aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/hrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/hrtf.c')
-rw-r--r--Alc/hrtf.c527
1 files changed, 330 insertions, 197 deletions
diff --git a/Alc/hrtf.c b/Alc/hrtf.c
index 31321101..d4c74c0c 100644
--- a/Alc/hrtf.c
+++ b/Alc/hrtf.c
@@ -27,56 +27,75 @@
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
+#include "alu.h"
+/* Current data set limits defined by the makehrtf utility. */
+#define MIN_IR_SIZE (8)
+#define MAX_IR_SIZE (128)
+#define MOD_IR_SIZE (8)
-static const ALchar magicMarker[8] = "MinPHR00";
+#define MIN_EV_COUNT (5)
+#define MAX_EV_COUNT (128)
-#define HRIR_COUNT 828
-#define ELEV_COUNT 19
+#define MIN_AZ_COUNT (1)
+#define MAX_AZ_COUNT (128)
-static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 };
-static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 };
+struct Hrtf {
+ ALuint sampleRate;
+ ALuint irSize;
+ ALubyte evCount;
+ const ALubyte *azCount;
+ const ALushort *evOffset;
+ const ALshort *coeffs;
+ const ALubyte *delays;
-static const struct Hrtf {
- ALuint sampleRate;
- ALshort coeffs[HRIR_COUNT][HRIR_LENGTH];
- ALubyte delays[HRIR_COUNT];
-} DefaultHrtf = {
- 44100,
-#include "hrtf_tables.inc"
+ struct Hrtf *next;
};
-static struct Hrtf *LoadedHrtfs = NULL;
-static ALuint NumLoadedHrtfs = 0;
+static const ALchar magicMarker[8] = "MinPHR01";
+
+/* Define the default HRTF:
+ * ALubyte defaultAzCount [DefaultHrtf.evCount]
+ * ALushort defaultEvOffset [DefaultHrtf.evCount]
+ * ALshort defaultCoeffs [DefaultHrtf.irCount * defaultHrtf.irSize]
+ * ALubyte defaultDelays [DefaultHrtf.irCount]
+ *
+ * struct Hrtf DefaultHrtf
+ */
+#include "hrtf_tables.inc"
+static struct Hrtf *LoadedHrtfs = NULL;
-// Calculate the elevation indices given the polar elevation in radians.
-// This will return two indices between 0 and (ELEV_COUNT-1) and an
-// interpolation factor between 0.0 and 1.0.
-static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu)
+/* Calculate the elevation indices given the polar elevation in radians.
+ * This will return two indices between 0 and (Hrtf->evCount - 1) and an
+ * interpolation factor between 0.0 and 1.0.
+ */
+static void CalcEvIndices(const struct Hrtf *Hrtf, ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
- ev = (F_PI_2 + ev) * (ELEV_COUNT-1) / F_PI;
+ ev = (F_PI_2 + ev) * (Hrtf->evCount-1) / F_PI;
evidx[0] = fastf2u(ev);
- evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1);
+ evidx[1] = minu(evidx[0] + 1, Hrtf->evCount-1);
*evmu = ev - evidx[0];
}
-// Calculate the azimuth indices given the polar azimuth in radians. This
-// will return two indices between 0 and (azCount [ei] - 1) and an
-// interpolation factor between 0.0 and 1.0.
-static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
+/* Calculate the azimuth indices given the polar azimuth in radians. This
+ * will return two indices between 0 and (Hrtf->azCount[ei] - 1) and an
+ * interpolation factor between 0.0 and 1.0.
+ */
+static void CalcAzIndices(const struct Hrtf *Hrtf, ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
- az = (F_PI*2.0f + az) * azCount[evidx] / (F_PI*2.0f);
- azidx[0] = fastf2u(az) % azCount[evidx];
- azidx[1] = (azidx[0] + 1) % azCount[evidx];
+ az = (F_PI*2.0f + az) * Hrtf->azCount[evidx] / (F_PI*2.0f);
+ azidx[0] = fastf2u(az) % Hrtf->azCount[evidx];
+ azidx[1] = (azidx[0] + 1) % Hrtf->azCount[evidx];
*azmu = az - floorf(az);
}
-// Calculates the normalized HRTF transition factor (delta) from the changes
-// in gain and listener to source angle between updates. The result is a
-// normalized delta factor than can be used to calculate moving HRIR stepping
-// values.
