete Hilbert Transform (analytical signal). */ - complex_hilbert(mAnalytic); - - /* Windowing and add to output accumulator */ - for(k = 0;k < HIL_SIZE;k++) - mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k]; - - /* Shift accumulator, input & output FIFO */ - for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k]; - for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k]; - for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero; - for(k = 0;k < FIFO_LATENCY;k++) - mInFIFO[k] = mInFIFO[k+HIL_STEP]; - } - - /* Process frequency shifter using the analytic signal obtained. */ - for(k = 0;k < samplesToDo;k++) - { - double phase = mPhase * ((1.0/FRACTIONONE) * al::MathDefs<double>::Tau()); - BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) + - mOutdata[k].imag()*std::sin(phase)*mLdSign); - - mPhase += mPhaseStep; - mPhase &= FRACTIONMASK; - } - - /* Now, mix the processed sound data to the output. */ - MixSamples(BufferOut, samplesOut, mCurrentGains, mTargetGains, maxi(samplesToDo, 512), 0, - samplesToDo); -} - - -void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range"); - props->Fshifter.Frequency = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); - } -} -void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Fshifter_setParamf(props, context, param, vals[0]); } - -void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range"); - props->Fshifter.LeftDirection = val; - break; - - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range"); - props->Fshifter.RightDirection = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); - } -} -void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Fshifter_setParami(props, context, param, vals[0]); } - -void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: - *val = props->Fshifter.LeftDirection; - break; - case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: - *val = props->Fshifter.RightDirection; - break; - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); - } -} -void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Fshifter_getParami(props, context, param, vals); } - -void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_FREQUENCY_SHIFTER_FREQUENCY: - *val = props->Fshifter.Frequency; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); - } -} -void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Fshifter_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Fshifter); - - -struct FshifterStateFactory final : public EffectStateFactory { - EffectState *create() override { return new FshifterState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; } -}; - -EffectProps FshifterStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY; - props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION; - props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION; - return props; -} - -} // namespace - -EffectStateFactory *FshifterStateFactory_getFactory() -{ - static FshifterStateFactory FshifterFactory{}; - return &FshifterFactory; -} diff --git a/Alc/effects/modulator.cpp b/Alc/effects/modulator.cpp deleted file mode 100644 index 086482d7..00000000 --- a/Alc/effects/modulator.cpp +++ /dev/null @@ -1,279 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2009 by Chris Robinson. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> - -#include <cmath> -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" -#include "filters/biquad.h" -#include "vecmat.h" - - -namespace { - -#define MAX_UPDATE_SAMPLES 128 - -#define WAVEFORM_FRACBITS 24 -#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS) -#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1) - -inline ALfloat Sin(ALsizei index) -{ - return std::sin(static_cast<ALfloat>(index) * - (al::MathDefs<float>::Tau() / ALfloat{WAVEFORM_FRACONE})); -} - -inline ALfloat Saw(ALsizei index) -{ - return static_cast<ALfloat>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f; -} - -inline ALfloat Square(ALsizei index) -{ - return static_cast<ALfloat>(((index>>(WAVEFORM_FRACBITS-2))&2) - 1); -} - -inline ALfloat One(ALsizei) -{ - return 1.0f; -} - -template<ALfloat func(ALsizei)> -void Modulate(ALfloat *RESTRICT dst, ALsizei index, const ALsizei step, ALsizei todo) -{ - ALsizei i; - for(i = 0;i < todo;i++) - { - index += step; - index &= WAVEFORM_FRACMASK; - dst[i] = func(index); - } -} - - -struct ModulatorState final : public EffectState { - void (*mGetSamples)(ALfloat*RESTRICT, ALsizei, const ALsizei, ALsizei){}; - - ALsizei mIndex{0}; - ALsizei mStep{1}; - - struct { - BiquadFilter Filter; - - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{}; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{}; - } mChans[MAX_AMBI_CHANNELS]; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ModulatorState) -}; - -ALboolean ModulatorState::deviceUpdate(const ALCdevice*) -{ - for(auto &e : mChans) - { - e.Filter.clear(); - std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f); - } - return AL_TRUE; -} - -void ModulatorState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device{context->Device}; - - const float step{props->Modulator.Frequency / static_cast<ALfloat>(device->Frequency)}; - mStep = fastf2i(clampf(step*WAVEFORM_FRACONE, 0.0f, ALfloat{WAVEFORM_FRACONE-1})); - - if(mStep == 0) - mGetSamples = Modulate<One>; - else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID) - mGetSamples = Modulate<Sin>; - else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH) - mGetSamples = Modulate<Saw>; - else /*if(props->Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/ - mGetSamples = Modulate<Square>; - - ALfloat f0norm{props->Modulator.HighPassCutoff / static_cast<ALfloat>(device->Frequency)}; - f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f); - /* Bandwidth value is constant in octaves. */ - mChans[0].Filter.setParams(BiquadType::HighPass, 1.0f, f0norm, - BiquadFilter::rcpQFromBandwidth(f0norm, 0.75f)); - for(size_t i{1u};i < slot->Wet.Buffer.size();++i) - mChans[i].Filter.copyParamsFrom(mChans[0].Filter); - - mOutTarget = target.Main->Buffer; - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - auto coeffs = GetAmbiIdentityRow(i); - ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains); - } -} - -void ModulatorState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - for(ALsizei base{0};base < samplesToDo;) - { - alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES]; - ALsizei td = mini(MAX_UPDATE_SAMPLES, samplesToDo-base); - ALsizei c, i; - - mGetSamples(modsamples, mIndex, mStep, td); - mIndex += (mStep*td) & WAVEFORM_FRACMASK; - mIndex &= WAVEFORM_FRACMASK; - - ASSUME(numInput > 0); - for(c = 0;c < numInput;c++) - { - alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES]; - - mChans[c].Filter.process(temps, &samplesIn[c][base], td); - for(i = 0;i < td;i++) - temps[i] *= modsamples[i]; - - MixSamples(temps, samplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, - samplesToDo-base, base, td); - } - - base += td; - } -} - - -void Modulator_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range"); - props->Modulator.Frequency = val; - break; - - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range"); - props->Modulator.HighPassCutoff = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); - } -} -void Modulator_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Modulator_setParamf(props, context, param, vals[0]); } -void Modulator_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - Modulator_setParamf(props, context, param, static_cast<ALfloat>(val)); - break; - - case AL_RING_MODULATOR_WAVEFORM: - if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform"); - props->Modulator.Waveform = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); - } -} -void Modulator_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Modulator_setParami(props, context, param, vals[0]); } - -void Modulator_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - *val = static_cast<ALint>(props->Modulator.Frequency); - break; - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - *val = static_cast<ALint>(props->Modulator.HighPassCutoff); - break; - case AL_RING_MODULATOR_WAVEFORM: - *val = props->Modulator.Waveform; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param); - } -} -void Modulator_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Modulator_getParami(props, context, param, vals); } -void Modulator_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_RING_MODULATOR_FREQUENCY: - *val = props->Modulator.Frequency; - break; - case AL_RING_MODULATOR_HIGHPASS_CUTOFF: - *val = props->Modulator.HighPassCutoff; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param); - } -} -void Modulator_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Modulator_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Modulator); - - -struct ModulatorStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ModulatorState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Modulator_vtable; } -}; - -EffectProps ModulatorStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Modulator.Frequency = AL_RING_MODULATOR_DEFAULT_FREQUENCY; - props.Modulator.HighPassCutoff = AL_RING_MODULATOR_DEFAULT_HIGHPASS_CUTOFF; - props.Modulator.Waveform = AL_RING_MODULATOR_DEFAULT_WAVEFORM; - return props; -} - -} // namespace - -EffectStateFactory *ModulatorStateFactory_getFactory() -{ - static ModulatorStateFactory ModulatorFactory{}; - return &ModulatorFactory; -} diff --git a/Alc/effects/null.cpp b/Alc/effects/null.cpp deleted file mode 100644 index e55c8699..00000000 --- a/Alc/effects/null.cpp +++ /dev/null @@ -1,164 +0,0 @@ -#include "config.h" - -#include <cstdlib> - -#include "AL/al.h" -#include "AL/alc.h" - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" - - -namespace { - -struct NullState final : public EffectState { - NullState(); - ~NullState() override; - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(NullState) -}; - -/* This constructs the effect state. It's called when the object is first - * created. - */ -NullState::NullState() = default; - -/* This destructs the effect state. It's called only when the effect instance - * is no longer used. - */ -NullState::~NullState() = default; - -/* This updates the device-dependant effect state. This is called on state - * initialization and any time the device parameters (e.g. playback frequency, - * format) have been changed. Will always be followed by a call to the update - * method, if successful. - */ -ALboolean NullState::deviceUpdate(const ALCdevice* /*device*/) -{ - return AL_TRUE; -} - -/* This updates the effect state with new properties. This is called any time - * the effect is (re)loaded into a slot. - */ -void NullState::update(const ALCcontext* /*context*/, const ALeffectslot* /*slot*/, - const EffectProps* /*props*/, const EffectTarget /*target*/) -{ -} - -/* This processes the effect state, for the given number of samples from the - * input to the output buffer. The result should be added to the output buffer, - * not replace it. - */ -void NullState::process(const ALsizei /*samplesToDo*/, - const FloatBufferLine *RESTRICT /*samplesIn*/, const ALsizei /*numInput*/, - const al::span<FloatBufferLine> /*samplesOut*/) -{ -} - - -void NullEffect_setParami(EffectProps* /*props*/, ALCcontext *context, ALenum param, ALint /*val*/) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param); - } -} -void NullEffect_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ - switch(param) - { - default: - NullEffect_setParami(props, context, param, vals[0]); - } -} -void NullEffect_setParamf(EffectProps* /*props*/, ALCcontext *context, ALenum param, ALfloat /*val*/) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param); - } -} -void NullEffect_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - switch(param) - { - default: - NullEffect_setParamf(props, context, param, vals[0]); - } -} - -void NullEffect_getParami(const EffectProps* /*props*/, ALCcontext *context, ALenum param, ALint* /*val*/) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x", param); - } -} -void NullEffect_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ - switch(param) - { - default: - NullEffect_getParami(props, context, param, vals); - } -} -void NullEffect_getParamf(const EffectProps* /*props*/, ALCcontext *context, ALenum param, ALfloat* /*val*/) -{ - switch(param) - { - default: - alSetError(context, AL_INVALID_ENUM, "Invalid null effect float property 0x%04x", param); - } -} -void NullEffect_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ - switch(param) - { - default: - NullEffect_getParamf(props, context, param, vals); - } -} - -DEFINE_ALEFFECT_VTABLE(NullEffect); - - -struct NullStateFactory final : public EffectStateFactory { - EffectState *create() override; - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override; -}; - -/* Creates EffectState objects of the appropriate type. */ -EffectState *NullStateFactory::create() -{ return new NullState{}; } - -/* Returns an ALeffectProps initialized with this effect type's default - * property values. - */ -EffectProps NullStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - return props; -} - -/* Returns a pointer to this effect type's global set/get vtable. */ -const EffectVtable *NullStateFactory::getEffectVtable() const noexcept -{ return &NullEffect_vtable; } - -} // namespace - -EffectStateFactory *NullStateFactory_getFactory() -{ - static NullStateFactory NullFactory{}; - return &NullFactory; -} diff --git a/Alc/effects/pshifter.cpp b/Alc/effects/pshifter.cpp deleted file mode 100644 index 39d3cf1a..00000000 --- a/Alc/effects/pshifter.cpp +++ /dev/null @@ -1,405 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2018 by Raul Herraiz. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#ifdef HAVE_SSE_INTRINSICS -#include <emmintrin.h> -#endif - -#include <cmath> -#include <cstdlib> -#include <array> -#include <complex> -#include <algorithm> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" - -#include "alcomplex.h" - - -namespace { - -using complex_d = std::complex<double>; - -#define STFT_SIZE 1024 -#define STFT_HALF_SIZE (STFT_SIZE>>1) -#define OVERSAMP (1<<2) - -#define STFT_STEP (STFT_SIZE / OVERSAMP) -#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1)) - -inline int double2int(double d) -{ -#if defined(HAVE_SSE_INTRINSICS) - return _mm_cvttsd_si32(_mm_set_sd(d)); - -#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \ - !defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) - - int sign, shift; - int64_t mant; - union { - double d; - int64_t i64; - } conv; - - conv.d = d; - sign = (conv.i64>>63) | 1; - shift = ((conv.i64>>52)&0x7ff) - (1023+52); - - /* Over/underflow */ - if(UNLIKELY(shift >= 63 || shift < -52)) - return 0; - - mant = (conv.i64&0xfffffffffffff_i64) | 0x10000000000000_i64; - if(LIKELY(shift < 0)) - return (int)(mant >> -shift) * sign; - return (int)(mant << shift) * sign; - -#else - - return static_cast<int>(d); -#endif -} - -/* Define a Hann window, used to filter the STFT input and output. */ -/* Making this constexpr seems to require C++14. */ -std::array<ALdouble,STFT_SIZE> InitHannWindow() -{ - std::array<ALdouble,STFT_SIZE> ret; - /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ - for(ALsizei i{0};i < STFT_SIZE>>1;i++) - { - ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{STFT_SIZE-1}); - ret[i] = ret[STFT_SIZE-1-i] = val * val; - } - return ret; -} -alignas(16) const std::array<ALdouble,STFT_SIZE> HannWindow = InitHannWindow(); - - -struct ALphasor { - ALdouble Amplitude; - ALdouble Phase; -}; - -struct ALfrequencyDomain { - ALdouble Amplitude; - ALdouble Frequency; -}; - - -/* Converts complex to ALphasor */ -inline ALphasor rect2polar(const complex_d &number) -{ - ALphasor polar; - polar.Amplitude = std::abs(number); - polar.Phase = std::arg(number); - return polar; -} - -/* Converts ALphasor to complex */ -inline complex_d polar2rect(const ALphasor &number) -{ return std::polar<double>(number.Amplitude, number.Phase); } - - -struct PshifterState final : public EffectState { - /* Effect parameters */ - ALsizei mCount; - ALsizei mPitchShiftI; - ALfloat mPitchShift; - ALfloat mFreqPerBin; - - /* Effects buffers */ - ALfloat mInFIFO[STFT_SIZE]; - ALfloat mOutFIFO[STFT_STEP]; - ALdouble mLastPhase[STFT_HALF_SIZE+1]; - ALdouble mSumPhase[STFT_HALF_SIZE+1]; - ALdouble mOutputAccum[STFT_SIZE]; - - complex_d mFFTbuffer[STFT_SIZE]; - - ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1]; - ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1]; - - alignas(16) ALfloat mBufferOut[BUFFERSIZE]; - - /* Effect gains for each output channel */ - ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]; - ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]; - - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(PshifterState) -}; - -ALboolean PshifterState::deviceUpdate(const ALCdevice *device) -{ - /* (Re-)initializing parameters and clear the buffers. */ - mCount = FIFO_LATENCY; - mPitchShiftI = FRACTIONONE; - mPitchShift = 1.0f; - mFreqPerBin = device->Frequency / static_cast<ALfloat>(STFT_SIZE); - - std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f); - std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0f); - std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0); - std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0); - std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0); - std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{}); - std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{}); - std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{}); - - std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); - std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); - - return AL_TRUE; -} - -void PshifterState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const float pitch{std::pow(2.0f, - static_cast<ALfloat>(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f - )}; - mPitchShiftI = fastf2i(pitch*FRACTIONONE); - mPitchShift = mPitchShiftI * (1.0f/FRACTIONONE); - - ALfloat coeffs[MAX_AMBI_CHANNELS]; - CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs); - - mOutTarget = target.Main->Buffer; - ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains); -} - -void PshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) -{ - /* Pitch shifter engine based on the work of Stephan Bernsee. - * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ - */ - - static constexpr ALdouble expected{al::MathDefs<double>::Tau() / OVERSAMP}; - const ALdouble freq_per_bin{mFreqPerBin}; - ALfloat *RESTRICT bufferOut{mBufferOut}; - ALsizei count{mCount}; - - for(ALsizei i{0};i < samplesToDo;) - { - do { - /* Fill FIFO buffer with samples data */ - mInFIFO[count] = samplesIn[0][i]; - bufferOut[i] = mOutFIFO[count - FIFO_LATENCY]; - - count++; - } while(++i < samplesToDo && count < STFT_SIZE); - - /* Check whether FIFO buffer is filled */ - if(count < STFT_SIZE) break; - count = FIFO_LATENCY; - - /* Real signal windowing and store in FFTbuffer */ - for(ALsizei k{0};k < STFT_SIZE;k++) - { - mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]); - mFFTbuffer[k].imag(0.0); - } - - /* ANALYSIS */ - /* Apply FFT to FFTbuffer data */ - complex_fft(mFFTbuffer, -1.0); - - /* Analyze the obtained data. Since the real FFT is symmetric, only - * STFT_HALF_SIZE+1 samples are needed. - */ - for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++) - { - /* Compute amplitude and phase */ - ALphasor component{rect2polar(mFFTbuffer[k])}; - - /* Compute phase difference and subtract expected phase difference */ - double tmp{(component.Phase - mLastPhase[k]) - k*expected}; - - /* Map delta phase into +/- Pi interval */ - int qpd{double2int(tmp / al::MathDefs<double>::Pi())}; - tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2)); - - /* Get deviation from bin frequency from the +/- Pi interval */ - tmp /= expected; - - /* Compute the k-th partials' true frequency, twice the amplitude - * for maintain the gain (because half of bins are used) and store - * amplitude and true frequency in analysis buffer. - */ - mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude; - mAnalysis_buffer[k].Frequency = (k + tmp) * freq_per_bin; - - /* Store actual phase[k] for the calculations in the next frame*/ - mLastPhase[k] = component.Phase; - } - - /* PROCESSING */ - /* pitch shifting */ - for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++) - { - mSyntesis_buffer[k].Amplitude = 0.0; - mSyntesis_buffer[k].Frequency = 0.0; - } - - for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++) - { - ALsizei j{(k*mPitchShiftI) >> FRACTIONBITS}; - if(j >= STFT_HALF_SIZE+1) break; - - mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude; - mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift; - } - - /* SYNTHESIS */ - /* Synthesis the processing data */ - for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++) - { - ALphasor component; - ALdouble tmp; - - /* Compute bin deviation from scaled freq */ - tmp = mSyntesis_buffer[k].Frequency/freq_per_bin - k; - - /* Calculate actual delta phase and accumulate it to get bin phase */ - mSumPhase[k] += (k + tmp) * expected; - - component.Amplitude = mSyntesis_buffer[k].Amplitude; - component.Phase = mSumPhase[k]; - - /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ - mFFTbuffer[k] = polar2rect(component); - } - /* zero negative frequencies for recontruct a real signal */ - for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++) - mFFTbuffer[k] = complex_d{}; - - /* Apply iFFT to buffer data */ - complex_fft(mFFTbuffer, 1.0); - - /* Windowing and add to output */ - for(ALsizei k{0};k < STFT_SIZE;k++) - mOutputAccum[k] += HannWindow[k] * mFFTbuffer[k].real() / - (0.5 * STFT_HALF_SIZE * OVERSAMP); - - /* Shift accumulator, input & output FIFO */ - ALsizei j, k; - for(k = 0;k < STFT_STEP;k++) mOutFIFO[k] = static_cast<ALfloat>(mOutputAccum[k]); - for(j = 0;k < STFT_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k]; - for(;j < STFT_SIZE;j++) mOutputAccum[j] = 0.0; - for(k = 0;k < FIFO_LATENCY;k++) - mInFIFO[k] = mInFIFO[k+STFT_STEP]; - } - mCount = count; - - /* Now, mix the processed sound data to the output. */ - MixSamples(bufferOut, samplesOut, mCurrentGains, mTargetGains, maxi(samplesToDo, 512), 0, - samplesToDo); -} - - -void Pshifter_setParamf(EffectProps*, ALCcontext *context, ALenum param, ALfloat) -{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); } -void Pshifter_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param); } - -void Pshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_PITCH_SHIFTER_COARSE_TUNE: - if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range"); - props->Pshifter.CoarseTune = val; - break; - - case AL_PITCH_SHIFTER_FINE_TUNE: - if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE)) - SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range"); - props->Pshifter.FineTune = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); - } -} -void Pshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ Pshifter_setParami(props, context, param, vals[0]); } - -void Pshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_PITCH_SHIFTER_COARSE_TUNE: - *val = props->Pshifter.CoarseTune; - break; - case AL_PITCH_SHIFTER_FINE_TUNE: - *val = props->Pshifter.FineTune; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); - } -} -void Pshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ Pshifter_getParami(props, context, param, vals); } - -void Pshifter_getParamf(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); } -void Pshifter_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); } - -DEFINE_ALEFFECT_VTABLE(Pshifter); - - -struct PshifterStateFactory final : public EffectStateFactory { - EffectState *create() override; - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; } -}; - -EffectState *PshifterStateFactory::create() -{ return new PshifterState{}; } - -EffectProps PshifterStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE; - props.Pshifter.FineTune = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE; - return props; -} - -} // namespace - -EffectStateFactory *PshifterStateFactory_getFactory() -{ - static PshifterStateFactory PshifterFactory{}; - return &PshifterFactory; -} diff --git a/Alc/effects/reverb.cpp b/Alc/effects/reverb.cpp deleted file mode 100644 index ac996b3f..00000000 --- a/Alc/effects/reverb.cpp +++ /dev/null @@ -1,2102 +0,0 @@ -/** - * Ambisonic reverb engine for the OpenAL cross platform audio library - * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cstdio> -#include <cstdlib> -#include <cmath> - -#include <array> -#include <numeric> -#include <algorithm> -#include <functional> - -#include "alcmain.h" -#include "alcontext.h" -#include "alu.h" -#include "alAuxEffectSlot.h" -#include "alListener.h" -#include "alError.h" -#include "bformatdec.h" -#include "filters/biquad.h" -#include "vector.h" -#include "vecmat.h" - -/* This is a user config option for modifying the overall output of the reverb - * effect. - */ -ALfloat ReverbBoost = 1.0f; - -namespace { - -using namespace std::placeholders; - -/* The number of samples used for