aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/mastering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Alc/mastering.cpp')
-rw-r--r--Alc/mastering.cpp543
1 files changed, 543 insertions, 0 deletions
diff --git a/Alc/mastering.cpp b/Alc/mastering.cpp
new file mode 100644
index 00000000..001aada1
--- /dev/null
+++ b/Alc/mastering.cpp
@@ -0,0 +1,543 @@
+#include "config.h"
+
+#include <math.h>
+
+#include "mastering.h"
+#include "alu.h"
+#include "almalloc.h"
+#include "static_assert.h"
+#include "math_defs.h"
+
+
+/* Early MSVC lacks round/roundf */
+#if defined(_MSC_VER) && _MSC_VER < 1800
+static double round(double val)
+{
+ if(val < 0.0)
+ return ceil(val-0.5);
+ return floor(val+0.5);
+}
+#define roundf(f) ((float)round((float)(f)))
+#endif
+
+
+/* These structures assume BUFFERSIZE is a power of 2. */
+static_assert((BUFFERSIZE & (BUFFERSIZE-1)) == 0, "BUFFERSIZE is not a power of 2");
+
+typedef struct SlidingHold {
+ ALfloat Values[BUFFERSIZE];
+ ALsizei Expiries[BUFFERSIZE];
+ ALsizei LowerIndex;
+ ALsizei UpperIndex;
+ ALsizei Length;
+} SlidingHold;
+
+/* General topology and basic automation was based on the following paper:
+ *
+ * D. Giannoulis, M. Massberg and J. D. Reiss,
+ * "Parameter Automation in a Dynamic Range Compressor,"
+ * Journal of the Audio Engineering Society, v61 (10), Oct. 2013
+ *
+ * Available (along with supplemental reading) at:
+ *
+ * http://c4dm.eecs.qmul.ac.uk/audioengineering/compressors/
+ */
+typedef struct Compressor {
+ ALsizei NumChans;
+ ALuint SampleRate;
+
+ struct {
+ ALuint Knee : 1;
+ ALuint Attack : 1;
+ ALuint Release : 1;
+ ALuint PostGain : 1;
+ ALuint Declip : 1;
+ } Auto;
+
+ ALsizei LookAhead;
+
+ ALfloat PreGain;
+ ALfloat PostGain;
+
+ ALfloat Threshold;
+ ALfloat Slope;
+ ALfloat Knee;
+
+ ALfloat Attack;
+ ALfloat Release;
+
+ alignas(16) ALfloat SideChain[2*BUFFERSIZE];
+ alignas(16) ALfloat CrestFactor[BUFFERSIZE];
+
+ SlidingHold *Hold;
+ ALfloat (*Delay)[BUFFERSIZE];
+ ALsizei DelayIndex;
+
+ ALfloat CrestCoeff;
+ ALfloat GainEstimate;
+ ALfloat AdaptCoeff;
+
+ ALfloat LastPeakSq;
+ ALfloat LastRmsSq;
+ ALfloat LastRelease;
+ ALfloat LastAttack;
+ ALfloat LastGainDev;
+} Compressor;
+
+
+/* This sliding hold follows the input level with an instant attack and a
+ * fixed duration hold before an instant release to the next highest level.