+/* Calculates the normalized HRTF transition factor (delta) from the changes
+ * in gain and listener to source angle between updates. The result is a
+ * normalized delta factor that can be used to calculate moving HRIR stepping
+ * values.
+ */
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
{
ALfloat gainChange, angleChange, change;
@@ -106,10 +125,11 @@ ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3],
return minf(change, 1.0f);
}
-// Calculates static HRIR coefficients and delays for the given polar
-// elevation and azimuth in radians. Linear interpolation is used to
-// increase the apparent resolution of the HRIR dataset. The coefficients
-// are also normalized and attenuated by the specified gain.
+/* Calculates static HRIR coefficients and delays for the given polar
+ * elevation and azimuth in radians. Linear interpolation is used to
+ * increase the apparent resolution of the HRIR data set. The coefficients
+ * are also normalized and attenuated by the specified gain.
+ */
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], azidx[2];
@@ -118,78 +138,90 @@ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azi
ALuint i;
// Claculate elevation indices and interpolation factor.
- CalcEvIndices(elevation, evidx, &mu[2]);
+ CalcEvIndices(Hrtf, elevation, evidx, &mu[2]);
// Calculate azimuth indices and interpolation factor for the first
// elevation.
- CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
+ CalcAzIndices(Hrtf, evidx[0], azimuth, azidx, &mu[0]);
// Calculate the first set of linear HRIR indices for left and right
// channels.
- lidx[0] = evOffset[evidx[0]] + azidx[0];
- lidx[1] = evOffset[evidx[0]] + azidx[1];
- ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
- ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
+ lidx[0] = Hrtf->evOffset[evidx[0]] + azidx[0];
+ lidx[1] = Hrtf->evOffset[evidx[0]] + azidx[1];
+ ridx[0] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[0]) % Hrtf->azCount[evidx[0]]);
+ ridx[1] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[1]) % Hrtf->azCount[evidx[0]]);
// Calculate azimuth indices and interpolation factor for the second
// elevation.
- CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
+ CalcAzIndices(Hrtf, evidx[1], azimuth, azidx, &mu[1]);
// Calculate the second set of linear HRIR indices for left and right
// channels.
- lidx[2] = evOffset[evidx[1]] + azidx[0];
- lidx[3] = evOffset[evidx[1]] + azidx[1];
- ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
- ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
+ lidx[2] = Hrtf->evOffset[evidx[1]] + azidx[0];
+ lidx[3] = Hrtf->evOffset[evidx[1]] + azidx[1];
+ ridx[2] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[0]) % Hrtf->azCount[evidx[1]]);
+ ridx[3] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[1]) % Hrtf->azCount[evidx[1]]);
- /* Calculate 4 blending weights for 2D bilinear interpolation */
+ /* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
- // Calculate the normalized and attenuated HRIR coefficients using linear
- // interpolation when there is enough gain to warrant it. Zero the
- // coefficients if gain is too low.
+ /* Calculate the HRIR delays using linear interpolation. */
+ delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
+ Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
+ 0.5f) << HRTFDELAY_BITS;
+ delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
+ Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
+ 0.5f) << HRTFDELAY_BITS;
+
+ /* Calculate the sample offsets for the HRIR indices. */
+ lidx[0] *= Hrtf->irSize;
+ lidx[1] *= Hrtf->irSize;
+ lidx[2] *= Hrtf->irSize;
+ lidx[3] *= Hrtf->irSize;
+ ridx[0] *= Hrtf->irSize;
+ ridx[1] *= Hrtf->irSize;
+ ridx[2] *= Hrtf->irSize;
+ ridx[3] *= Hrtf->irSize;
+
+ /* Calculate the normalized and attenuated HRIR coefficients using linear
+ * interpolation when there is enough gain to warrant it. Zero the
+ * coefficients if gain is too low.