cross-faded delay lines. This can be used - * to balance the compensation for abrupt line changes and attenuation due to - * minimally lengthed recursive lines. Try to keep this below the device - * update size. - */ -constexpr int FADE_SAMPLES{128}; - -/* The number of spatialized lines or channels to process. Four channels allows - * for a 3D A-Format response. NOTE: This can't be changed without taking care - * of the conversion matrices, and a few places where the length arrays are - * assumed to have 4 elements. - */ -constexpr int NUM_LINES{4}; - - -/* The B-Format to A-Format conversion matrix. The arrangement of rows is - * deliberately chosen to align the resulting lines to their spatial opposites - * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below - * back left). It's not quite opposite, since the A-Format results in a - * tetrahedron, but it's close enough. Should the model be extended to 8-lines - * in the future, true opposites can be used. - */ -alignas(16) constexpr ALfloat B2A[NUM_LINES][MAX_AMBI_CHANNELS]{ - { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f }, - { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }, - { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f }, - { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f } -}; - -/* Converts A-Format to B-Format. */ -alignas(16) constexpr ALfloat A2B[NUM_LINES][NUM_LINES]{ - { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f }, - { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f }, - { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f }, - { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f } -}; - - -constexpr ALfloat FadeStep{1.0f / FADE_SAMPLES}; - -/* The all-pass and delay lines have a variable length dependent on the - * effect's density parameter, which helps alter the perceived environment - * size. The size-to-density conversion is a cubed scale: - * - * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); - * - * The line lengths scale linearly with room size, so the inverse density - * conversion is needed, taking the cube root of the re-scaled density to - * calculate the line length multiplier: - * - * length_mult = max(5.0, cbrt(density*DENSITY_SCALE)); - * - * The density scale below will result in a max line multiplier of 50, for an - * effective size range of 5m to 50m. - */ -constexpr ALfloat DENSITY_SCALE{125000.0f}; - -/* All delay line lengths are specified in seconds. - * - * To approximate early reflections, we break them up into primary (those - * arriving from the same direction as the source) and secondary (those - * arriving from the opposite direction). - * - * The early taps decorrelate the 4-channel signal to approximate an average - * room response for the primary reflections after the initial early delay. - * - * Given an average room dimension (d_a) and the speed of sound (c) we can - * calculate the average reflection delay (r_a) regardless of listener and - * source positions as: - * - * r_a = d_a / c - * c = 343.3 - * - * This can extended to finding the average difference (r_d) between the - * maximum (r_1) and minimum (r_0) reflection delays: - * - * r_0 = 2 / 3 r_a - * = r_a - r_d / 2 - * = r_d - * r_1 = 4 / 3 r_a - * = r_a + r_d / 2 - * = 2 r_d - * r_d = 2 / 3 r_a - * = r_1 - r_0 - * - * As can be determined by integrating the 1D model with a source (s) and - * listener (l) positioned across the dimension of length (d_a): - * - * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c - * - * The initial taps (T_(i=0)^N) are then specified by taking a power series - * that ranges between r_0 and half of r_1 less r_0: - * - * R_i = 2^(i / (2 N - 1)) r_d - * = r_0 + (2^(i / (2 N - 1)) - 1) r_d - * = r_0 + T_i - * T_i = R_i - r_0 - * = (2^(i / (2 N - 1)) - 1) r_d - * - * Assuming an average of 1m, we get the following taps: - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_TAP_LENGTHS{{ - 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f -}}; - -/* The early all-pass filter lengths are based on the early tap lengths: - * - * A_i = R_i / a - * - * Where a is the approximate maximum all-pass cycle limit (20). - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_ALLPASS_LENGTHS{{ - 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f -}}; - -/* The early delay lines are used to transform the primary reflections into - * the secondary reflections. The A-format is arranged in such a way that - * the channels/lines are spatially opposite: - * - * C_i is opposite C_(N-i-1) - * - * The delays of the two opposing reflections (R_i and O_i) from a source - * anywhere along a particular dimension always sum to twice its full delay: - * - * 2 r_a = R_i + O_i - * - * With that in mind we can determine the delay between the two reflections - * and thus specify our early line lengths (L_(i=0)^N) using: - * - * O_i = 2 r_a - R_(N-i-1) - * L_i = O_i - R_(N-i-1) - * = 2 (r_a - R_(N-i-1)) - * = 2 (r_a - T_(N-i-1) - r_0) - * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) - * - * Using an average dimension of 1m, we get: - */ -constexpr std::array<ALfloat,NUM_LINES> EARLY_LINE_LENGTHS{{ - 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f -}}; - -/* The late all-pass filter lengths are based on the late line lengths: - * - * A_i = (5 / 3) L_i / r_1 - */ -constexpr std::array<ALfloat,NUM_LINES> LATE_ALLPASS_LENGTHS{{ - 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f -}}; -constexpr auto LATE_ALLPASS_LENGTHS_size = LATE_ALLPASS_LENGTHS.size(); - -/* The late lines are used to approximate the decaying cycle of recursive - * late reflections. - * - * Splitting the lines in half, we start with the shortest reflection paths - * (L_(i=0)^(N/2)): - * - * L_i = 2^(i / (N - 1)) r_d - * - * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): - * - * L_i = 2 r_a - L_(i-N/2) - * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d - * - * For our 1m average room, we get: - */ -constexpr std::array<ALfloat,NUM_LINES> LATE_LINE_LENGTHS{{ - 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f -}}; -constexpr auto LATE_LINE_LENGTHS_size = LATE_LINE_LENGTHS.size(); - - -struct DelayLineI { - /* The delay lines use interleaved samples, with the lengths being powers - * of 2 to allow the use of bit-masking instead of a modulus for wrapping. - */ - ALsizei Mask{0}; - ALfloat (*Line)[NUM_LINES]{nullptr}; - - - void write(ALsizei offset, const ALsizei c, const ALfloat *RESTRICT in, const ALsizei count) const noexcept - { - ASSUME(count > 0); - for(ALsizei i{0};i < count;) - { - offset &= Mask; - ALsizei td{mini(Mask+1 - offset, count - i)}; - do { - Line[offset++][c] = in[i++]; - } while(--td); - } - } -}; - -struct VecAllpass { - DelayLineI Delay; - ALfloat Coeff{0.0f}; - ALsizei Offset[NUM_LINES][2]{}; - - void processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo); - void processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo); -}; - -struct T60Filter { - /* Two filters are used to adjust the signal. One to control the low - * frequencies, and one to control the high frequencies. - */ - ALfloat MidGain[2]{0.0f, 0.0f}; - BiquadFilter HFFilter, LFFilter; - - void calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, const ALfloat mfDecayTime, - const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm); - - /* Applies the two T60 damping filter sections. */ - void process(ALfloat *samples, const ALsizei todo) - { - HFFilter.process(samples, samples, todo); - LFFilter.process(samples, samples, todo); - } -}; - -struct EarlyReflections { - /* A Gerzon vector all-pass filter is used to simulate initial diffusion. - * The spread from this filter also helps smooth out the reverb tail. - */ - VecAllpass VecAp; - - /* An echo line is used to complete the second half of the early - * reflections. - */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]{}; - ALfloat Coeff[NUM_LINES][2]{}; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - - void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime, - const ALfloat frequency); -}; - -struct LateReverb { - /* A recursive delay line is used fill in the reverb tail. */ - DelayLineI Delay; - ALsizei Offset[NUM_LINES][2]{}; - - /* Attenuation to compensate for the modal density and decay rate of the - * late lines. - */ - ALfloat DensityGain[2]{0.0f, 0.0f}; - - /* T60 decay filters are used to simulate absorption. */ - T60Filter T60[NUM_LINES]; - - /* A Gerzon vector all-pass filter is used to simulate diffusion. */ - VecAllpass VecAp; - - /* The gain for each output channel based on 3D panning. */ - ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{}; - - void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, - const ALfloat hf0norm, const ALfloat frequency); -}; - -struct ReverbState final : public EffectState { - /* All delay lines are allocated as a single buffer to reduce memory - * fragmentation and management code. - */ - al::vector<ALfloat,16> mSampleBuffer; - - struct { - /* Calculated parameters which indicate if cross-fading is needed after - * an update. - */ - ALfloat Density{AL_EAXREVERB_DEFAULT_DENSITY}; - ALfloat Diffusion{AL_EAXREVERB_DEFAULT_DIFFUSION}; - ALfloat DecayTime{AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat HFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat LFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME}; - ALfloat HFReference{AL_EAXREVERB_DEFAULT_HFREFERENCE}; - ALfloat LFReference{AL_EAXREVERB_DEFAULT_LFREFERENCE}; - } mParams; - - /* Master effect filters */ - struct { - BiquadFilter Lp; - BiquadFilter Hp; - } mFilter[NUM_LINES]; - - /* Core delay line (early reflections and late reverb tap from this). */ - DelayLineI mDelay; - - /* Tap points for early reflection delay. */ - ALsizei mEarlyDelayTap[NUM_LINES][2]{}; - ALfloat mEarlyDelayCoeff[NUM_LINES][2]{}; - - /* Tap points for late reverb feed and delay. */ - ALsizei mLateFeedTap{}; - ALsizei mLateDelayTap[NUM_LINES][2]{}; - - /* Coefficients for the all-pass and line scattering matrices. */ - ALfloat mMixX{0.0f}; - ALfloat mMixY{0.0f}; - - EarlyReflections mEarly; - - LateReverb mLate; - - /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */ - ALsizei mFadeCount{0}; - - /* Maximum number of samples to process at once. */ - ALsizei mMaxUpdate[2]{BUFFERSIZE, BUFFERSIZE}; - - /* The current write offset for all delay lines. */ - ALsizei mOffset{0}; - - /* Temporary storage used when processing. */ - alignas(16) std::array<FloatBufferLine,NUM_LINES> mTempSamples{}; - alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlyBuffer{}; - alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateBuffer{}; - - using MixOutT = void (ReverbState::*)(const al::span<FloatBufferLine> samplesOut, - const ALsizei todo); - - MixOutT mMixOut{&ReverbState::MixOutPlain}; - std::array<ALfloat,MAX_AMBI_ORDER+1> mOrderScales{}; - std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter; - - - void MixOutPlain(const al::span<FloatBufferLine> samplesOut, const ALsizei todo) - { - ASSUME(todo > 0); - - /* Convert back to B-Format, and mix the results to output. */ - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo); - MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c], - mEarly.PanGain[c], todo, 0, todo); - } - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo); - MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], - todo, 0, todo); - } - } - - void MixOutAmbiUp(const al::span<FloatBufferLine> samplesOut, const ALsizei todo) - { - ASSUME(todo > 0); - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo); - - /* Apply scaling to the B-Format's HF response to "upsample" it to - * higher-order output. - */ - const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; - mAmbiSplitter[0][c].applyHfScale(mTempSamples[0].data(), hfscale, todo); - - MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c], - mEarly.PanGain[c], todo, 0, todo); - } - - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(mTempSamples[0].begin(), todo, 0.0f); - MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo); - - const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]}; - mAmbiSplitter[1][c].applyHfScale(mTempSamples[0].data(), hfscale, todo); - - MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], - todo, 0, todo); - } - } - - bool allocLines(const ALfloat frequency); - - void updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density, - const ALfloat decayTime, const ALfloat frequency); - void