+ * It is a sliding window maximum (descending maxima) implementation based on
+ * Richard Harter's ascending minima algorithm available at:
+ *
+ * http://www.richardhartersworld.com/cri/2001/slidingmin.html
+ */
+static ALfloat UpdateSlidingHold(SlidingHold *Hold, const ALsizei i, const ALfloat in)
+{
+ const ALsizei mask = BUFFERSIZE - 1;
+ const ALsizei length = Hold->Length;
+ ALfloat *RESTRICT values = Hold->Values;
+ ALsizei *RESTRICT expiries = Hold->Expiries;
+ ALsizei lowerIndex = Hold->LowerIndex;
+ ALsizei upperIndex = Hold->UpperIndex;
+
+ if(i >= expiries[upperIndex])
+ upperIndex = (upperIndex + 1) & mask;
+
+ if(in >= values[upperIndex])
+ {
+ values[upperIndex] = in;
+ expiries[upperIndex] = i + length;
+ lowerIndex = upperIndex;
+ }
+ else
+ {
+ do {
+ do {
+ if(!(in >= values[lowerIndex]))
+ goto found_place;
+ } while(lowerIndex--);
+ lowerIndex = mask;
+ } while(1);
+ found_place:
+
+ lowerIndex = (lowerIndex + 1) & mask;
+ values[lowerIndex] = in;
+ expiries[lowerIndex] = i + length;
+ }
+
+ Hold->LowerIndex = lowerIndex;
+ Hold->UpperIndex = upperIndex;
+
+ return values[upperIndex];
+}
+
+static void ShiftSlidingHold(SlidingHold *Hold, const ALsizei n)
+{
+ const ALsizei lowerIndex = Hold->LowerIndex;
+ ALsizei *RESTRICT expiries = Hold->Expiries;
+ ALsizei i = Hold->UpperIndex;
+
+ if(lowerIndex < i)
+ {
+ for(;i < BUFFERSIZE;i++)
+ expiries[i] -= n;
+ i = 0;
+ }
+ for(;i < lowerIndex;i++)
+ expiries[i] -= n;
+
+ expiries[i] -= n;
+}
+
+/* Multichannel compression is linked via the absolute maximum of all
+ * channels.
+ */
+static void LinkChannels(Compressor *Comp, const ALsizei SamplesToDo, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE])
+{
+ const ALsizei index = Comp->LookAhead;
+ const ALsizei numChans = Comp->NumChans;
+ ALfloat *RESTRICT sideChain = Comp->SideChain;
+ ALsizei c, i;
+
+ ASSUME(SamplesToDo > 0);
+ ASSUME(numChans > 0);
+
+ for(i = 0;i < SamplesToDo;i++)
+ sideChain[index + i] = 0.0f;
+
+ for(c = 0;c < numChans;c++)
+ {
+ ALsizei offset = index;
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ sideChain[offset] = maxf(sideChain[offset], fabsf(OutBuffer[c][i]));
+ ++offset;
+ }
+ }
+}
+
+/* This calculates the squared crest factor of the control signal for the
+ * basic automation of the attack/release times. As suggested by the paper,
+ * it uses an instantaneous squared peak detector and a squared RMS detector
+ * both with 200ms release times.
+ */
+static void CrestDetector(Compressor *Comp, const ALsizei SamplesToDo)
+{
+ const ALfloat a_crest = Comp->CrestCoeff;
+ const ALsizei index = Comp->LookAhead;
+ const ALfloat *RESTRICT sideChain = Comp->SideChain;
+ ALfloat *RESTRICT crestFactor = Comp->CrestFactor;
+ ALfloat y2_peak = Comp->LastPeakSq;
+ ALfloat y2_rms = Comp->LastRmsSq;
+ ALsizei i;
+
+ ASSUME(SamplesToDo > 0);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat x_abs = sideChain[index + i];
+ ALfloat x2 = maxf(0.000001f, x_abs * x_abs);
+
+ y2_peak = maxf(x2, lerp(x2, y2_peak, a_crest));
+ y2_rms = lerp(x2, y2_rms, a_crest);
+ crestFactor[i] = y2_peak / y2_rms;
+ }
+
+ Comp->LastPeakSq = y2_peak;
+ Comp->LastRmsSq = y2_rms;
+}
+
+/* The side-chain starts with a simple peak detector (based on the absolute
+ * value of the incoming signal) and performs most of its operations in the
+ * log domain.
+ */
+static void PeakDetector(Compressor *Comp, const ALsizei SamplesToDo)
+{
+ const ALsizei index = Comp->LookAhead;
+ ALfloat *RESTRICT sideChain = Comp->SideChain;
+ ALsizei i;
+
+ ASSUME(SamplesToDo > 0);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ const ALuint offset = index + i;
+ const ALfloat x_abs = sideChain[offset];
+
+ sideChain[offset] = logf(maxf(0.000001f, x_abs));
+ }
+}
+
+/* An optional hold can be used to extend the peak detector so it can more
+ * solidly detect fast transients. This is best used when operating as a
+ * limiter.