+ */
if(gain > 0.0001f)
{
gain *= 1.0f/32767.0f;
- for(i = 0;i < HRIR_LENGTH;i++)
+ for(i = 0;i < Hrtf->irSize;i++)
{
- coeffs[i][0] = (Hrtf->coeffs[lidx[0]][i]*blend[0] +
- Hrtf->coeffs[lidx[1]][i]*blend[1] +
- Hrtf->coeffs[lidx[2]][i]*blend[2] +
- Hrtf->coeffs[lidx[3]][i]*blend[3]) * gain;
- coeffs[i][1] = (Hrtf->coeffs[ridx[0]][i]*blend[0] +
- Hrtf->coeffs[ridx[1]][i]*blend[1] +
- Hrtf->coeffs[ridx[2]][i]*blend[2] +
- Hrtf->coeffs[ridx[3]][i]*blend[3]) * gain;
+ coeffs[i][0] = (Hrtf->coeffs[lidx[0]+i]*blend[0] +
+ Hrtf->coeffs[lidx[1]+i]*blend[1] +
+ Hrtf->coeffs[lidx[2]+i]*blend[2] +
+ Hrtf->coeffs[lidx[3]+i]*blend[3]) * gain;
+ coeffs[i][1] = (Hrtf->coeffs[ridx[0]+i]*blend[0] +
+ Hrtf->coeffs[ridx[1]+i]*blend[1] +
+ Hrtf->coeffs[ridx[2]+i]*blend[2] +
+ Hrtf->coeffs[ridx[3]+i]*blend[3]) * gain;
}
}
else
{
- for(i = 0;i < HRIR_LENGTH;i++)
+ for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
-
- // Calculate the HRIR delays using linear interpolation.
- delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
}
-// Calculates the moving HRIR target coefficients, target delays, and
-// stepping values for the given polar elevation and azimuth in radians.
-// Linear interpolation is used to increase the apparent resolution of the
-// HRIR dataset. The coefficients are also normalized and attenuated by the
-// specified gain. Stepping resolution and count is determined using the
-// given delta factor between 0.0 and 1.0.
+/* Calculates the moving HRIR target coefficients, target delays, and
+ * stepping values for the given polar elevation and azimuth in radians.
+ * Linear interpolation is used to increase the apparent resolution of the
+ * HRIR data set. The coefficients are also normalized and attenuated by the
+ * specified gain. Stepping resolution and count is determined using the
+ * given delta factor between 0.0 and 1.0.
+ */
ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
{
ALuint evidx[2], azidx[2];
@@ -200,45 +232,73 @@ ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat a
ALuint i;
// Claculate elevation indices and interpolation factor.
- CalcEvIndices(elevation, evidx, &mu[2]);
+ CalcEvIndices(Hrtf, elevation, evidx, &mu[2]);
// Calculate azimuth indices and interpolation factor for the first
// elevation.
- CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
+ CalcAzIndices(Hrtf, evidx[0], azimuth, azidx, &mu[0]);
// Calculate the first set of linear HRIR indices for left and right
// channels.
- lidx[0] = evOffset[evidx[0]] + azidx[0];
- lidx[1] = evOffset[evidx[0]] + azidx[1];
- ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
- ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
+ lidx[0] = Hrtf->evOffset[evidx[0]] + azidx[0];
+ lidx[1] = Hrtf->evOffset[evidx[0]] + azidx[1];
+ ridx[0] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[0]) % Hrtf->azCount[evidx[0]]);
+ ridx[1] = Hrtf->evOffset[evidx[0]] + ((Hrtf->azCount[evidx[0]]-azidx[1]) % Hrtf->azCount[evidx[0]]);
// Calculate azimuth indices and interpolation factor for the second
// elevation.
- CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
+ CalcAzIndices(Hrtf, evidx[1], azimuth, azidx, &mu[1]);
// Calculate the second set of linear HRIR indices for left and right
// channels.
- lidx[2] = evOffset[evidx[1]] + azidx[0];
- lidx[3] = evOffset[evidx[1]] + azidx[1];
- ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
- ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
+ lidx[2] = Hrtf->evOffset[evidx[1]] + azidx[0];
+ lidx[3] = Hrtf->evOffset[evidx[1]] + azidx[1];
+ ridx[2] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[0]) % Hrtf->azCount[evidx[1]]);
+ ridx[3] = Hrtf->evOffset[evidx[1]] + ((Hrtf->azCount[evidx[1]]-azidx[1]) % Hrtf->azCount[evidx[1]]);
// Calculate the stepping parameters.
delta = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
step = 1.0f / delta;
- /* Calculate 4 blending weights for 2D bilinear interpolation */
+ /* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
- // Calculate the normalized and attenuated target HRIR coefficients using
- // linear interpolation when there is enough gain to warrant it. Zero
- // the target coefficients if gain is too low. Then calculate the
- // coefficient stepping values using the target and previous running
- // coefficients.
+ /* Calculate the HRIR delays using linear interpolation. Then calculate
+ * the delay stepping values using the target and previous running
+ * delays.
