diff options
Diffstat (limited to 'Alc')
-rw-r--r-- | Alc/effects/pshifter.c | 972 |
1 files changed, 478 insertions, 494 deletions
diff --git a/Alc/effects/pshifter.c b/Alc/effects/pshifter.c index 2bf911f8..a9921028 100644 --- a/Alc/effects/pshifter.c +++ b/Alc/effects/pshifter.c @@ -1,494 +1,478 @@ -/**
- * OpenAL cross platform audio library
- * Copyright (C) 2018 by Raul Herraiz.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
-#include "config.h"
-
-#include <math.h>
-#include <stdlib.h>
-
-#include "alMain.h"
-#include "alFilter.h"
-#include "alAuxEffectSlot.h"
-#include "alError.h"
-#include "alu.h"
-
-#define MAX_SIZE 2048
-
-typedef struct ALcomplex{
-
- ALfloat Real;
- ALfloat Imag;
-
-}ALcomplex;
-
-typedef struct ALphasor{
-
- ALfloat Amplitude;
- ALfloat Phase;
-
-}ALphasor;
-
-typedef struct ALFrequencyDomain{
-
- ALfloat Amplitude;
- ALfloat Frequency;
-
-}ALfrequencyDomain;
-
-typedef struct ALpshifterState {
- DERIVE_FROM_TYPE(ALeffectState);
-
- /* Effect gains for each channel */
- ALfloat Gain[MAX_OUTPUT_CHANNELS];
-
- /* Effect parameters */
- ALsizei count;
- ALsizei STFT_size;
- ALsizei step;
- ALsizei FIFOLatency;
- ALsizei oversamp;
- ALfloat PitchShift;
- ALfloat Frequency;
-
- /*Effects buffers*/
- ALfloat InFIFO[MAX_SIZE];
- ALfloat OutFIFO[MAX_SIZE];
- ALfloat LastPhase[(MAX_SIZE>>1) +1];
- ALfloat SumPhase[(MAX_SIZE>>1) +1];
- ALfloat OutputAccum[MAX_SIZE<<1];
- ALfloat window[MAX_SIZE];
-
- ALcomplex FFTbuffer[MAX_SIZE];
-
- ALfrequencyDomain Analysis_buffer[MAX_SIZE];
- ALfrequencyDomain Syntesis_buffer[MAX_SIZE];
-
-
-} ALpshifterState;
-
-static inline ALphasor rect2polar( ALcomplex number );
-static inline ALcomplex polar2rect( ALphasor number );
-static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALint Sign);
-
-static ALvoid ALpshifterState_Destruct(ALpshifterState *state);
-static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device);
-static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
-static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
-DECLARE_DEFAULT_ALLOCATORS(ALpshifterState)
-
-DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState);
-
-static void ALpshifterState_Construct(ALpshifterState *state)
-{
- ALsizei i;
-
- ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
- SET_VTABLE2(ALpshifterState, ALeffectState, state);
-
- /*Initializing parameters and set to zero the buffers */
- state->STFT_size = MAX_SIZE>>1;
- state->oversamp = 1<<2;
-
- state->step = state->STFT_size / state->oversamp ;
- state->FIFOLatency = state->step * ( state->oversamp-1 );
- state->count = state->FIFOLatency;
-
- memset(state->InFIFO, 0, MAX_SIZE*sizeof(ALfloat));
- memset(state->OutFIFO, 0, MAX_SIZE*sizeof(ALfloat));
- memset(state->FFTbuffer, 0, MAX_SIZE*sizeof(ALcomplex));
- memset(state->LastPhase, 0, ((MAX_SIZE>>1) +1)*sizeof(ALfloat));
- memset(state->SumPhase, 0, ((MAX_SIZE>>1) +1)*sizeof(ALfloat));
- memset(state->OutputAccum, 0, (MAX_SIZE<<1)*sizeof(ALfloat));
- memset(state->Analysis_buffer, 0, MAX_SIZE*sizeof(ALfrequencyDomain));
-
- /* Create lockup table of the Hann window for the desired size, i.e. STFT_size */
- for ( i = 0; i < state->STFT_size>>1 ; i++ )
- {
- state->window[i] = state->window[state->STFT_size-(i+1)] \
- = 0.5f * ( 1 - cosf(F_TAU*(ALfloat)i/(ALfloat)(state->STFT_size-1)));
- }
-}
-
-static ALvoid ALpshifterState_Destruct(ALpshifterState *state)
-{
- ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
-}
-
-static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *UNUSED(state), ALCdevice *UNUSED(device))
-{
- return AL_TRUE;
-}
-
-static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
-{
- const ALCdevice *device = context->Device;
- ALfloat coeffs[MAX_AMBI_COEFFS];
- const ALfloat adjust = 0.707945784384f; /*-3dB adjust*/
-
- state->Frequency = (ALfloat)device->Frequency;
- state->PitchShift = powf(2.0f,((ALfloat)props->Pshifter.CoarseTune + props->Pshifter.FineTune/100.0f)/12.0f);
-
- CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs);
- ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain * adjust, state->Gain);
-}
-
-static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
-{
- /*Pitch shifter engine based on the work of Stephan Bernsee.
- * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ **/
-
- ALsizei i, j, k, STFT_half_size;
- ALfloat freq_bin, expected, tmp;
- ALfloat bufferOut[BUFFERSIZE];
- ALphasor component;
-
-
- STFT_half_size = state->STFT_size >> 1;
- freq_bin = state->Frequency / (ALfloat)state->STFT_size;
- expected = F_TAU / (ALfloat)state->oversamp;
-
-
- for (i = 0; i < SamplesToDo; i++)
- {
- /* Fill FIFO buffer with samples data */
- state->InFIFO[state->count] = SamplesIn[0][i];
- bufferOut[i] = state->OutFIFO[state->count - state->FIFOLatency];
-
- state->count++;
-
- /* Check whether FIFO buffer is filled */
- if ( state->count >= state->STFT_size )
- {
- state->count = state->FIFOLatency;
-
- /* Real signal windowing and store in FFTbuffer */
- for ( k = 0; k < state->STFT_size; k++ )
- {
- state->FFTbuffer[k].Real = state->InFIFO[k] * state->window[k];
- state->FFTbuffer[k].Imag = 0.0f;
- }
-
- /* ANALYSIS */
- /* Apply FFT to FFTbuffer data */
- FFT( state->FFTbuffer, state->STFT_size, -1 );
-
- /* Analyze the obtained data. Since the real FFT is symmetric, only STFT_half_size+1 samples are needed */
- for ( k = 0; k <= STFT_half_size; k++ )
- {
- /* Compute amplitude and phase */
- component = rect2polar( state->FFTbuffer[k] );
-
- /* Compute phase difference and subtract expected phase difference */
- tmp = ( component.Phase - state->LastPhase[k] ) - (ALfloat)k*expected;
-
- /* Map delta phase into +/- Pi interval */
- tmp -= F_PI*(ALfloat)( fastf2i(tmp/F_PI) + fastf2i(tmp/F_PI) % 2 );
-
- /* Get deviation from bin frequency from the +/- Pi interval */
- tmp /= expected;
-
- /* Compute the k-th partials' true frequency, twice the amplitude for maintain the gain
- (because half of bins are used) and store amplitude and true frequency in analysis buffer */
- state->Analysis_buffer[k].Amplitude = 2.0f * component.Amplitude;
- state->Analysis_buffer[k].Frequency = ((ALfloat)k + tmp) * freq_bin;
-
- /* Store actual phase[k] for the calculations in the next frame*/
- state->LastPhase[k] = component.Phase;
-
- }
-
- /* PROCESSING */
- /* pitch shifting */
- memset(state->Syntesis_buffer, 0, state->STFT_size*sizeof(ALfrequencyDomain));
-
- for (k = 0; k <= STFT_half_size; k++)
- {
- j = fastf2i( (ALfloat)k*state->PitchShift );
-
- if ( j <= STFT_half_size )
- {
- state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude;
- state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency * state->PitchShift;
- }
- }
-
- /* SYNTHESIS */
- /* Synthesis the processing data */
- for ( k = 0; k <= STFT_half_size; k++ )
- {
- /* Compute bin deviation from scaled freq */
- tmp = state->Syntesis_buffer[k].Frequency /freq_bin - (ALfloat)k;
-
- /* Calculate actual delta phase and accumulate it to get bin phase */
- state->SumPhase[k] += ((ALfloat)k + tmp) * expected;
-
- component.Amplitude = state->Syntesis_buffer[k].Amplitude;
- component.Phase = state->SumPhase[k];
-
- /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
- state->FFTbuffer[k] = polar2rect( component );
- }
-
- /* zero negative frequencies for recontruct a real signal */
- memset( &state->FFTbuffer[STFT_half_size+1], 0, (STFT_half_size-1) * sizeof(ALcomplex) );
-
- /* Apply iFFT to buffer data */
- FFT( state->FFTbuffer, state->STFT_size, 1 );
-
- /* Windowing and add to output */
- for( k=0; k < state->STFT_size; k++ )
- {
- state->OutputAccum[k] += 2.0f * state->window[k]*state->FFTbuffer[k].Real / (STFT_half_size * state->oversamp);
- }
-
- /* Shift accumulator, input & output FIFO */
- memmove(state->OutFIFO , state->OutputAccum , state->step * sizeof(ALfloat));
- memmove(state->OutputAccum, state->OutputAccum + state->step, state->STFT_size * sizeof(ALfloat));
