aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/hrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/hrtf.c')
-rw-r--r--Alc/hrtf.c134
1 files changed, 0 insertions, 134 deletions
diff --git a/Alc/hrtf.c b/Alc/hrtf.c
index 43a111bb..33e58dfb 100644
--- a/Alc/hrtf.c
+++ b/Alc/hrtf.c
@@ -181,140 +181,6 @@ void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azi
}
}
-/* Calculates the moving HRIR target coefficients, target delays, and
- * stepping values for the given polar elevation and azimuth in radians.
- * Linear interpolation is used to increase the apparent resolution of the
- * HRIR data set. The coefficients are also normalized and attenuated by the
- * specified gain. Stepping resolution and count is determined using the
- * given delta factor between 0.0 and 1.0.
- */
-ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
-{
- ALuint evidx[2], lidx[4], ridx[4];
- ALfloat mu[3], blend[4];
- ALfloat left, right;
- ALfloat steps;
- ALuint i;
-
- /* Claculate elevation indices and interpolation factor. */
- CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
-
- for(i = 0;i < 2;i++)
- {
- ALuint azcount = Hrtf->azCount[evidx[i]];
- ALuint evoffset = Hrtf->evOffset[evidx[i]];
- ALuint azidx[2];
-
- /* Calculate azimuth indices and interpolation factor for this elevation. */
- CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
-
- /* Calculate a set of linear HRIR indices for left and right channels. */
- lidx[i*2 + 0] = evoffset + azidx[0];
- lidx[i*2 + 1] = evoffset + azidx[1];
- ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
- ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
- }
-
- // Calculate the stepping parameters.
- steps = maxf(floorf(delta*Hrtf->sampleRate + 0.5f), 1.0f);
- delta = 1.0f / steps;
-
- /* Calculate 4 blending weights for 2D bilinear interpolation. */
- blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
- blend[1] = ( mu[0]) * (1.0f-mu[2]);
- blend[2] = (1.0f-mu[1]) * ( mu[2]);
- blend[3] = ( mu[1]) * ( mu[2]);
-
- /* Calculate the HRIR delays using linear interpolation. Then calculate
- * the delay stepping values using the target and previous running
- * delays.
- */
- left = (ALfloat)(delays[0] - (delayStep[0] * counter));
- right = (ALfloat)(delays[1] - (delayStep[1] * counter));
-
- delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
- Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
- delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
- Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
- dirfact + 0.5f) << HRTFDELAY_BITS;
-
- delayStep[0] = fastf2i(delta * (delays[0] - left));
- delayStep[1] = fastf2i(delta * (delays[1] - right));
-
- /* Calculate the sample offsets for the HRIR indices. */
- lidx[0] *= Hrtf->irSize;
- lidx[1] *= Hrtf->irSize;
- lidx[2] *= Hrtf->irSize;
- lidx[3] *= Hrtf->irSize;
- ridx[0] *= Hrtf->irSize;
- ridx[1] *= Hrtf->irSize;
- ridx[2] *= Hrtf->irSize;
- ridx[3] *= Hrtf->irSize;
-
- /* Calculate the normalized and attenuated target HRIR coefficients using
- * linear interpolation when there is enough gain to warrant it. Zero
- * the target coefficients if gain is too low. Then calculate the
- * coefficient stepping values using the target and previous running
- * coefficients.
- */
- if(gain > 0.0001f)
- {
- ALfloat c;
-
- i = 0;
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
- c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
-
- coeffStep[i][0] = delta * (coeffs[i][0] - left);
- coeffStep[i][1] = delta * (coeffs[i][1] - right);
-
- for(i = 1;i < Hrtf->irSize;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
- Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
- coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
- c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
- Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
- coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
-
- coeffStep[i][0] = delta * (coeffs[i][0] - left);
- coeffStep[i][1] = delta * (coeffs[i][1] - right);
- }
- }
- else
- {
- for(i = 0;i < Hrtf->irSize;i++)
- {
- left = coeffs[i][0] - (coeffStep[i][0] * counter);
- right = coeffs[i][1] - (coeffStep[i][1] * counter);
-
- coeffs[i][0] = 0.0f;
- coeffs[i][1] = 0.0f;
-
- coeffStep[i][0] = delta * -left;
- coeffStep[i][1] = delta * -right;
- }
- }
-
- /* The stepping count is the number of samples necessary for the HRIR to
- * complete its transition. The mixer will only apply stepping for this
- * many samples.
- */
- return fastf2u(steps);
-}
-
-
/* Calculates HRTF coefficients for B-Format channels (only up to first-order).
* Note that these will decode a B-Format output mix, which uses FuMa ordering
* and scaling, not N3D!