+ */
+static void PeakHoldDetector(Compressor *Comp, const ALsizei SamplesToDo)
+{
+ const ALsizei index = Comp->LookAhead;
+ ALfloat *RESTRICT sideChain = Comp->SideChain;
+ SlidingHold *hold = Comp->Hold;
+ ALsizei i;
+
+ ASSUME(SamplesToDo > 0);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ const ALsizei offset = index + i;
+ const ALfloat x_abs = sideChain[offset];
+ const ALfloat x_G = logf(maxf(0.000001f, x_abs));
+
+ sideChain[offset] = UpdateSlidingHold(hold, i, x_G);
+ }
+
+ ShiftSlidingHold(hold, SamplesToDo);
+}
+
+/* This is the heart of the feed-forward compressor. It operates in the log
+ * domain (to better match human hearing) and can apply some basic automation
+ * to knee width, attack/release times, make-up/post gain, and clipping
+ * reduction.
+ */
+static void GainCompressor(Compressor *Comp, const ALsizei SamplesToDo)
+{
+ const bool autoKnee = Comp->Auto.Knee;
+ const bool autoAttack = Comp->Auto.Attack;
+ const bool autoRelease = Comp->Auto.Release;
+ const bool autoPostGain = Comp->Auto.PostGain;
+ const bool autoDeclip = Comp->Auto.Declip;
+ const ALsizei lookAhead = Comp->LookAhead;
+ const ALfloat threshold = Comp->Threshold;
+ const ALfloat slope = Comp->Slope;
+ const ALfloat attack = Comp->Attack;
+ const ALfloat release = Comp->Release;
+ const ALfloat c_est = Comp->GainEstimate;
+ const ALfloat a_adp = Comp->AdaptCoeff;
+ const ALfloat *RESTRICT crestFactor = Comp->CrestFactor;
+ ALfloat *RESTRICT sideChain = Comp->SideChain;
+ ALfloat postGain = Comp->PostGain;
+ ALfloat knee = Comp->Knee;
+ ALfloat t_att = attack;
+ ALfloat t_rel = release - attack;
+ ALfloat a_att = expf(-1.0f / t_att);
+ ALfloat a_rel = expf(-1.0f / t_rel);
+ ALfloat y_1 = Comp->LastRelease;
+ ALfloat y_L = Comp->LastAttack;
+ ALfloat c_dev = Comp->LastGainDev;
+ ALsizei i;
+
+ ASSUME(SamplesToDo > 0);
+
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ const ALfloat y2_crest = crestFactor[i];
+ const ALfloat x_G = sideChain[lookAhead + i];
+ const ALfloat x_over = x_G - threshold;
+ ALfloat knee_h;
+ ALfloat y_G;
+ ALfloat x_L;
+
+ if(autoKnee)
+ knee = maxf(0.0f, 2.5f * (c_dev + c_est));
+ knee_h = 0.5f * knee;
+
+ /* This is the gain computer. It applies a static compression curve
+ * to the control signal.
+ */
+ if(x_over <= -knee_h)
+ y_G = 0.0f;
+ else if(fabsf(x_over) < knee_h)
+ y_G = (x_over + knee_h) * (x_over + knee_h) / (2.0f * knee);
+ else
+ y_G = x_over;
+
+ x_L = -slope * y_G;
+
+ if(autoAttack)
+ {
+ t_att = 2.0f * attack / y2_crest;
+ a_att = expf(-1.0f / t_att);
+ }
+
+ if(autoRelease)
+ {
+ t_rel = 2.0f * release / y2_crest - t_att;
+ a_rel = expf(-1.0f / t_rel);
+ }
+
+ /* Gain smoothing (ballistics) is done via a smooth decoupled peak
+ * detector. The attack time is subtracted from the release time
+ * above to compensate for the chained operating mode.
+ */
+ y_1 = maxf(x_L, lerp(x_L, y_1, a_rel));
+ y_L = lerp(y_1, y_L, a_att);
+
+ /* Knee width and make-up gain automation make use of a smoothed
+ * measurement of deviation between the control signal and estimate.
+ * The estimate is also used to bias the measurement to hot-start its
+ * average.
+ */
+ c_dev = lerp(-y_L - c_est, c_dev, a_adp);
+
+ if(autoPostGain)
+ {
+ /* Clipping reduction is only viable when make-up gain is being
+ * automated. It modifies the deviation to further attenuate the
+ * control signal when clipping is detected. The adaptation
+ * time is sufficiently long enough to suppress further clipping
+ * at the same output level.