- memmove(state->InFIFO , state->InFIFO + state->step, state->FIFOLatency * sizeof(ALfloat));
-
- }
- }
-
- /* Now, mix the processed sound data to the output*/
-
- for (j = 0; j < NumChannels; j++ )
- {
- ALfloat gain = state->Gain[j];
-
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
-
- for(i = 0;i < SamplesToDo;i++)
- SamplesOut[j][i] += gain * bufferOut[i];
-
- }
-
-
-}
-
-typedef struct PshifterStateFactory {
- DERIVE_FROM_TYPE(EffectStateFactory);
-} PshifterStateFactory;
-
-static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory))
-{
- ALpshifterState *state;
-
- NEW_OBJ0(state, ALpshifterState)();
- if(!state) return NULL;
-
- return STATIC_CAST(ALeffectState, state);
-}
-
-DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory);
-
-EffectStateFactory *PshifterStateFactory_getFactory(void)
-{
- static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } };
-
- return STATIC_CAST(EffectStateFactory, &PshifterFactory);
-}
-
-
-void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val))
-{
- alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param );
-}
-
-void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals))
-{
- alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param );
-}
-
-void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
-{
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_PITCH_SHIFTER_COARSE_TUNE:
- if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
- SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
- props->Pshifter.CoarseTune = val;
- break;
-
- case AL_PITCH_SHIFTER_FINE_TUNE:
- if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
- SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
- props->Pshifter.FineTune = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
- }
-}
-void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
-{
- ALpshifter_setParami(effect, context, param, vals[0]);
-}
-
-void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
-{
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_PITCH_SHIFTER_COARSE_TUNE:
- *val = (ALint)props->Pshifter.CoarseTune;
- break;
- case AL_PITCH_SHIFTER_FINE_TUNE:
- *val = (ALint)props->Pshifter.FineTune;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
- }
-}
-void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
-{
- ALpshifter_getParami(effect, context, param, vals);
-}
-
-void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val))
-{
- alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param);
-}
-
-void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals))
-{
- alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param);
-}
-
-DEFINE_ALEFFECT_VTABLE(ALpshifter);
-
-
-/* Converts ALcomplex to ALphasor*/
-static inline ALphasor rect2polar( ALcomplex number )
-{
- ALphasor polar;
-
- polar.Amplitude = sqrtf ( number.Real*number.Real + number.Imag*number.Imag );
- polar.Phase = atan2f( number.Imag , number.Real );
-
- return polar;
-}
-
-/* Converts ALphasor to ALcomplex*/
-static inline ALcomplex polar2rect( ALphasor number )
-{
- ALcomplex cartesian;
-
- cartesian.Real = number.Amplitude * cosf( number.Phase );
- cartesian.Imag = number.Amplitude * sinf( number.Phase );
-
- return cartesian;
-}
-
-/* Addition of two complex numbers (ALcomplex format)*/
-static inline ALcomplex complex_add( ALcomplex a, ALcomplex b )
-{
- ALcomplex result;
-
- result.Real = ( a.Real + b.Real );
- result.Imag = ( a.Imag + b.Imag );
-
- return result;
-}
-
-/* Substraction of two complex numbers (ALcomplex format)*/
-static inline ALcomplex complex_subst( ALcomplex a, ALcomplex b )
-{
- ALcomplex result;
-