+ */
+ left = (ALfloat)(delays[0] - (delayStep[0] * counter));
+ right = (ALfloat)(delays[1] - (delayStep[1] * counter));
+
+ delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
+ Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
+ 0.5f) << HRTFDELAY_BITS;
+ delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
+ Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
+ 0.5f) << HRTFDELAY_BITS;
+
+ delayStep[0] = fastf2i(step * (delays[0] - left));
+ delayStep[1] = fastf2i(step * (delays[1] - right));
+
+ /* Calculate the sample offsets for the HRIR indices. */
+ lidx[0] *= Hrtf->irSize;
+ lidx[1] *= Hrtf->irSize;
+ lidx[2] *= Hrtf->irSize;
+ lidx[3] *= Hrtf->irSize;
+ ridx[0] *= Hrtf->irSize;
+ ridx[1] *= Hrtf->irSize;
+ ridx[2] *= Hrtf->irSize;
+ ridx[3] *= Hrtf->irSize;
+
+ /* Calculate the normalized and attenuated target HRIR coefficients using
+ * linear interpolation when there is enough gain to warrant it. Zero
+ * the target coefficients if gain is too low. Then calculate the
+ * coefficient stepping values using the target and previous running
+ * coefficients.
+ */
if(gain > 0.0001f)
{
gain *= 1.0f/32767.0f;
@@ -247,14 +307,14 @@ ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat a
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
- coeffs[i][0] = (Hrtf->coeffs[lidx[0]][i]*blend[0] +
- Hrtf->coeffs[lidx[1]][i]*blend[1] +
- Hrtf->coeffs[lidx[2]][i]*blend[2] +
- Hrtf->coeffs[lidx[3]][i]*blend[3]) * gain;
- coeffs[i][1] = (Hrtf->coeffs[ridx[0]][i]*blend[0] +
- Hrtf->coeffs[ridx[1]][i]*blend[1] +
- Hrtf->coeffs[ridx[2]][i]*blend[2] +
- Hrtf->coeffs[ridx[3]][i]*blend[3]) * gain;
+ coeffs[i][0] = (Hrtf->coeffs[lidx[0]+i]*blend[0] +
+ Hrtf->coeffs[lidx[1]+i]*blend[1] +
+ Hrtf->coeffs[lidx[2]+i]*blend[2] +
+ Hrtf->coeffs[lidx[3]+i]*blend[3]) * gain;
+ coeffs[i][1] = (Hrtf->coeffs[ridx[0]+i]*blend[0] +
+ Hrtf->coeffs[ridx[1]+i]*blend[1] +
+ Hrtf->coeffs[ridx[2]+i]*blend[2] +
+ Hrtf->coeffs[ridx[3]+i]*blend[3]) * gain;
coeffStep[i][0] = step * (coeffs[i][0] - left);
coeffStep[i][1] = step * (coeffs[i][1] - right);
@@ -275,82 +335,63 @@ ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat a
}
}
- // Calculate the HRIR delays using linear interpolation. Then calculate
- // the delay stepping values using the target and previous running
- // delays.
- left = (ALfloat)(delays[0] - (delayStep[0] * counter));
- right = (ALfloat)(delays[1] - (delayStep[1] * counter));
-
- delays[0] = fastf2u(Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u(Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3] +
- 0.5f) << HRTFDELAY_BITS;
-
- delayStep[0] = fastf2i(step * (delays[0] - left));
- delayStep[1] = fastf2i(step * (delays[1] - right));
-
- // The stepping count is the number of samples necessary for the HRIR to
- // complete its transition. The mixer will only apply stepping for this
- // many samples.
+ /* The stepping count is the number of samples necessary for the HRIR to
+ * complete its transition. The mixer will only apply stepping for this
+ * many samples.