+ */
+ if(autoDeclip)
+ c_dev = maxf(c_dev, sideChain[i] - y_L - threshold - c_est);
+
+ postGain = -(c_dev + c_est);
+ }
+
+ sideChain[i] = expf(postGain - y_L);
+ }
+
+ Comp->LastRelease = y_1;
+ Comp->LastAttack = y_L;
+ Comp->LastGainDev = c_dev;
+}
+
+/* Combined with the hold time, a look-ahead delay can improve handling of
+ * fast transients by allowing the envelope time to converge prior to
+ * reaching the offending impulse. This is best used when operating as a
+ * limiter.
+ */
+static void SignalDelay(Compressor *Comp, const ALsizei SamplesToDo, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE])
+{
+ const ALsizei mask = BUFFERSIZE - 1;
+ const ALsizei numChans = Comp->NumChans;
+ const ALsizei indexIn = Comp->DelayIndex;
+ const ALsizei indexOut = Comp->DelayIndex - Comp->LookAhead;
+ ALfloat (*RESTRICT delay)[BUFFERSIZE] = Comp->Delay;
+ ALsizei c, i;
+
+ ASSUME(SamplesToDo > 0);
+ ASSUME(numChans > 0);
+
+ for(c = 0;c < numChans;c++)
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ {
+ ALfloat sig = OutBuffer[c][i];
+
+ OutBuffer[c][i] = delay[c][(indexOut + i) & mask];
+ delay[c][(indexIn + i) & mask] = sig;
+ }
+ }
+
+ Comp->DelayIndex = (indexIn + SamplesToDo) & mask;
+}
+
+/* The compressor is initialized with the following settings:
+ *
+ * NumChans - Number of channels to process.
+ * SampleRate - Sample rate to process.
+ * AutoKnee - Whether to automate the knee width parameter.
+ * AutoAttack - Whether to automate the attack time parameter.
+ * AutoRelease - Whether to automate the release time parameter.
+ * AutoPostGain - Whether to automate the make-up (post) gain parameter.
+ * AutoDeclip - Whether to automate clipping reduction. Ignored when
+ * not automating make-up gain.
+ * LookAheadTime - Look-ahead time (in seconds).
+ * HoldTime - Peak hold-time (in seconds).
+ * PreGainDb - Gain applied before detection (in dB).
+ * PostGainDb - Make-up gain applied after compression (in dB).
+ * ThresholdDb - Triggering threshold (in dB).
+ * Ratio - Compression ratio (x:1). Set to INFINITY for true
+ * limiting. Ignored when automating knee width.
+ * KneeDb - Knee width (in dB). Ignored when automating knee
+ * width.
+ * AttackTimeMin - Attack time (in seconds). Acts as a maximum when
+ * automating attack time.
+ * ReleaseTimeMin - Release time (in seconds). Acts as a maximum when
+ * automating release time.
+ */
+Compressor* CompressorInit(const ALsizei NumChans, const ALuint SampleRate,
+ const ALboolean AutoKnee, const ALboolean AutoAttack,
+ const ALboolean AutoRelease, const ALboolean AutoPostGain,
+ const ALboolean AutoDeclip, const ALfloat LookAheadTime,
+ const ALfloat HoldTime, const ALfloat PreGainDb,
+ const ALfloat PostGainDb, const ALfloat ThresholdDb,
+ const ALfloat Ratio, const ALfloat KneeDb,
+ const ALfloat AttackTime, const ALfloat ReleaseTime)
+{
+ Compressor *Comp;
+ ALsizei lookAhead;
+ ALsizei hold;
+ size_t size;
+
+ lookAhead = (ALsizei)clampf(roundf(LookAheadTime*SampleRate), 0.0f, BUFFERSIZE-1);
+ hold = (ALsizei)clampf(roundf(HoldTime*SampleRate), 0.0f, BUFFERSIZE-1);
+ /* The sliding hold implementation doesn't handle a length of 1. A 1-sample
+ * hold is useless anyway, it would only ever give back what was just given
+ * to it.