- result.Real = ( a.Real - b.Real );
- result.Imag = ( a.Imag - b.Imag );
-
- return result;
-}
-
-/* Multiplication of two complex numbers (ALcomplex format)*/
-static inline ALcomplex complex_mult( ALcomplex a, ALcomplex b )
-{
- ALcomplex result;
-
- result.Real = ( a.Real * b.Real - a.Imag * b.Imag );
- result.Imag = ( a.Imag * b.Real + a.Real * b.Imag );
-
- return result;
-}
-
-/* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is FFT and 1 is
- iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the Discrete Fourier Transform (DFT)
- of the time domain data stored in FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of
- complex numbers (ALcomplex), FFTSize MUST BE power of two.*/
-
-static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALint Sign)
-{
- ALfloat arg;
- ALsizei i, j, k, mask, step, step2;
- ALcomplex temp, u, w;
-
- /*bit-reversal permutation applied to a sequence of FFTSize items*/
- for (i = 1; i < FFTSize-1; i++ )
- {
-
- for ( mask = 0x1, j = 0; mask < FFTSize; mask <<= 1 )
- {
- if ( ( i & mask ) != 0 ) j++;
-
- j <<= 1;
- }
-
- j >>= 1;
-
- if ( i < j )
- {
- temp = FFTBuffer[i];
- FFTBuffer[i] = FFTBuffer[j];
- FFTBuffer[j] = temp;
- }
- }
-
- /* Iterative form of Danielson�Lanczos lemma */
- for ( i = 1, step = 2; i < FFTSize; i<<=1, step <<= 1 )
- {
-
- step2 = step >> 1;
- arg = F_PI / step2;
-
- w.Real = cosf( arg );
- w.Imag = sinf( arg ) * Sign;
-
- u.Real = 1.0f;
- u.Imag = 0.0f;
-
- for ( j = 0; j < step2; j++ )
- {
-
- for ( k = j; k < FFTSize; k += step )
- {
-
- temp = complex_mult( FFTBuffer[k+step2], u );
- FFTBuffer[k+step2] = complex_subst( FFTBuffer[k], temp );
- FFTBuffer[k] = complex_add( FFTBuffer[k], temp );
- }
-
- u = complex_mult(u,w);
- }
- }
-}
+/** + * OpenAL cross platform audio library + * Copyright (C) 2018 by Raul Herraiz. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <math.h> +#include <stdlib.h> + +#include "alMain.h" +#include "alFilter.h" +#include "alAuxEffectSlot.h" +#include "alError.h" +#include "alu.h" + +#define MAX_SIZE 2048 + +typedef struct ALcomplex { + ALfloat Real; + ALfloat Imag; +} ALcomplex; + +typedef struct ALphasor { + ALfloat Amplitude; + ALfloat Phase; +} ALphasor; + +typedef struct ALFrequencyDomain { + ALfloat Amplitude; + ALfloat Frequency; +} ALfrequencyDomain; + +typedef struct ALpshifterState { + DERIVE_FROM_TYPE(ALeffectState); + + /* Effect gains for each channel */ + ALfloat Gain[MAX_OUTPUT_CHANNELS]; + + /* Effect parameters */ + ALsizei count; + ALsizei STFT_size; + ALsizei step; + ALsizei FIFOLatency; + ALsizei oversamp; + ALfloat PitchShift; + ALfloat Frequency; + + /*Effects buffers*/ + ALfloat InFIFO[MAX_SIZE]; + ALfloat OutFIFO[MAX_SIZE]; + ALfloat LastPhase[(MAX_SIZE>>1) +1]; + ALfloat SumPhase[(MAX_SIZE>>1) +1]; + ALfloat OutputAccum[MAX_SIZE<<1]; + ALfloat window[MAX_SIZE]; + + ALcomplex FFTbuffer[MAX_SIZE]; + + ALfrequencyDomain Analysis_buffer[MAX_SIZE]; + ALfrequencyDomain Syntesis_buffer[MAX_SIZE]; +} ALpshifterState; + +static ALvoid ALpshifterState_Destruct(ALpshifterState *state); +static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device); +static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props); +static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels); +DECLARE_DEFAULT_ALLOCATORS(ALpshifterState) + +DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState); + + +/* Converts ALcomplex to ALphasor*/ +static inline ALphasor rect2polar( ALcomplex number ) +{ + ALphasor polar; + + polar.Amplitude = sqrtf ( number.Real*number.Real + number.Imag*number.Imag ); + polar.Phase = atan2f( number.Imag , number.Real ); + + return polar; +} + +/* Converts