update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, - const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target); - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - DEF_NEWDEL(ReverbState) -}; - -/************************************** - * Device Update * - **************************************/ - -inline ALfloat CalcDelayLengthMult(ALfloat density) -{ return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); } - -/* Given the allocated sample buffer, this function updates each delay line - * offset. - */ -inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay) -{ - union { - ALfloat *f; - ALfloat (*f4)[NUM_LINES]; - } u; - u.f = &sampleBuffer[reinterpret_cast<ptrdiff_t>(Delay->Line) * NUM_LINES]; - Delay->Line = u.f4; -} - -/* Calculate the length of a delay line and store its mask and offset. */ -ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALfloat frequency, - const ALuint extra, DelayLineI *Delay) -{ - /* All line lengths are powers of 2, calculated from their lengths in - * seconds, rounded up. - */ - auto samples = static_cast<ALuint>(float2int(std::ceil(length*frequency))); - samples = NextPowerOf2(samples + extra); - - /* All lines share a single sample buffer. */ - Delay->Mask = samples - 1; - Delay->Line = reinterpret_cast<ALfloat(*)[NUM_LINES]>(offset); - - /* Return the sample count for accumulation. */ - return samples; -} - -/* Calculates the delay line metrics and allocates the shared sample buffer - * for all lines given the sample rate (frequency). If an allocation failure - * occurs, it returns AL_FALSE. - */ -bool ReverbState::allocLines(const ALfloat frequency) -{ - /* All delay line lengths are calculated to accomodate the full range of - * lengths given their respective paramters. - */ - ALuint totalSamples{0u}; - - /* Multiplier for the maximum density value, i.e. density=1, which is - * actually the least density... - */ - ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)}; - - /* The main delay length includes the maximum early reflection delay, the - * largest early tap width, the maximum late reverb delay, and the - * largest late tap width. Finally, it must also be extended by the - * update size (BUFFERSIZE) for block processing. - */ - ALfloat length{AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier + - AL_EAXREVERB_MAX_LATE_REVERB_DELAY + - (LATE_LINE_LENGTHS.back() - LATE_LINE_LENGTHS.front())/float{LATE_LINE_LENGTHS_size}*multiplier}; - totalSamples += CalcLineLength(length, totalSamples, frequency, BUFFERSIZE, &mDelay); - - /* The early vector all-pass line. */ - length = EARLY_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.VecAp.Delay); - - /* The early reflection line. */ - length = EARLY_LINE_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.Delay); - - /* The late vector all-pass line. */ - length = LATE_ALLPASS_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.VecAp.Delay); - - /* The late delay lines are calculated from the largest maximum density - * line length. - */ - length = LATE_LINE_LENGTHS.back() * multiplier; - totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.Delay); - - totalSamples *= NUM_LINES; - if(totalSamples != mSampleBuffer.size()) - { - mSampleBuffer.resize(totalSamples); - mSampleBuffer.shrink_to_fit(); - } - - /* Clear the sample buffer. */ - std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); - - /* Update all delays to reflect the new sample buffer. */ - RealizeLineOffset(mSampleBuffer.data(), &mDelay); - RealizeLineOffset(mSampleBuffer.data(), &mEarly.VecAp.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mEarly.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mLate.VecAp.Delay); - RealizeLineOffset(mSampleBuffer.data(), &mLate.Delay); - - return true; -} - -ALboolean ReverbState::deviceUpdate(const ALCdevice *device) -{ - const auto frequency = static_cast<ALfloat>(device->Frequency); - - /* Allocate the delay lines. */ - if(!allocLines(frequency)) - return AL_FALSE; - - const ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)}; - - /* The late feed taps are set a fixed position past the latest delay tap. */ - mLateFeedTap = float2int( - (AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier) * frequency); - - /* Clear filters and gain coefficients since the delay lines were all just - * cleared (if not reallocated). - */ - for(auto &filter : mFilter) - { - filter.Lp.clear(); - filter.Hp.clear(); - } - - for(auto &coeff : mEarlyDelayCoeff) - std::fill(std::begin(coeff), std::end(coeff), 0.0f); - for(auto &coeff : mEarly.Coeff) - std::fill(std::begin(coeff), std::end(coeff), 0.0f); - - mLate.DensityGain[0] = 0.0f; - mLate.DensityGain[1] = 0.0f; - for(auto &t60 : mLate.T60) - { - t60.MidGain[0] = 0.0f; - t60.MidGain[1] = 0.0f; - t60.HFFilter.clear(); - t60.LFFilter.clear(); - } - - for(auto &gains : mEarly.CurrentGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mEarly.PanGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mLate.CurrentGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - for(auto &gains : mLate.PanGain) - std::fill(std::begin(gains), std::end(gains), 0.0f); - - /* Reset counters and offset base. */ - mFadeCount = 0; - std::fill(std::begin(mMaxUpdate), std::end(mMaxUpdate), BUFFERSIZE); - mOffset = 0; - - if(device->mAmbiOrder > 1) - { - mMixOut = &ReverbState::MixOutAmbiUp; - mOrderScales = BFormatDec::GetHFOrderScales(1, device->mAmbiOrder); - } - else - { - mMixOut = &ReverbState::MixOutPlain; - mOrderScales.fill(1.0f); - } - mAmbiSplitter[0][0].init(400.0f / frequency); - std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]); - std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]); - - return AL_TRUE; -} - -/************************************** - * Effect Update * - **************************************/ - -/* Calculate a decay coefficient given the length of each cycle and the time - * until the decay reaches -60 dB. - */ -inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime) -{ return std::pow(REVERB_DECAY_GAIN, length/decayTime); } - -/* Calculate a decay length from a coefficient and the time until the decay - * reaches -60 dB. - */ -inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime) -{ return std::log10(coeff) * decayTime / std::log10(REVERB_DECAY_GAIN); } - -/* Calculate an attenuation to be applied to the input of any echo models to - * compensate for modal density and decay time. - */ -inline ALfloat CalcDensityGain(const ALfloat a) -{ - /* The energy of a signal can be obtained by finding the area under the - * squared signal. This takes the form of Sum(x_n^2), where x is the - * amplitude for the sample n. - * - * Decaying feedback matches exponential decay of the form Sum(a^n), - * where a is the attenuation coefficient, and n is the sample. The area - * under this decay curve can be calculated as: 1 / (1 - a). - * - * Modifying the above equation to find the area under the squared curve - * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be - * calculated by inverting the square root of this approximation, - * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). - */ - return std::sqrt(1.0f - a*a); -} - -/* Calculate the scattering matrix coefficients given a diffusion factor. */ -inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y) -{ - /* The matrix is of order 4, so n is sqrt(4 - 1). */ - ALfloat n{std::sqrt(3.0f)}; - ALfloat t{diffusion * std::atan(n)}; - - /* Calculate the first mixing matrix coefficient. */ - *x = std::cos(t); - /* Calculate the second mixing matrix coefficient. */ - *y = std::sin(t) / n; -} - -/* Calculate the limited HF ratio for use with the late reverb low-pass - * filters. - */ -ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF, - const ALfloat decayTime, const ALfloat SpeedOfSound) -{ - /* Find the attenuation due to air absorption in dB (converting delay - * time to meters using the speed of sound). Then reversing the decay - * equation, solve for HF ratio. The delay length is cancelled out of - * the equation, so it can be calculated once for all lines. - */ - ALfloat limitRatio{1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound)}; - - /* Using the limit calculated above, apply the upper bound to the HF ratio. - */ - return minf(limitRatio, hfRatio); -} - - -/* Calculates the 3-band T60 damping coefficients for a particular delay line - * of specified length, using a combination of two shelf filter sections given - * decay times for each band split at two reference frequencies. - */ -void T60Filter::calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, - const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm, - const ALfloat hf0norm) -{ - const ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)}; - const ALfloat lfGain{maxf(CalcDecayCoeff(length, lfDecayTime)/mfGain, 0.001f)}; - const ALfloat hfGain{maxf(CalcDecayCoeff(length, hfDecayTime)/mfGain, 0.001f)}; - - MidGain[1] = mfGain; - LFFilter.setParams(BiquadType::LowShelf, lfGain, lf0norm, - LFFilter.rcpQFromSlope(lfGain, 1.0f)); - HFFilter.setParams(BiquadType::HighShelf, hfGain, hf0norm, - HFFilter.rcpQFromSlope(hfGain, 1.0f)); -} - -/* Update the early reflection line lengths and gain coefficients. */ -void EarlyReflections::updateLines(const ALfloat density, const ALfloat diffusion, - const ALfloat decayTime, const ALfloat frequency) -{ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - - /* Calculate the all-pass feed-back/forward coefficient. */ - VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f); - - for(ALsizei i{0};i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier}; - - /* Calculate the delay offset for each all-pass line. */ - VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = EARLY_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Offset[i][1] = float2int(length * frequency); - - /* Calculate the gain (coefficient) for each line. */ - Coeff[i][1] = CalcDecayCoeff(length, decayTime); - } -} - -/* Update the late reverb line lengths and T60 coefficients. */ -void LateReverb::updateLines(const ALfloat density, const ALfloat diffusion, - const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime, - const ALfloat lf0norm, const ALfloat hf0norm, const ALfloat frequency) -{ - /* Scaling factor to convert the normalized reference frequencies from - * representing 0...freq to 0...max_reference. - */ - const ALfloat norm_weight_factor{frequency / AL_EAXREVERB_MAX_HFREFERENCE}; - - const ALfloat late_allpass_avg{ - std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) / - float{LATE_ALLPASS_LENGTHS_size}}; - - /* To compensate for changes in modal density and decay time of the late - * reverb signal, the input is attenuated based on the maximal energy of - * the outgoing signal. This approximation is used to keep the apparent - * energy of the signal equal for all ranges of density and decay time. - * - * The average length of the delay lines is used to calculate the - * attenuation coefficient. - */ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - ALfloat length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) / - float{LATE_LINE_LENGTHS_size} * multiplier}; - length += late_allpass_avg * multiplier; - /* The density gain calculation uses an average decay time weighted by - * approximate bandwidth. This attempts to compensate for losses of energy - * that reduce decay time due to scattering into highly attenuated bands. - */ - const ALfloat bandWeights[3]{ - lf0norm*norm_weight_factor, - hf0norm*norm_weight_factor - lf0norm*norm_weight_factor, - 1.0f - hf0norm*norm_weight_factor}; - DensityGain[1] = CalcDensityGain( - CalcDecayCoeff(length, - bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime - ) - ); - - /* Calculate the all-pass feed-back/forward coefficient. */ - VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f); - - for(ALsizei i{0};i < NUM_LINES;i++) - { - /* Calculate the length (in seconds) of each all-pass line. */ - length = LATE_ALLPASS_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each all-pass line. */ - VecAp.Offset[i][1] = float2int(length * frequency); - - /* Calculate the length (in seconds) of each delay line. */ - length = LATE_LINE_LENGTHS[i] * multiplier; - - /* Calculate the delay offset for each delay line. */ - Offset[i][1] = float2int(length*frequency + 0.5f); - - /* Approximate the absorption that the vector all-pass would exhibit - * given the current diffusion so we don't have to process a full T60 - * filter for each of its four lines. - */ - length += lerp(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion) * multiplier; - - /* Calculate the T60 damping coefficients for each line. */ - T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm); - } -} - - -/* Update the offsets for the main effect delay line. */ -void ReverbState::updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, - const ALfloat density, const ALfloat decayTime, const ALfloat frequency) -{ - const ALfloat multiplier{CalcDelayLengthMult(density)}; - - /* Early reflection taps are decorrelated by means of an average room - * reflection approximation described above the definition of the taps. - * This approximation is linear and so the above density multiplier can - * be applied to adjust the width of the taps. A single-band decay - * coefficient is applied to simulate initial attenuation and absorption. - * - * Late reverb taps are based on the late line lengths to allow a zero- - * delay path and offsets that would continue the propagation naturally - * into the late lines. - */ - for(ALsizei i{0};i < NUM_LINES;i++) - { - ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier}; - mEarlyDelayTap[i][1] = float2int(length * frequency); - - length = EARLY_TAP_LENGTHS[i]*multiplier; - mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime); - - length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front()) / - float{LATE_LINE_LENGTHS_size} * multiplier; - mLateDelayTap[i][1] = mLateFeedTap + float2int(length * frequency); - } -} - -/* Creates a transform matrix given a reverb vector. The vector pans the reverb - * reflections toward the given direction, using its magnitude (up to 1) as a - * focal strength. This function results in a B-Format transformation matrix - * that spatially focuses the signal in the desired direction. - */ -alu::Matrix GetTransformFromVector(const ALfloat *vec) -{ - /* Normalize the panning vector according to the N3D scale, which has an - * extra sqrt(3) term on the directional components. Converting from OpenAL - * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however - * that the reverb panning vectors use left-handed coordinates, unlike the - * rest of OpenAL which use right-handed. This is fixed by negating Z, - * which cancels out with the B-Format Z negation. - */ - ALfloat norm[3]; - ALfloat mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])}; - if(mag > 1.0f) - { - norm[0] = vec[0] / mag * -al::MathDefs<float>::Sqrt3(); - norm[1] = vec[1] / mag * al::MathDefs<float>::Sqrt3(); - norm[2] = vec[2] / mag * al::MathDefs<float>::Sqrt3(); - mag = 1.0f; - } - else - { - /* If the magnitude is less than or equal to 1, just apply the sqrt(3) - * term. There's no need to renormalize the magnitude since it would - * just be reapplied in the matrix. - */ - norm[0] = vec[0] * -al::MathDefs<float>::Sqrt3(); - norm[1] = vec[1] * al::MathDefs<float>::Sqrt3(); - norm[2] = vec[2] * al::MathDefs<float>::Sqrt3(); - } - - return alu::Matrix{ - 1.0f, 0.0f, 0.0f, 0.0f, - norm[0], 1.0f-mag, 0.0f, 0.0f, - norm[1], 0.0f, 1.0f-mag, 0.0f, - norm[2], 0.0f, 0.0f, 1.0f-mag - }; -} - -/* Update the early and late 3D panning gains. */ -void ReverbState::update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, - const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target) -{ - /* Create matrices that transform a B-Format signal according to the - * panning vectors. - */ - const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)}; - const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)}; - - mOutTarget = target.Main->Buffer; - for(ALsizei i{0};i < NUM_LINES;i++) - { - const ALfloat coeffs[MAX_AMBI_CHANNELS]{earlymat[0][i], earlymat[1][i], earlymat[2][i], - earlymat[3][i]}; - ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]); - } - for(ALsizei i{0};i < NUM_LINES;i++) - { - const ALfloat coeffs[MAX_AMBI_CHANNELS]{latemat[0][i], latemat[1][i], latemat[2][i], - latemat[3][i]}; - ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]); - } -} - -void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *Device{Context->Device}; - const ALlistener &Listener = Context->Listener; - const auto frequency = static_cast<ALfloat>(Device->Frequency); - - /* Calculate the master filters */ - ALfloat hf0norm{minf(props->Reverb.HFReference / frequency, 0.49f)}; - /* Restrict the filter gains from going below -60dB to keep the filter from - * killing most of the signal. - */ - ALfloat gainhf{maxf(props->Reverb.GainHF, 0.001f)}; - mFilter[0].Lp.setParams(BiquadType::HighShelf, gainhf, hf0norm, - mFilter[0].Lp.rcpQFromSlope(gainhf, 1.0f)); - ALfloat lf0norm{minf(props->Reverb.LFReference / frequency, 0.49f)}; - ALfloat gainlf{maxf(props->Reverb.GainLF, 0.001f)}; - mFilter[0].Hp.setParams(BiquadType::LowShelf, gainlf, lf0norm, - mFilter[0].Hp.rcpQFromSlope(gainlf, 1.0f)); - for(ALsizei i{1};i < NUM_LINES;i++) - { - mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp); - mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp); - } - - /* Update the main effect delay and associated taps. */ - updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay, - props->Reverb.Density, props->Reverb.DecayTime, frequency); - - /* Update the early lines. */ - mEarly.updateLines(props->Reverb.Density, props->Reverb.Diffusion, props->Reverb.DecayTime, - frequency); - - /* Get the mixing matrix coefficients. */ - CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY); - - /* If the HF limit parameter is flagged, calculate an appropriate limit - * based on the air absorption parameter. - */ - ALfloat hfRatio{props->Reverb.DecayHFRatio}; - if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f) - hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF, - props->Reverb.DecayTime, Listener.Params.ReverbSpeedOfSound - ); - - /* Calculate the LF/HF decay times. */ - const ALfloat lfDecayTime{clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)}; - const ALfloat hfDecayTime{clampf(props->Reverb.DecayTime * hfRatio, - AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)}; - - /* Update the late lines. */ - mLate.updateLines(props->Reverb.Density, props->Reverb.Diffusion, lfDecayTime, - props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency); - - /* Update early and late 3D panning. */ - const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost}; - update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan, - props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target); - - /* Calculate the max update size from the smallest relevant delay. */ - mMaxUpdate[1] = mini(BUFFERSIZE, mini(mEarly.Offset[0][1], mLate.Offset[0][1])); - - /* Determine if delay-line cross-fading is required. Density is essentially - * a master control for the feedback delays, so changes the offsets of many - * delay lines. - */ - if(mParams.Density != props->Reverb.Density || - /* Diffusion and decay times influences the decay rate (gain) of the - * late reverb T60 filter. - */ - mParams.Diffusion != props->Reverb.Diffusion || - mParams.DecayTime != props->Reverb.DecayTime || - mParams.HFDecayTime != hfDecayTime || - mParams.LFDecayTime != lfDecayTime || - /* HF/LF References control the weighting used to calculate the density - * gain. - */ - mParams.HFReference != props->Reverb.HFReference || - mParams.LFReference != props->Reverb.LFReference) - mFadeCount = 0; - mParams.Density = props->Reverb.Density; - mParams.Diffusion = props->Reverb.Diffusion; - mParams.DecayTime = props->Reverb.DecayTime; - mParams.HFDecayTime = hfDecayTime; - mParams.LFDecayTime = lfDecayTime; - mParams.HFReference = props->Reverb.HFReference; - mParams.LFReference = props->Reverb.LFReference; -} - - -/************************************** - * Effect Processing * - **************************************/ - -/* Applies a scattering matrix to the 4-line (vector) input. This is used - * for both the below vector all-pass model and to perform modal feed-back - * delay network (FDN) mixing. - * - * The matrix is derived from a skew-symmetric matrix to form a 4D rotation - * matrix with a single unitary rotational parameter: - * - * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 - * [ -a, d, c, -b ] - * [ -b, -c, d, a ] - * [ -c, b, -a, d ] - * - * The rotation is constructed from the effect's diffusion parameter, - * yielding: - * - * 1 = x^2 + 3 y^2 - * - * Where a, b, and c are the coefficient y with differing signs, and d is the - * coefficient x. The final matrix is thus: - * - * [ x, y, -y, y ] n = sqrt(matrix_order - 1) - * [ -y, x, y, y ] t = diffusion_parameter * atan(n) - * [ y, -y, x, y ] x = cos(t) - * [ -y, -y, -y, x ] y = sin(t) / n - * - * Any square orthogonal matrix with an order that is a power of two will - * work (where ^T is transpose, ^-1 is inverse): - * - * M^T = M^-1 - * - * Using that knowledge, finding an appropriate matrix can be accomplished - * naively by searching all combinations of: - * - * M = D + S - S^T - * - * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) - * whose combination of signs are being iterated. - */ -inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in, - const ALfloat xCoeff, const ALfloat yCoeff) -{ - out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]); - out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]); - out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]); - out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ); -} - -/* Utilizes the above, but reverses the input channels. */ -void VectorScatterRevDelayIn(const DelayLineI delay, ALint offset, const ALfloat xCoeff, - const ALfloat yCoeff, const ALsizei base, const al::span<const FloatBufferLine,NUM_LINES> in, - const ALsizei count) -{ - ASSUME(base >= 0); - ASSUME(count > 0); - - for(ALsizei i{0};i < count;) - { - offset &= delay.Mask; - ALsizei td{mini(delay.Mask+1 - offset, count-i)}; - do { - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - f[NUM_LINES-1-j] = in[j][base+i]; - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} - -/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass - * filter to the 4-line input. - * - * It works by vectorizing a regular all-pass filter and replacing the delay - * element with a scattering matrix (like the one above) and a diagonal - * matrix of delay elements. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -void VecAllpass::processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo) -{ - const DelayLineI delay{Delay}; - const ALfloat feedCoeff{Coeff}; - - ASSUME(todo > 0); - - ALsizei vap_offset[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - vap_offset[j] = offset - Offset[j][0]; - for(ALsizei i{0};i < todo;) - { - for(ALsizei j{0};j < NUM_LINES;j++) - vap_offset[j] &= delay.Mask; - offset &= delay.Mask; - - ALsizei maxoff{offset}; - for(ALsizei j{0};j < NUM_LINES;j++) - maxoff = maxi(maxoff, vap_offset[j]); - ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)}; - - do { - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat input{samples[j][i]}; - const ALfloat out{delay.Line[vap_offset[j]++][j] - feedCoeff*input}; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} -void VecAllpass::processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset, - const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo) -{ - const DelayLineI delay{Delay}; - const ALfloat feedCoeff{Coeff}; - - ASSUME(todo > 0); - - fade *= 1.0f/FADE_SAMPLES; - ALsizei vap_offset[NUM_LINES][2]; - for(ALsizei j{0};j < NUM_LINES;j++) - { - vap_offset[j][0] = offset - Offset[j][0]; - vap_offset[j][1] = offset - Offset[j][1]; - } - for(ALsizei i{0};i < todo;) - { - for(ALsizei j{0};j < NUM_LINES;j++) - { - vap_offset[j][0] &= delay.Mask; - vap_offset[j][1] &= delay.Mask; - } - offset &= delay.Mask; - - ALsizei maxoff{offset}; - for(ALsizei j{0};j < NUM_LINES;j++) - maxoff = maxi(maxoff, maxi(vap_offset[j][0], vap_offset[j][1])); - ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)}; - - do { - fade += FadeStep; - ALfloat f[NUM_LINES]; - for(ALsizei j{0};j < NUM_LINES;j++) - f[j] = delay.Line[vap_offset[j][0]++][j]*(1.0f-fade) + - delay.Line[vap_offset[j][1]++][j]*fade; - - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat input{samples[j][i]}; - const ALfloat out{f[j] - feedCoeff*input}; - f[j] = input + feedCoeff*out; - - samples[j][i] = out; - } - ++i; - - VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff); - } while(--td); - } -} - -/* This generates early reflections. - * - * This is done by obtaining the primary reflections (those arriving from the - * same direction as the source) from the main delay line. These are - * attenuated and all-pass filtered (based on the diffusion parameter). - * - * The early lines are then fed in reverse (according to the approximately - * opposite spatial location of the A-Format lines) to create the secondary - * reflections (those arriving from the opposite direction as the source). - * - * The early response is then completed by combining the primary reflections - * with the delayed and attenuated output from the early lines. - * - * Finally, the early response is reversed, scattered (based on diffusion), - * and fed into the late reverb section of the main delay line. - * - * Two static specializations are used for transitional (cross-faded) delay - * line processing and non-transitional processing. - */ -void EarlyReflection_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI early_delay{State->mEarly.