+ */
+ if(hold == 1)
+ hold = 0;
+
+ size = sizeof(*Comp);
+ if(lookAhead > 0)
+ {
+ size += sizeof(*Comp->Delay) * NumChans;
+ if(hold > 0)
+ size += sizeof(*Comp->Hold);
+ }
+
+ Comp = static_cast<Compressor*>(al_calloc(16, size));
+ Comp->NumChans = NumChans;
+ Comp->SampleRate = SampleRate;
+ Comp->Auto.Knee = AutoKnee;
+ Comp->Auto.Attack = AutoAttack;
+ Comp->Auto.Release = AutoRelease;
+ Comp->Auto.PostGain = AutoPostGain;
+ Comp->Auto.Declip = AutoPostGain && AutoDeclip;
+ Comp->LookAhead = lookAhead;
+ Comp->PreGain = powf(10.0f, PreGainDb / 20.0f);
+ Comp->PostGain = PostGainDb * logf(10.0f) / 20.0f;
+ Comp->Threshold = ThresholdDb * logf(10.0f) / 20.0f;
+ Comp->Slope = 1.0f / maxf(1.0f, Ratio) - 1.0f;
+ Comp->Knee = maxf(0.0f, KneeDb * logf(10.0f) / 20.0f);
+ Comp->Attack = maxf(1.0f, AttackTime * SampleRate);
+ Comp->Release = maxf(1.0f, ReleaseTime * SampleRate);
+
+ /* Knee width automation actually treats the compressor as a limiter. By
+ * varying the knee width, it can effectively be seen as applying
+ * compression over a wide range of ratios.
+ */
+ if(AutoKnee)
+ Comp->Slope = -1.0f;
+
+ if(lookAhead > 0)
+ {
+ if(hold > 0)
+ {
+ Comp->Hold = (SlidingHold*)(Comp + 1);
+ Comp->Hold->Values[0] = -HUGE_VALF;
+ Comp->Hold->Expiries[0] = hold;
+ Comp->Hold->Length = hold;
+ Comp->Delay = (ALfloat(*)[BUFFERSIZE])(Comp->Hold + 1);
+ }
+ else
+ {
+ Comp->Delay = (ALfloat(*)[BUFFERSIZE])(Comp + 1);
+ }
+ }
+
+ Comp->CrestCoeff = expf(-1.0f / (0.200f * SampleRate)); // 200ms
+ Comp->GainEstimate = Comp->Threshold * -0.5f * Comp->Slope;
+ Comp->AdaptCoeff = expf(-1.0f / (2.0f * SampleRate)); // 2s
+
+ return Comp;
+}
+
+void ApplyCompression(Compressor *Comp, const ALsizei SamplesToDo, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE])
+{
+ const ALsizei numChans = Comp->NumChans;
+ const ALfloat preGain = Comp->PreGain;
+ ALfloat *RESTRICT sideChain;
+ ALsizei c, i;
+
+ ASSUME(SamplesToDo > 0);
+ ASSUME(numChans > 0);
+
+ if(preGain != 1.0f)
+ {
+ for(c = 0;c < numChans;c++)
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ OutBuffer[c][i] *= preGain;
+ }
+ }
+
+ LinkChannels(Comp, SamplesToDo, OutBuffer);
+
+ if(Comp->Auto.Attack || Comp->Auto.Release)
+ CrestDetector(Comp, SamplesToDo);
+
+ if(Comp->Hold)
+ PeakHoldDetector(Comp, SamplesToDo);
+ else
+ PeakDetector(Comp, SamplesToDo);
+
+ GainCompressor(Comp, SamplesToDo);
+
+ if(Comp->Delay)
+ SignalDelay(Comp, SamplesToDo, OutBuffer);
+
+ sideChain = Comp->SideChain;
+ for(c = 0;c < numChans;c++)
+ {
+ for(i = 0;i < SamplesToDo;i++)
+ OutBuffer[c][i] *= sideChain[i];
+ }
+
+ memmove(sideChain, sideChain+SamplesToDo, Comp->LookAhead*sizeof(ALfloat));
+}
+
+
+ALsizei GetCompressorLookAhead(const Compressor *Comp)
+{ return Comp->LookAhead; }