ALphasor to ALcomplex*/ +static inline ALcomplex polar2rect( ALphasor number ) +{ + ALcomplex cartesian; + + cartesian.Real = number.Amplitude * cosf( number.Phase ); + cartesian.Imag = number.Amplitude * sinf( number.Phase ); + + return cartesian; +} + +/* Addition of two complex numbers (ALcomplex format)*/ +static inline ALcomplex complex_add( ALcomplex a, ALcomplex b ) +{ + ALcomplex result; + + result.Real = ( a.Real + b.Real ); + result.Imag = ( a.Imag + b.Imag ); + + return result; +} + +/* Substraction of two complex numbers (ALcomplex format)*/ +static inline ALcomplex complex_subst( ALcomplex a, ALcomplex b ) +{ + ALcomplex result; + + result.Real = ( a.Real - b.Real ); + result.Imag = ( a.Imag - b.Imag ); + + return result; +} + +/* Multiplication of two complex numbers (ALcomplex format)*/ +static inline ALcomplex complex_mult( ALcomplex a, ALcomplex b ) +{ + ALcomplex result; + + result.Real = ( a.Real * b.Real - a.Imag * b.Imag ); + result.Imag = ( a.Imag * b.Real + a.Real * b.Imag ); + + return result; +} + +/* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is FFT and 1 is + iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the Discrete Fourier Transform (DFT) + of the time domain data stored in FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of + complex numbers (ALcomplex), FFTSize MUST BE power of two.*/ +static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALint Sign) +{ + ALfloat arg; + ALsizei i, j, k, mask, step, step2; + ALcomplex temp, u, w; + + /*bit-reversal permutation applied to a sequence of FFTSize items*/ + for (i = 1; i < FFTSize-1; i++ ) + { + for ( mask = 0x1, j = 0; mask < FFTSize; mask <<= 1 ) + { + if ( ( i & mask ) != 0 ) j++; + + j <<= 1; + } + + j >>= 1; + + if ( i < j ) + { + temp = FFTBuffer[i]; + FFTBuffer[i] = FFTBuffer[j]; + FFTBuffer[j] = temp; + } + } + + /* Iterative form of Danielson�Lanczos lemma */ + for ( i = 1, step = 2; i < FFTSize; i<<=1, step <<= 1 ) + { + step2 = step >> 1; + arg = F_PI / step2; + + w.Real = cosf( arg ); + w.Imag = sinf( arg ) * Sign; + + u.Real = 1.0f; + u.Imag = 0.0f; + + for ( j = 0; j < step2; j++ ) + { + for ( k = j; k < FFTSize; k += step ) + { + temp = complex_mult( FFTBuffer[k+step2], u ); + FFTBuffer[k+step2] = complex_subst( FFTBuffer[k], temp ); + FFTBuffer[k] = complex_add( FFTBuffer[k], temp ); + } + + u = complex_mult(u,w); + } + } +} + + +static void ALpshifterState_Construct(ALpshifterState *state) +{ + ALsizei i; + + ALeffectState_Construct(STATIC_CAST(ALeffectState, state)); + SET_VTABLE2(ALpshifterState, ALeffectState, state); + + /*Initializing parameters and set to zero the buffers */ + state->STFT_size = MAX_SIZE>>1; + state->oversamp = 1<<2; + + state->step = state->STFT_size / state->oversamp ; + state->FIFOLatency = state->step * ( state->oversamp-1 ); + state->count = state->FIFOLatency; + + memset(state->InFIFO, 0, sizeof(state->InFIFO)); + memset(state->OutFIFO, 0, sizeof(state->OutFIFO)); + memset(state->FFTbuffer, 0, sizeof(state->FFTbuffer)); + memset(state->LastPhase, 0, sizeof(state->LastPhase)); + memset(state->SumPhase, 0, sizeof(state->SumPhase)); + memset(state->OutputAccum, 0, sizeof(state->OutputAccum)); + memset(state->Analysis_buffer, 0, sizeof(state->Analysis_buffer)); + + /* Create lockup table of the Hann window for the desired size, i.e. STFT_size */ + for ( i = 0; i < state->STFT_size>>1 ; i++ ) + { + state->window[i] = state->window[state->STFT_size-(i+1)] \ + = 0.5f * ( 1 - cosf(F_TAU*(ALfloat)i/(ALfloat)(state->STFT_size-1))); + } +} + +static ALvoid ALpshifterState_Destruct(ALpshifterState *state) +{ + ALeffectState_Destruct(STATIC_CAST(ALeffectState,state)); +} + +static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *UNUSED(state), ALCdevice *UNUSED(device)) +{ + return AL_TRUE; +} + +static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props) +{ + const ALCdevice *device = context->Device; + ALfloat coeffs[MAX_AMBI_COEFFS]; + const ALfloat adjust = 0.707945784384f; /*-3dB adjust*/ + + state->Frequency = (ALfloat)device->Frequency; + state->PitchShift = powf(2.0f,((ALfloat)props->Pshifter.CoarseTune + props->Pshifter.FineTune/100.0f)/12.0f); + + CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs); + ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain * adjust, state->Gain); +} + +static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels) +{ + /* Pitch shifter engine based on the work of Stephan Bernsee. + * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/ + */ + + ALsizei i, j, k, STFT_half_size; + ALfloat freq_bin, expected, tmp; + ALfloat bufferOut[BUFFERSIZE]; + ALphasor component; + + STFT_half_size = state->STFT_size >> 1; + freq_bin = state->Frequency / (ALfloat)state->STFT_size; + expected = F_TAU / (ALfloat)state->oversamp; + + for (i = 0; i < SamplesToDo; i++) + { + /* Fill FIFO buffer with samples data */ + state->InFIFO[state->count] = SamplesIn[0][i]; + bufferOut[i] = state->OutFIFO[state->count - state->FIFOLatency]; + + state->count++; + + /* Check whether FIFO buffer is filled */ + if ( state->count >= state->STFT_size ) + { + state->count = state->FIFOLatency; + + /* Real signal windowing and store in FFTbuffer */ + for ( k = 0; k < state->STFT_size; k++ ) + { + state->FFTbuffer[k].Real = state->InFIFO[k] * state->window[k]; + state->FFTbuffer[k].Imag = 0.0f; + } + + /* ANALYSIS */ + /* Apply FFT to FFTbuffer data */ + FFT( state->FFTbuffer, state->STFT_size, -1 ); + + /* Analyze the obtained data. Since the real FFT is symmetric, only + * STFT_half_size+1 samples are needed. + */ + for ( k = 0; k <= STFT_half_size; k++ ) + { + /* Compute amplitude and phase */ + component = rect2polar( state->FFTbuffer[k] ); + + /* Compute phase difference and subtract expected phase difference */ + tmp = ( component.Phase - state->LastPhase[k] ) - (ALfloat)k*expected; + + /* Map delta phase into +/- Pi interval */ + tmp -= F_PI*(ALfloat)( fastf2i(tmp/F_PI) + fastf2i(tmp/F_PI) % 2 ); + + /* Get deviation from bin frequency from the +/- Pi interval */ + tmp /= expected; + + /* Compute the k-th partials' true frequency, twice the + * amplitude for maintain the gain (because half of bins are + * used) and store amplitude and true frequency in analysis + * buffer. + */ + state->Analysis_buffer[k].Amplitude = 2.0f * component.Amplitude; + state->Analysis_buffer[k].Frequency = ((ALfloat)k + tmp) * freq_bin; + + /* Store actual phase[k] for the calculations in the next frame*/ + state->LastPhase[k] = component.Phase; + } + + /* PROCESSING */ + /* pitch shifting */ + memset(state->Syntesis_buffer, 0, state->STFT_size*sizeof(ALfrequencyDomain)); + + for (k = 0; k <= STFT_half_size; k++) + { + j = fastf2i( (ALfloat)k*state->PitchShift ); + + if ( j <= STFT_half_size ) + { + state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude; + state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency * + state->PitchShift; + } + } + + /* SYNTHESIS */ + /* Synthesis the processing data */ + for ( k = 0; k <= STFT_half_size; k++ ) + { + /* Compute bin deviation from scaled freq */ + tmp = state->Syntesis_buffer[k].Frequency /freq_bin - (ALfloat)k; + + /* Calculate actual delta phase and accumulate it to get bin phase */ + state->SumPhase[k] += ((ALfloat)k + tmp) * expected; + + component.Amplitude = state->Syntesis_buffer[k].Amplitude; + component.Phase = state->SumPhase[k]; + + /* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/ + state->FFTbuffer[k] = polar2rect( component ); + } + + /* zero negative frequencies for recontruct a real signal */ + memset( &state->FFTbuffer[STFT_half_size+1], 0, (STFT_half_size-1) * sizeof(ALcomplex) ); + + /* Apply iFFT to buffer data */ + FFT( state->FFTbuffer, state->STFT_size, 1 ); + + /* Windowing and add to output */ + for( k=0; k < state->STFT_size; k++ ) + { + state->OutputAccum[k] += 2.0f * state->window[k]*state->FFTbuffer[k].Real / + (STFT_half_size * state->oversamp); + } + + /* Shift accumulator, input & output FIFO */ + memmove(state->OutFIFO , state->OutputAccum , state->step *sizeof(ALfloat)); + memmove(state->OutputAccum, state->OutputAccum+state->step, state->STFT_size *sizeof(ALfloat)); + memmove(state->InFIFO , state->InFIFO +state->step, state->FIFOLatency*sizeof(ALfloat)); + } + } + + /* Now, mix the processed sound data to the output*/ + for (j = 0; j < NumChannels; j++ ) + { + ALfloat gain = state->Gain[j]; + + if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD)) + continue; + + for(i = 0;i < SamplesToDo;i++) + SamplesOut[j][i] += gain * bufferOut[i]; + } +} + +typedef struct PshifterStateFactory { + DERIVE_FROM_TYPE(EffectStateFactory); +} PshifterStateFactory; + +static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory)) +{ + ALpshifterState *state; + + NEW_OBJ0(state, ALpshifterState)(); + if(!state) return NULL; + + return STATIC_CAST(ALeffectState, state); +} + +DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory); + +EffectStateFactory *PshifterStateFactory_getFactory(void) +{ + static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } }; + + return STATIC_CAST(EffectStateFactory, &PshifterFactory); +} + + +void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val)) +{ + alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param ); +} + +void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals)) +{ + alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param ); +} + +void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) +{ + ALeffectProps *props = &effect->Props; + switch(param) + { + case AL_PITCH_SHIFTER_COARSE_TUNE: + if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE)) + SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range"); + props->Pshifter.CoarseTune = val; + break; + + case AL_PITCH_SHIFTER_FINE_TUNE: + if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE)) + SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range"); + props->Pshifter.FineTune = val; + break; + + default: + alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); + } +} +void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) +{ + ALpshifter_setParami(effect, context, param, vals[0]); +} + +void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) +{ + const ALeffectProps *props = &effect->Props; + switch(param) + { + case AL_PITCH_SHIFTER_COARSE_TUNE: + *val = (ALint)props->Pshifter.CoarseTune; + break; + case AL_PITCH_SHIFTER_FINE_TUNE: + *val = (ALint)props->Pshifter.FineTune; + break; + + default: + alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param); + } +} +void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) +{ + ALpshifter_getParami(effect, context, param, vals); +} + +void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val)) +{ + alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); +} + +void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals)) +{ + alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); +} + +DEFINE_ALEFFECT_VTABLE(ALpshifter); |