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main delay line as the primary - * reflections. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]}; - const ALfloat coeff{State->mEarlyDelayCoeff[j][0]}; - for(ALsizei i{0};i < todo;) - { - early_delay_tap &= main_delay.Mask; - ALsizei td{mini(main_delay.Mask+1 - early_delay_tap, todo - i)}; - do { - temps[j][i++] = main_delay.Line[early_delay_tap++][j] * coeff; - } while(--td); - } - } - - /* Apply a vector all-pass, to help color the initial reflections based on - * the diffusion strength. - */ - State->mEarly.VecAp.processUnfaded(temps, offset, mixX, mixY, todo); - - /* Apply a delay and bounce to generate secondary reflections, combine with - * the primary reflections and write out the result for mixing. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALint feedb_tap{offset - State->mEarly.Offset[j][0]}; - const ALfloat feedb_coeff{State->mEarly.Coeff[j][0]}; - - ASSUME(base >= 0); - for(ALsizei i{0};i < todo;) - { - feedb_tap &= early_delay.Mask; - ALsizei td{mini(early_delay.Mask+1 - feedb_tap, todo - i)}; - do { - out[j][base+i] = temps[j][i] + early_delay.Line[feedb_tap++][j]*feedb_coeff; - ++i; - } while(--td); - } - } - for(ALsizei j{0};j < NUM_LINES;j++) - early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo); - - /* Also write the result back to the main delay line for the late reverb - * stage to pick up at the appropriate time, appplying a scatter and - * bounce to improve the initial diffusion in the late reverb. - */ - const ALsizei late_feed_tap{offset - State->mLateFeedTap}; - VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} -void EarlyReflection_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI early_delay{State->mEarly.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei early_delay_tap0{offset - State->mEarlyDelayTap[j][0]}; - ALsizei early_delay_tap1{offset - State->mEarlyDelayTap[j][1]}; - const ALfloat oldCoeff{State->mEarlyDelayCoeff[j][0]}; - const ALfloat oldCoeffStep{-oldCoeff / FADE_SAMPLES}; - const ALfloat newCoeffStep{State->mEarlyDelayCoeff[j][1] / FADE_SAMPLES}; - ALfloat fadeCount{fade}; - - for(ALsizei i{0};i < todo;) - { - early_delay_tap0 &= main_delay.Mask; - early_delay_tap1 &= main_delay.Mask; - ALsizei td{mini(main_delay.Mask+1 - maxi(early_delay_tap0, early_delay_tap1), todo-i)}; - do { - fadeCount += 1.0f; - const ALfloat fade0{oldCoeff + oldCoeffStep*fadeCount}; - const ALfloat fade1{newCoeffStep*fadeCount}; - temps[j][i++] = - main_delay.Line[early_delay_tap0++][j]*fade0 + - main_delay.Line[early_delay_tap1++][j]*fade1; - } while(--td); - } - } - - State->mEarly.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALint feedb_tap0{offset - State->mEarly.Offset[j][0]}; - ALint feedb_tap1{offset - State->mEarly.Offset[j][1]}; - const ALfloat feedb_oldCoeff{State->mEarly.Coeff[j][0]}; - const ALfloat feedb_oldCoeffStep{-feedb_oldCoeff / FADE_SAMPLES}; - const ALfloat feedb_newCoeffStep{State->mEarly.Coeff[j][1] / FADE_SAMPLES}; - ALfloat fadeCount{fade}; - - ASSUME(base >= 0); - for(ALsizei i{0};i < todo;) - { - feedb_tap0 &= early_delay.Mask; - feedb_tap1 &= early_delay.Mask; - ALsizei td{mini(early_delay.Mask+1 - maxi(feedb_tap0, feedb_tap1), todo - i)}; - - do { - fadeCount += 1.0f; - const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount}; - const ALfloat fade1{feedb_newCoeffStep*fadeCount}; - out[j][base+i] = temps[j][i] + - early_delay.Line[feedb_tap0++][j]*fade0 + - early_delay.Line[feedb_tap1++][j]*fade1; - ++i; - } while(--td); - } - } - for(ALsizei j{0};j < NUM_LINES;j++) - early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo); - - const ALsizei late_feed_tap{offset - State->mLateFeedTap}; - VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} - -/* This generates the reverb tail using a modified feed-back delay network - * (FDN). - * - * Results from the early reflections are mixed with the output from the late - * delay lines. - * - * The late response is then completed by T60 and all-pass filtering the mix. - * - * Finally, the lines are reversed (so they feed their opposite directions) - * and scattered with the FDN matrix before re-feeding the delay lines. - * - * Two variations are made, one for for transitional (cross-faded) delay line - * processing and one for non-transitional processing. - */ -void LateReverb_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI late_delay{State->mLate.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - /* First, load decorrelated samples from the main and feedback delay lines. - * Filter the signal to apply its frequency-dependent decay. - */ - for(ALsizei j{0};j < NUM_LINES;j++) - { - ALsizei late_delay_tap{offset - State->mLateDelayTap[j][0]}; - ALsizei late_feedb_tap{offset - State->mLate.Offset[j][0]}; - const ALfloat midGain{State->mLate.T60[j].MidGain[0]}; - const ALfloat densityGain{State->mLate.DensityGain[0] * midGain}; - for(ALsizei i{0};i < todo;) - { - late_delay_tap &= main_delay.Mask; - late_feedb_tap &= late_delay.Mask; - ALsizei td{mini( - mini(main_delay.Mask+1 - late_delay_tap, late_delay.Mask+1 - late_feedb_tap), - todo - i)}; - do { - temps[j][i++] = - main_delay.Line[late_delay_tap++][j]*densityGain + - late_delay.Line[late_feedb_tap++][j]*midGain; - } while(--td); - } - State->mLate.T60[j].process(temps[j].data(), todo); - } - - /* Apply a vector all-pass to improve micro-surface diffusion, and write - * out the results for mixing. - */ - State->mLate.VecAp.processUnfaded(temps, offset, mixX, mixY, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - std::copy_n(temps[j].begin(), todo, out[j].begin()+base); - - /* Finally, scatter and bounce the results to refeed the feedback buffer. */ - VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} -void LateReverb_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo, - const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out) -{ - const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples}; - const DelayLineI late_delay{State->mLate.Delay}; - const DelayLineI main_delay{State->mDelay}; - const ALfloat mixX{State->mMixX}; - const ALfloat mixY{State->mMixY}; - - ASSUME(todo > 0); - - for(ALsizei j{0};j < NUM_LINES;j++) - { - const ALfloat oldMidGain{State->mLate.T60[j].MidGain[0]}; - const ALfloat midGain{State->mLate.T60[j].MidGain[1]}; - const ALfloat oldMidStep{-oldMidGain / FADE_SAMPLES}; - const ALfloat midStep{midGain / FADE_SAMPLES}; - const ALfloat oldDensityGain{State->mLate.DensityGain[0] * oldMidGain}; - const ALfloat densityGain{State->mLate.DensityGain[1] * midGain}; - const ALfloat oldDensityStep{-oldDensityGain / FADE_SAMPLES}; - const ALfloat densityStep{densityGain / FADE_SAMPLES}; - ALsizei late_delay_tap0{offset - State->mLateDelayTap[j][0]}; - ALsizei late_delay_tap1{offset - State->mLateDelayTap[j][1]}; - ALsizei late_feedb_tap0{offset - State->mLate.Offset[j][0]}; - ALsizei late_feedb_tap1{offset - State->mLate.Offset[j][1]}; - ALfloat fadeCount{fade}; - - for(ALsizei i{0};i < todo;) - { - late_delay_tap0 &= main_delay.Mask; - late_delay_tap1 &= main_delay.Mask; - late_feedb_tap0 &= late_delay.Mask; - late_feedb_tap1 &= late_delay.Mask; - ALsizei td{mini( - mini(main_delay.Mask+1 - maxi(late_delay_tap0, late_delay_tap1), - late_delay.Mask+1 - maxi(late_feedb_tap0, late_feedb_tap1)), - todo - i)}; - do { - fadeCount += 1.0f; - const ALfloat fade0{oldDensityGain + oldDensityStep*fadeCount}; - const ALfloat fade1{densityStep*fadeCount}; - const ALfloat gfade0{oldMidGain + oldMidStep*fadeCount}; - const ALfloat gfade1{midStep*fadeCount}; - temps[j][i++] = - main_delay.Line[late_delay_tap0++][j]*fade0 + - main_delay.Line[late_delay_tap1++][j]*fade1 + - late_delay.Line[late_feedb_tap0++][j]*gfade0 + - late_delay.Line[late_feedb_tap1++][j]*gfade1; - } while(--td); - } - State->mLate.T60[j].process(temps[j].data(), todo); - } - - State->mLate.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo); - - for(ALsizei j{0};j < NUM_LINES;j++) - std::copy_n(temps[j].begin(), todo, out[j].begin()+base); - - VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base, - {out.cbegin(), out.cend()}, todo); -} - -void ReverbState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - ALsizei fadeCount{mFadeCount}; - - ASSUME(samplesToDo > 0); - - /* Convert B-Format to A-Format for processing. */ - const al::span<FloatBufferLine,NUM_LINES> afmt{mTempSamples}; - for(ALsizei c{0};c < NUM_LINES;c++) - { - std::fill_n(afmt[c].begin(), samplesToDo, 0.0f); - MixRowSamples(afmt[c], B2A[c], {samplesIn, samplesIn+numInput}, 0, samplesToDo); - - /* Band-pass the incoming samples. */ - mFilter[c].Lp.process(afmt[c].data(), afmt[c].data(), samplesToDo); - mFilter[c].Hp.process(afmt[c].data(), afmt[c].data(), samplesToDo); - } - - /* Process reverb for these samples. */ - for(ALsizei base{0};base < samplesToDo;) - { - ALsizei todo{samplesToDo - base}; - /* If cross-fading, don't do more samples than there are to fade. */ - if(FADE_SAMPLES-fadeCount > 0) - { - todo = mini(todo, FADE_SAMPLES-fadeCount); - todo = mini(todo, mMaxUpdate[0]); - } - todo = mini(todo, mMaxUpdate[1]); - ASSUME(todo > 0 && todo <= BUFFERSIZE); - - const ALsizei offset{mOffset + base}; - ASSUME(offset >= 0); - - /* Feed the initial delay line. */ - for(ALsizei c{0};c < NUM_LINES;c++) - mDelay.write(offset, c, afmt[c].data()+base, todo); - - /* Process the samples for reverb. */ - if(UNLIKELY(fadeCount < FADE_SAMPLES)) - { - auto fade = static_cast<ALfloat>(fadeCount); - - /* Generate early reflections and late reverb. */ - EarlyReflection_Faded(this, offset, todo, fade, base, mEarlyBuffer); - - LateReverb_Faded(this, offset, todo, fade, base, mLateBuffer); - - /* Step fading forward. */ - fadeCount += todo; - if(fadeCount >= FADE_SAMPLES) - { - /* Update the cross-fading delay line taps. */ - fadeCount = FADE_SAMPLES; - for(ALsizei c{0};c < NUM_LINES;c++) - { - mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1]; - mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1]; - mEarly.VecAp.Offset[c][0] = mEarly.VecAp.Offset[c][1]; - mEarly.Offset[c][0] = mEarly.Offset[c][1]; - mEarly.Coeff[c][0] = mEarly.Coeff[c][1]; - mLateDelayTap[c][0] = mLateDelayTap[c][1]; - mLate.VecAp.Offset[c][0] = mLate.VecAp.Offset[c][1]; - mLate.Offset[c][0] = mLate.Offset[c][1]; - mLate.T60[c].MidGain[0] = mLate.T60[c].MidGain[1]; - } - mLate.DensityGain[0] = mLate.DensityGain[1]; - mMaxUpdate[0] = mMaxUpdate[1]; - } - } - else - { - /* Generate early reflections and late reverb. */ - EarlyReflection_Unfaded(this, offset, todo, base, mEarlyBuffer); - - LateReverb_Unfaded(this, offset, todo, base, mLateBuffer); - } - - base += todo; - } - mOffset = (mOffset+samplesToDo) & 0x3fffffff; - mFadeCount = fadeCount; - - /* Finally, mix early reflections and late reverb. */ - (this->*mMixOut)(samplesOut, samplesToDo); -} - - -void EAXReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void EAXReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ EAXReverb_setParami(props, context, param, vals[0]); } -void EAXReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_EAXREVERB_DENSITY: - if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_EAXREVERB_DIFFUSION: - if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_EAXREVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_EAXREVERB_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_EAXREVERB_GAINLF: - if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range"); - props->Reverb.GainLF = val; - break; - - case AL_EAXREVERB_DECAY_TIME: - if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range"); - props->Reverb.DecayLFRatio = val; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_EAXREVERB_ECHO_TIME: - if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range"); - props->Reverb.EchoTime = val; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range"); - props->Reverb.EchoDepth = val; - break; - - case