+ */
return fastf2u(delta);
}
-const struct Hrtf *GetHrtf(ALCdevice *device)
-{
- if(device->FmtChans == DevFmtStereo)
- {
- ALuint i;
- for(i = 0;i < NumLoadedHrtfs;i++)
- {
- if(device->Frequency == LoadedHrtfs[i].sampleRate)
- return &LoadedHrtfs[i];
- }
- if(device->Frequency == DefaultHrtf.sampleRate)
- return &DefaultHrtf;
- }
- ERR("Incompatible format: %s %uhz\n",
- DevFmtChannelsString(device->FmtChans), device->Frequency);
- return NULL;
-}
-
-void InitHrtf(void)
+static struct Hrtf *LoadHrtf(ALuint deviceRate)
{
- char *fnamelist=NULL, *next=NULL;
- const char *val;
+ const char *fnamelist = NULL;
+ char rateStr[16 + 1];
+ ALsizei rateLen;
- if(ConfigValueStr(NULL, "hrtf_tables", &val))
- next = fnamelist = strdup(val);
- while(next && *next)
+ rateLen = minu(snprintf(rateStr, 16, "%u", deviceRate), 16);
+ ConfigValueStr(NULL, "hrtf_tables", &fnamelist);
+ while(*fnamelist != '\0')
{
const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
- struct Hrtf newdata;
+ struct Hrtf *Hrtf = NULL;
ALboolean failed;
ALchar magic[9];
ALsizei i, j;
- char *fname;
+ ALuint rate = 0, irCount;
+ ALubyte irSize = 0, evCount = 0, *azCount, *delays;
+ ALushort *evOffset;
+ ALshort *coeffs;
+ char fname[256 + 1];
FILE *f;
- fname = next;
- next = strchr(fname, ',');
- if(next)
+ while(isspace(*fnamelist) || *fnamelist == ',')
+ fnamelist++;
+ i = 0;
+ while(*fnamelist != '\0' && *fnamelist != ',')
{
- while(next != fname)
+ if(i < 256)
{
- next--;
- if(!isspace(*next))
+ if(*fnamelist == '%' && *(fnamelist+1) == 'r')
+ {
+ strncpy(&fname[i], rateStr, minu(rateLen, 256-i));
+ i += minu(rateLen, 256-i);
+ fnamelist++;
+ }
+ else
{
- *(next++) = '\0';
- break;
+ fname[i] = *fnamelist;
+ i++;
}
}
- while(isspace(*next) || *next == ',')
- next++;
+ fnamelist++;
}
+ while(isspace(fname[i-1]))
+ i--;
+ fname[i] = '\0';
- if(!fname[0])
+ if(fname[0] == '\0')
continue;
+
TRACE("Loading %s\n", fname);
f = fopen(fname, "rb");
if(f == NULL)
@@ -360,6 +401,10 @@ void InitHrtf(void)
}
failed = AL_FALSE;
+ azCount = NULL;
+ evOffset = NULL;
+ coeffs = NULL;
+ delays = NULL;
if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker))
{
ERR("Failed to read magic marker\n");
@@ -374,40 +419,55 @@ void InitHrtf(void)
if(!failed)
{
- ALushort hrirCount, hrirSize;
- ALubyte evCount;
-
- newdata.sampleRate = fgetc(f);
- newdata.sampleRate |= fgetc(f)<<8;
- newdata.sampleRate |= fgetc(f)<<16;
- newdata.sampleRate |= fgetc(f)<<24;
+ rate = fgetc(f);
+ rate |= fgetc(f)<<8;
+ rate |= fgetc(f)<<16;
+ rate |= fgetc(f)<<24;
- hrirCount = fgetc(f);
- hrirCount |= fgetc(f)<<8;
-
- hrirSize = fgetc(f);
- hrirSize |= fgetc(f)<<8;
+ irSize = fgetc(f);
evCount = fgetc(f);
- if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT)
+ if(rate != deviceRate)
+ {
+ ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
+ rate, deviceRate);
+ failed = AL_TRUE;
+ }
+ if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
+ {
+ ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
+ irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
+ failed = AL_TRUE;
+ }
+ if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
+ {
+ ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
+ evCount, MIN_EV_COUNT, MAX_EV_COUNT);
+ failed = AL_TRUE;
+ }
+ }
+
+ if(!failed)
+ {
+ azCount = malloc(sizeof(azCount[0])*evCount);
+ evOffset = malloc(sizeof(evOffset[0])*evCount);
+ if(azCount == NULL || evOffset == NULL)
{
- ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n",
- hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT);
+ ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
- for(i = 0;i < ELEV_COUNT;i++)
+ for(i = 0;i < evCount;i++)
{
- ALushort offset;
- offset = fgetc(f);
- offset |= fgetc(f)<<8;
- if(offset != evOffset[i])
+ azCount[i] = fgetc(f);
+ if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
- ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]);
+ ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
+ i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
@@ -415,24 +475,41 @@ void InitHrtf(void)
if(!failed)
{
- for(i = 0;i < HRIR_COUNT;i++)
+ evOffset[0] = 0;
+ irCount = azCount[0];
+ for(i = 1;i < evCount;i++)
+ {
+ evOffset[i] = evOffset[i-1] + azCount[i-1];
+ irCount += azCount[i];
+ }
+
+ coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
+ delays = malloc(sizeof(delays[0])*irCount);
+ if(coeffs == NULL || delays == NULL)
+ {
+ ERR("Out of memory.\n");
+ failed = AL_TRUE;
+ }
+ }
+
+ if(!failed)
+ {
+ for(i = 0;i < (ALsizei)(irCount*irSize);i+=irSize)
{
- for(j = 0;j < HRIR_LENGTH;j++)
+ for(j = 0;j < (ALsizei)irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
- newdata.coeffs[i][j] = coeff;
+ coeffs[i+j] = coeff;
}
}
- for(i = 0;i < HRIR_COUNT;i++)
+ for(i = 0;i < (ALsizei)irCount;i++)
{
- ALubyte delay;
- delay = fgetc(f);
- newdata.delays[i] = delay;
- if(delay > maxDelay)
+ delays[i] = fgetc(f);
+ if(delays[i] > maxDelay)
{
- ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay);
+ ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
@@ -449,25 +526,81 @@ void InitHrtf(void)
if(!failed)
{
- void *temp = realloc(LoadedHrtfs, (NumLoadedHrtfs+1)*sizeof(LoadedHrtfs[0]));
- if(temp != NULL)
+ Hrtf = malloc(sizeof(struct Hrtf));
+ if(Hrtf == NULL)
{
- LoadedHrtfs = temp;
- TRACE("Loaded HRTF support for format: %s %uhz\n",
- DevFmtChannelsString(DevFmtStereo), newdata.sampleRate);
- LoadedHrtfs[NumLoadedHrtfs++] = newdata;
+ ERR("Out of memory.\n");
+ failed = AL_TRUE;
}
}
+
+ if(!failed)
+ {
+ Hrtf->sampleRate = rate;
+ Hrtf->irSize = irSize;
+ Hrtf->evCount = evCount;
+ Hrtf->azCount = azCount;
+ Hrtf->evOffset = evOffset;
+ Hrtf->coeffs = coeffs;
+ Hrtf->delays = delays;
+ Hrtf->next = LoadedHrtfs;
+ LoadedHrtfs = Hrtf;
+ TRACE("Loaded HRTF support for format: %s %uhz\n",
+ DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate);
+ return Hrtf;
+ }
else
+ {
+ free(azCount);
+ free(evOffset);
+ free(coeffs);
+ free(delays);
ERR("Failed to load %s\n", fname);
+ }
+ }
+ return NULL;
+}
+
+const struct Hrtf *GetHrtf(ALCdevice *device)
+{
+ if(device->FmtChans == DevFmtStereo)
+ {
+ struct Hrtf *Hrtf = LoadedHrtfs;
+ while(Hrtf != NULL)
+ {
+ if(device->Frequency == Hrtf->sampleRate)
+ return Hrtf;
+ Hrtf = Hrtf->next;
+ }
+
+ Hrtf = LoadHrtf(device->Frequency);
+ if(Hrtf != NULL)
+ return Hrtf;
+
+ if(device->Frequency == DefaultHrtf.sampleRate)
+ return &DefaultHrtf;
+ }
+ ERR("Incompatible format: %s %uhz\n",
+ DevFmtChannelsString(device->FmtChans), device->Frequency);
+ return NULL;
+}
+
+void FreeHrtfs(void)
+{
+ struct Hrtf *Hrtf = NULL;
+
+ while((Hrtf=LoadedHrtfs) != NULL)
+ {
+ LoadedHrtfs = Hrtf->next;
+ free((void*)Hrtf->azCount);
+ free((void*)Hrtf->evOffset);
+ free((void*)Hrtf->coeffs);
+ free((void*)Hrtf->delays);
+ free(Hrtf);
}
- free(fnamelist);
- fnamelist = NULL;
}
-void FreeHrtf(void)
+ALuint GetHrtfIrSize (const struct Hrtf *Hrtf)
{
- NumLoadedHrtfs = 0;
- free(LoadedHrtfs);
- LoadedHrtfs = NULL;
+ return Hrtf->irSize;
}