AL_EAXREVERB_MODULATION_TIME: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range"); - props->Reverb.ModulationTime = val; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range"); - props->Reverb.ModulationDepth = val; - break; - - case AL_EAXREVERB_HFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range"); - props->Reverb.HFReference = val; - break; - - case AL_EAXREVERB_LFREFERENCE: - if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range"); - props->Reverb.LFReference = val; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void EAXReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range"); - props->Reverb.ReflectionsPan[0] = vals[0]; - props->Reverb.ReflectionsPan[1] = vals[1]; - props->Reverb.ReflectionsPan[2] = vals[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2]))) - SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range"); - props->Reverb.LateReverbPan[0] = vals[0]; - props->Reverb.LateReverbPan[1] = vals[1]; - props->Reverb.LateReverbPan[2] = vals[2]; - break; - - default: - EAXReverb_setParamf(props, context, param, vals[0]); - break; - } -} - -void EAXReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_EAXREVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x", - param); - } -} -void EAXReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ EAXReverb_getParami(props, context, param, vals); } -void EAXReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_EAXREVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_EAXREVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_EAXREVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_EAXREVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_EAXREVERB_GAINLF: - *val = props->Reverb.GainLF; - break; - - case AL_EAXREVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_EAXREVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_EAXREVERB_DECAY_LFRATIO: - *val = props->Reverb.DecayLFRatio; - break; - - case AL_EAXREVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_EAXREVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_EAXREVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_EAXREVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_EAXREVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_EAXREVERB_ECHO_TIME: - *val = props->Reverb.EchoTime; - break; - - case AL_EAXREVERB_ECHO_DEPTH: - *val = props->Reverb.EchoDepth; - break; - - case AL_EAXREVERB_MODULATION_TIME: - *val = props->Reverb.ModulationTime; - break; - - case AL_EAXREVERB_MODULATION_DEPTH: - *val = props->Reverb.ModulationDepth; - break; - - case AL_EAXREVERB_HFREFERENCE: - *val = props->Reverb.HFReference; - break; - - case AL_EAXREVERB_LFREFERENCE: - *val = props->Reverb.LFReference; - break; - - case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x", - param); - } -} -void EAXReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ - switch(param) - { - case AL_EAXREVERB_REFLECTIONS_PAN: - vals[0] = props->Reverb.ReflectionsPan[0]; - vals[1] = props->Reverb.ReflectionsPan[1]; - vals[2] = props->Reverb.ReflectionsPan[2]; - break; - case AL_EAXREVERB_LATE_REVERB_PAN: - vals[0] = props->Reverb.LateReverbPan[0]; - vals[1] = props->Reverb.LateReverbPan[1]; - vals[2] = props->Reverb.LateReverbPan[2]; - break; - - default: - EAXReverb_getParamf(props, context, param, vals); - break; - } -} - -DEFINE_ALEFFECT_VTABLE(EAXReverb); - - -struct ReverbStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ReverbState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &EAXReverb_vtable; } -}; - -EffectProps ReverbStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Reverb.Density = AL_EAXREVERB_DEFAULT_DENSITY; - props.Reverb.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION; - props.Reverb.Gain = AL_EAXREVERB_DEFAULT_GAIN; - props.Reverb.GainHF = AL_EAXREVERB_DEFAULT_GAINHF; - props.Reverb.GainLF = AL_EAXREVERB_DEFAULT_GAINLF; - props.Reverb.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME; - props.Reverb.DecayHFRatio = AL_EAXREVERB_DEFAULT_DECAY_HFRATIO; - props.Reverb.DecayLFRatio = AL_EAXREVERB_DEFAULT_DECAY_LFRATIO; - props.Reverb.ReflectionsGain = AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN; - props.Reverb.ReflectionsDelay = AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY; - props.Reverb.ReflectionsPan[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.ReflectionsPan[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.ReflectionsPan[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ; - props.Reverb.LateReverbGain = AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN; - props.Reverb.LateReverbDelay = AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY; - props.Reverb.LateReverbPan[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.LateReverbPan[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.LateReverbPan[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ; - props.Reverb.EchoTime = AL_EAXREVERB_DEFAULT_ECHO_TIME; - props.Reverb.EchoDepth = AL_EAXREVERB_DEFAULT_ECHO_DEPTH; - props.Reverb.ModulationTime = AL_EAXREVERB_DEFAULT_MODULATION_TIME; - props.Reverb.ModulationDepth = AL_EAXREVERB_DEFAULT_MODULATION_DEPTH; - props.Reverb.AirAbsorptionGainHF = AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF; - props.Reverb.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE; - props.Reverb.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE; - props.Reverb.RoomRolloffFactor = AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR; - props.Reverb.DecayHFLimit = AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT; - return props; -} - - -void StdReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range"); - props->Reverb.DecayHFLimit = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void StdReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) -{ StdReverb_setParami(props, context, param, vals[0]); } -void StdReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_REVERB_DENSITY: - if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range"); - props->Reverb.Density = val; - break; - - case AL_REVERB_DIFFUSION: - if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range"); - props->Reverb.Diffusion = val; - break; - - case AL_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range"); - props->Reverb.Gain = val; - break; - - case AL_REVERB_GAINHF: - if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range"); - props->Reverb.GainHF = val; - break; - - case AL_REVERB_DECAY_TIME: - if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range"); - props->Reverb.DecayTime = val; - break; - - case AL_REVERB_DECAY_HFRATIO: - if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range"); - props->Reverb.DecayHFRatio = val; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range"); - props->Reverb.ReflectionsGain = val; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range"); - props->Reverb.ReflectionsDelay = val; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range"); - props->Reverb.LateReverbGain = val; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range"); - props->Reverb.LateReverbDelay = val; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range"); - props->Reverb.AirAbsorptionGainHF = val; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range"); - props->Reverb.RoomRolloffFactor = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void StdReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ StdReverb_setParamf(props, context, param, vals[0]); } - -void StdReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) -{ - switch(param) - { - case AL_REVERB_DECAY_HFLIMIT: - *val = props->Reverb.DecayHFLimit; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param); - } -} -void StdReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) -{ StdReverb_getParami(props, context, param, vals); } -void StdReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_REVERB_DENSITY: - *val = props->Reverb.Density; - break; - - case AL_REVERB_DIFFUSION: - *val = props->Reverb.Diffusion; - break; - - case AL_REVERB_GAIN: - *val = props->Reverb.Gain; - break; - - case AL_REVERB_GAINHF: - *val = props->Reverb.GainHF; - break; - - case AL_REVERB_DECAY_TIME: - *val = props->Reverb.DecayTime; - break; - - case AL_REVERB_DECAY_HFRATIO: - *val = props->Reverb.DecayHFRatio; - break; - - case AL_REVERB_REFLECTIONS_GAIN: - *val = props->Reverb.ReflectionsGain; - break; - - case AL_REVERB_REFLECTIONS_DELAY: - *val = props->Reverb.ReflectionsDelay; - break; - - case AL_REVERB_LATE_REVERB_GAIN: - *val = props->Reverb.LateReverbGain; - break; - - case AL_REVERB_LATE_REVERB_DELAY: - *val = props->Reverb.LateReverbDelay; - break; - - case AL_REVERB_AIR_ABSORPTION_GAINHF: - *val = props->Reverb.AirAbsorptionGainHF; - break; - - case AL_REVERB_ROOM_ROLLOFF_FACTOR: - *val = props->Reverb.RoomRolloffFactor; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param); - } -} -void StdReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ StdReverb_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(StdReverb); - - -struct StdReverbStateFactory final : public EffectStateFactory { - EffectState *create() override { return new ReverbState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &StdReverb_vtable; } -}; - -EffectProps StdReverbStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Reverb.Density = AL_REVERB_DEFAULT_DENSITY; - props.Reverb.Diffusion = AL_REVERB_DEFAULT_DIFFUSION; - props.Reverb.Gain = AL_REVERB_DEFAULT_GAIN; - props.Reverb.GainHF = AL_REVERB_DEFAULT_GAINHF; - props.Reverb.GainLF = 1.0f; - props.Reverb.DecayTime = AL_REVERB_DEFAULT_DECAY_TIME; - props.Reverb.DecayHFRatio = AL_REVERB_DEFAULT_DECAY_HFRATIO; - props.Reverb.DecayLFRatio = 1.0f; - props.Reverb.ReflectionsGain = AL_REVERB_DEFAULT_REFLECTIONS_GAIN; - props.Reverb.ReflectionsDelay = AL_REVERB_DEFAULT_REFLECTIONS_DELAY; - props.Reverb.ReflectionsPan[0] = 0.0f; - props.Reverb.ReflectionsPan[1] = 0.0f; - props.Reverb.ReflectionsPan[2] = 0.0f; - props.Reverb.LateReverbGain = AL_REVERB_DEFAULT_LATE_REVERB_GAIN; - props.Reverb.LateReverbDelay = AL_REVERB_DEFAULT_LATE_REVERB_DELAY; - props.Reverb.LateReverbPan[0] = 0.0f; - props.Reverb.LateReverbPan[1] = 0.0f; - props.Reverb.LateReverbPan[2] = 0.0f; - props.Reverb.EchoTime = 0.25f; - props.Reverb.EchoDepth = 0.0f; - props.Reverb.ModulationTime = 0.25f; - props.Reverb.ModulationDepth = 0.0f; - props.Reverb.AirAbsorptionGainHF = AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF; - props.Reverb.HFReference = 5000.0f; - props.Reverb.LFReference = 250.0f; - props.Reverb.RoomRolloffFactor = AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR; - props.Reverb.DecayHFLimit = AL_REVERB_DEFAULT_DECAY_HFLIMIT; - return props; -} - -} // namespace - -EffectStateFactory *ReverbStateFactory_getFactory() -{ - static ReverbStateFactory ReverbFactory{}; - return &ReverbFactory; -} - -EffectStateFactory *StdReverbStateFactory_getFactory() -{ - static StdReverbStateFactory ReverbFactory{}; - return &ReverbFactory; -} diff --git a/Alc/effects/vmorpher.cpp b/Alc/effects/vmorpher.cpp deleted file mode 100644 index eebba3f1..00000000 --- a/Alc/effects/vmorpher.cpp +++ /dev/null @@ -1,430 +0,0 @@ -/** - * OpenAL cross platform audio library - * Copyright (C) 2019 by Anis A. Hireche - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * Or go to http://www.gnu.org/copyleft/lgpl.html - */ - -#include "config.h" - -#include <cmath> -#include <cstdlib> -#include <algorithm> -#include <functional> - -#include "alcmain.h" -#include "alcontext.h" -#include "alAuxEffectSlot.h" -#include "alError.h" -#include "alu.h" - -namespace { - -#define MAX_UPDATE_SAMPLES 128 -#define NUM_FORMANTS 4 -#define NUM_FILTERS 2 -#define Q_FACTOR 5.0f - -#define VOWEL_A_INDEX 0 -#define VOWEL_B_INDEX 1 - -#define WAVEFORM_FRACBITS 24 -#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS) -#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1) - -inline ALfloat Sin(ALsizei index) -{ - constexpr ALfloat scale{al::MathDefs<float>::Tau() / ALfloat{WAVEFORM_FRACONE}}; - return std::sin(static_cast<ALfloat>(index) * scale)*0.5f + 0.5f; -} - -inline ALfloat Saw(ALsizei index) -{ - return static_cast<ALfloat>(index) / ALfloat{WAVEFORM_FRACONE}; -} - -inline ALfloat Triangle(ALsizei index) -{ - return std::fabs(static_cast<ALfloat>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f); -} - -inline ALfloat Half(ALsizei) -{ - return 0.5f; -} - -template<ALfloat func(ALsizei)> -void Oscillate(ALfloat *RESTRICT dst, ALsizei index, const ALsizei step, ALsizei todo) -{ - for(ALsizei i{0};i < todo;i++) - { - index += step; - index &= WAVEFORM_FRACMASK; - dst[i] = func(index); - } -} - -struct FormantFilter -{ - ALfloat f0norm{0.0f}; - ALfloat fGain{1.0f}; - ALfloat s1{0.0f}; - ALfloat s2{0.0f}; - - FormantFilter() = default; - FormantFilter(ALfloat f0norm_, ALfloat gain) : f0norm{f0norm_}, fGain{gain} { } - - inline void process(const ALfloat* samplesIn, ALfloat* samplesOut, const ALsizei numInput) - { - /* A state variable filter from a topology-preserving transform. - * Based on a talk given by Ivan Cohen: https://www.youtube.com/watch?v=esjHXGPyrhg - */ - const ALfloat g = std::tan(al::MathDefs<float>::Pi() * f0norm); - const ALfloat h = 1.0f / (1 + (g / Q_FACTOR) + (g * g)); - - for (ALsizei i{0};i < numInput;i++) - { - const ALfloat H = h * (samplesIn[i] - (1.0f / Q_FACTOR + g) * s1 - s2); - const ALfloat B = g * H + s1; - const ALfloat L = g * B + s2; - - s1 = g * H + B; - s2 = g * B + L; - - // Apply peak and accumulate samples. - samplesOut[i] += B * fGain; - } - } - - inline void clear() - { - s1 = 0.0f; - s2 = 0.0f; - } -}; - - -struct VmorpherState final : public EffectState { - struct { - /* Effect parameters */ - FormantFilter Formants[NUM_FILTERS][NUM_FORMANTS]; - - /* Effect gains for each channel */ - ALfloat CurrentGains[MAX_OUTPUT_CHANNELS]{}; - ALfloat TargetGains[MAX_OUTPUT_CHANNELS]{}; - } mChans[MAX_AMBI_CHANNELS]; - - void (*mGetSamples)(ALfloat* RESTRICT, ALsizei, const ALsizei, ALsizei) {}; - - ALsizei mIndex{0}; - ALsizei mStep{1}; - - /* Effects buffers */ - ALfloat mSampleBufferA[MAX_UPDATE_SAMPLES]{}; - ALfloat mSampleBufferB[MAX_UPDATE_SAMPLES]{}; - - ALboolean deviceUpdate(const ALCdevice *device) override; - void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; - void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; - - static std::array<FormantFilter,4> getFiltersByPhoneme(ALenum phoneme, ALfloat frequency, ALfloat pitch); - - DEF_NEWDEL(VmorpherState) -}; - -std::array<FormantFilter,4> VmorpherState::getFiltersByPhoneme(ALenum phoneme, ALfloat frequency, ALfloat pitch) -{ - /* Using soprano formant set of values to - * better match mid-range frequency space. - * - * See: https://www.classes.cs.uchicago.edu/archive/1999/spring/CS295/Computing_Resources/Csound/CsManual3.48b1.HTML/Appendices/table3.html - */ - switch(phoneme) - { - case AL_VOCAL_MORPHER_PHONEME_A: - return {{ - {( 800 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */ - {(1150 * pitch) / frequency, 0.501187f}, /* std::pow(10.0f, -6 / 20.0f); */ - {(2900 * pitch) / frequency, 0.025118f}, /* std::pow(10.0f, -32 / 20.0f); */ - {(3900 * pitch) / frequency, 0.100000f} /* std::pow(10.0f, -20 / 20.0f); */ - }}; - case AL_VOCAL_MORPHER_PHONEME_E: - return {{ - {( 350 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */ - {(2000 * pitch) / frequency, 0.100000f}, /* std::pow(10.0f, -20 / 20.0f); */ - {(2800 * pitch) / frequency, 0.177827f}, /* std::pow(10.0f, -15 / 20.0f); */ - {(3600 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */ - }}; - case AL_VOCAL_MORPHER_PHONEME_I: - return {{ - {( 270 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */ - {(2140 * pitch) / frequency, 0.251188f}, /* std::pow(10.0f, -12 / 20.0f); */ - {(2950 * pitch) / frequency, 0.050118f}, /* std::pow(10.0f, -26 / 20.0f); */ - {(3900 * pitch) / frequency, 0.050118f} /* std::pow(10.0f, -26 / 20.0f); */ - }}; - case AL_VOCAL_MORPHER_PHONEME_O: - return {{ - {( 450 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */ - {( 800 * pitch) / frequency, 0.281838f}, /* std::pow(10.0f, -11 / 20.0f); */ - {(2830 * pitch) / frequency, 0.079432f}, /* std::pow(10.0f, -22 / 20.0f); */ - {(3800 * pitch) / frequency, 0.079432f} /* std::pow(10.0f, -22 / 20.0f); */ - }}; - case AL_VOCAL_MORPHER_PHONEME_U: - return {{ - {( 325 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */ - {( 700 * pitch) / frequency, 0.158489f}, /* std::pow(10.0f, -16 / 20.0f); */ - {(2700 * pitch) / frequency, 0.017782f}, /* std::pow(10.0f, -35 / 20.0f); */ - {(3800 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */ - }}; - } - return {}; -} - - -ALboolean VmorpherState::deviceUpdate(const ALCdevice* /*device*/) -{ - for(auto &e : mChans) - { - std::for_each(std::begin(e.Formants[VOWEL_A_INDEX]), std::end(e.Formants[VOWEL_A_INDEX]), - std::mem_fn(&FormantFilter::clear)); - std::for_each(std::begin(e.Formants[VOWEL_B_INDEX]), std::end(e.Formants[VOWEL_B_INDEX]), - std::mem_fn(&FormantFilter::clear)); - std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f); - } - - return AL_TRUE; -} - -void VmorpherState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) -{ - const ALCdevice *device{context->Device}; - const ALfloat frequency{static_cast<ALfloat>(device->Frequency)}; - const ALfloat step{props->Vmorpher.Rate / static_cast<ALfloat>(device->Frequency)}; - mStep = fastf2i(clampf(step*WAVEFORM_FRACONE, 0.0f, ALfloat{WAVEFORM_FRACONE-1})); - - if(mStep == 0) - mGetSamples = Oscillate<Half>; - else if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_SINUSOID) - mGetSamples = Oscillate<Sin>; - else if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_SAWTOOTH) - mGetSamples = Oscillate<Saw>; - else /*if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_TRIANGLE)*/ - mGetSamples = Oscillate<Triangle>; - - const ALfloat pitchA{fastf2i(std::pow(2.0f, props->Vmorpher.PhonemeACoarseTuning*100.0f / 2400.0f)*FRACTIONONE) * (1.0f/FRACTIONONE)}; - const ALfloat pitchB{fastf2i(std::pow(2.0f, props->Vmorpher.PhonemeBCoarseTuning*100.0f / 2400.0f)*FRACTIONONE) * (1.0f/FRACTIONONE)}; - - auto vowelA = getFiltersByPhoneme(props->Vmorpher.PhonemeA, frequency, pitchA); - auto vowelB = getFiltersByPhoneme(props->Vmorpher.PhonemeB, frequency, pitchB); - - /* Copy the filter coefficients to the input channels. */ - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - std::copy(vowelA.begin(), vowelA.end(), std::begin(mChans[i].Formants[VOWEL_A_INDEX])); - std::copy(vowelB.begin(), vowelB.end(), std::begin(mChans[i].Formants[VOWEL_B_INDEX])); - } - - mOutTarget = target.Main->Buffer; - for(size_t i{0u};i < slot->Wet.Buffer.size();++i) - { - auto coeffs = GetAmbiIdentityRow(i); - ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains); - } -} - -void VmorpherState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) -{ - /* Following the EFX specification for a conformant implementation which describes - * the effect as a pair of 4-band formant filters blended together using an LFO. - */ - for(ALsizei base{0};base < samplesToDo;) - { - alignas(16) ALfloat lfo[MAX_UPDATE_SAMPLES]; - const ALsizei td = mini(MAX_UPDATE_SAMPLES, samplesToDo-base); - - mGetSamples(lfo, mIndex, mStep, td); - mIndex += (mStep * td) & WAVEFORM_FRACMASK; - mIndex &= WAVEFORM_FRACMASK; - - ASSUME(numInput > 0); - for(ALsizei c{0};c < numInput;c++) - { - for (ALsizei i{0};i < td;i++) - { - mSampleBufferA[i] = 0.0f; - mSampleBufferB[i] = 0.0f; - } - - auto& vowelA = mChans[c].Formants[VOWEL_A_INDEX]; - auto& vowelB = mChans[c].Formants[VOWEL_B_INDEX]; - - /* Process first vowel. */ - vowelA[0].process(&samplesIn[c][base], mSampleBufferA, td); - vowelA[1].process(&samplesIn[c][base], mSampleBufferA, td); - vowelA[2].process(&samplesIn[c][base], mSampleBufferA, td); - vowelA[3].process(&samplesIn[c][base], mSampleBufferA, td); - - /* Process second vowel. */ - vowelB[0].process(&samplesIn[c][base], mSampleBufferB, td); - vowelB[1].process(&samplesIn[c][base], mSampleBufferB, td); - vowelB[2].process(&samplesIn[c][base], mSampleBufferB, td); - vowelB[3].process(&samplesIn[c][base], mSampleBufferB, td); - - alignas(16) ALfloat samplesBlended[MAX_UPDATE_SAMPLES]; - - for (ALsizei i{0};i < td;i++) - samplesBlended[i] = lerp(mSampleBufferA[i], mSampleBufferB[i], lfo[i]); - - /* Now, mix the processed sound data to the output. */ - MixSamples(samplesBlended, samplesOut, mChans[c].CurrentGains, mChans[c].TargetGains, - samplesToDo-base, base, td); - } - - base += td; - } -} - - -void Vmorpher_setParami(EffectProps* props, ALCcontext *context, ALenum param, ALint val) -{ - switch(param) - { - case AL_VOCAL_MORPHER_WAVEFORM: - if(!(val >= AL_VOCAL_MORPHER_MIN_WAVEFORM && val <= AL_VOCAL_MORPHER_MAX_WAVEFORM)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher waveform out of range"); - props->Vmorpher.Waveform = val; - break; - - case AL_VOCAL_MORPHER_PHONEMEA: - if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEA && val <= AL_VOCAL_MORPHER_MAX_PHONEMEA)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher phoneme-a out of range"); - props->Vmorpher.PhonemeA = val; - break; - - case AL_VOCAL_MORPHER_PHONEMEB: - if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEB && val <= AL_VOCAL_MORPHER_MAX_PHONEMEB)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher phoneme-b out of range"); - props->Vmorpher.PhonemeB = val; - break; - - case AL_VOCAL_MORPHER_PHONEMEA_COARSE_TUNING: - if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEA_COARSE_TUNING && val <= AL_VOCAL_MORPHER_MAX_PHONEMEA_COARSE_TUNING)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher phoneme-a coarse tuning out of range"); - props->Vmorpher.PhonemeACoarseTuning = val; - break; - - case AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING: - if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEB_COARSE_TUNING && val <= AL_VOCAL_MORPHER_MAX_PHONEMEB_COARSE_TUNING)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher phoneme-b coarse tuning out of range"); - props->Vmorpher.PhonemeBCoarseTuning = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher integer property 0x%04x", param); - } -} -void Vmorpher_setParamiv(EffectProps*, ALCcontext *context, ALenum param, const ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher integer-vector property 0x%04x", param); } -void Vmorpher_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) -{ - switch(param) - { - case AL_VOCAL_MORPHER_RATE: - if(!(val >= AL_VOCAL_MORPHER_MIN_RATE && val <= AL_VOCAL_MORPHER_MAX_RATE)) - SETERR_RETURN(context, AL_INVALID_VALUE,, "Vocal morpher rate out of range"); - props->Vmorpher.Rate = val; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher float property 0x%04x", param); - } -} -void Vmorpher_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) -{ Vmorpher_setParamf(props, context, param, vals[0]); } - -void Vmorpher_getParami(const EffectProps* props, ALCcontext *context, ALenum param, ALint* val) -{ - switch(param) - { - case AL_VOCAL_MORPHER_PHONEMEA: - *val = props->Vmorpher.PhonemeA; - break; - - case AL_VOCAL_MORPHER_PHONEMEB: - *val = props->Vmorpher.PhonemeB; - break; - - case AL_VOCAL_MORPHER_PHONEMEA_COARSE_TUNING: - *val = props->Vmorpher.PhonemeACoarseTuning; - break; - - case AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING: - *val = props->Vmorpher.PhonemeBCoarseTuning; - break; - - case AL_VOCAL_MORPHER_WAVEFORM: - *val = props->Vmorpher.Waveform; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher integer property 0x%04x", param); - } -} -void Vmorpher_getParamiv(const EffectProps*, ALCcontext *context, ALenum param, ALint*) -{ alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher integer-vector property 0x%04x", param); } -void Vmorpher_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) -{ - switch(param) - { - case AL_VOCAL_MORPHER_RATE: - *val = props->Vmorpher.Rate; - break; - - default: - alSetError(context, AL_INVALID_ENUM, "Invalid vocal morpher float property 0x%04x", param); - } -} -void Vmorpher_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) -{ Vmorpher_getParamf(props, context, param, vals); } - -DEFINE_ALEFFECT_VTABLE(Vmorpher); - - -struct VmorpherStateFactory final : public EffectStateFactory { - EffectState *create() override { return new VmorpherState{}; } - EffectProps getDefaultProps() const noexcept override; - const EffectVtable *getEffectVtable() const noexcept override { return &Vmorpher_vtable; } -}; - -EffectProps VmorpherStateFactory::getDefaultProps() const noexcept -{ - EffectProps props{}; - props.Vmorpher.Rate = AL_VOCAL_MORPHER_DEFAULT_RATE; - props.Vmorpher.PhonemeA = AL_VOCAL_MORPHER_DEFAULT_PHONEMEA; - props.Vmorpher.PhonemeB = AL_VOCAL_MORPHER_DEFAULT_PHONEMEB; - props.Vmorpher.PhonemeACoarseTuning = AL_VOCAL_MORPHER_DEFAULT_PHONEMEA_COARSE_TUNING; - props.Vmorpher.PhonemeBCoarseTuning = AL_VOCAL_MORPHER_DEFAULT_PHONEMEB_COARSE_TUNING; - props.Vmorpher.Waveform = AL_VOCAL_MORPHER_DEFAULT_WAVEFORM; - return props; -} - -} // namespace - -EffectStateFactory *VmorpherStateFactory_getFactory() -{ - static VmorpherStateFactory VmorpherFactory{}; - return &VmorpherFactory; -} |