aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'alc/effects/convolution.cpp')
-rw-r--r--alc/effects/convolution.cpp636
1 files changed, 636 insertions, 0 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
new file mode 100644
index 00000000..7f36c415
--- /dev/null
+++ b/alc/effects/convolution.cpp
@@ -0,0 +1,636 @@
+
+#include "config.h"
+
+#include <algorithm>
+#include <array>
+#include <complex>
+#include <cstddef>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <stdint.h>
+#include <utility>
+
+#ifdef HAVE_SSE_INTRINSICS
+#include <xmmintrin.h>
+#elif defined(HAVE_NEON)
+#include <arm_neon.h>
+#endif
+
+#include "albyte.h"
+#include "alcomplex.h"
+#include "almalloc.h"
+#include "alnumbers.h"
+#include "alnumeric.h"
+#include "alspan.h"
+#include "base.h"
+#include "core/ambidefs.h"
+#include "core/bufferline.h"
+#include "core/buffer_storage.h"
+#include "core/context.h"
+#include "core/devformat.h"
+#include "core/device.h"
+#include "core/effectslot.h"
+#include "core/filters/splitter.h"
+#include "core/fmt_traits.h"
+#include "core/mixer.h"
+#include "intrusive_ptr.h"
+#include "polyphase_resampler.h"
+#include "vector.h"
+
+
+namespace {
+
+/* Convolution reverb is implemented using a segmented overlap-add method. The
+ * impulse response is broken up into multiple segments of 128 samples, and
+ * each segment has an FFT applied with a 256-sample buffer (the latter half
+ * left silent) to get its frequency-domain response. The resulting response
+ * has its positive/non-mirrored frequencies saved (129 bins) in each segment.
+ *
+ * Input samples are similarly broken up into 128-sample segments, with an FFT
+ * applied to each new incoming segment to get its 129 bins. A history of FFT'd
+ * input segments is maintained, equal to the length of the impulse response.
+ *
+ * To apply the reverberation, each impulse response segment is convolved with
+ * its paired input segment (using complex multiplies, far cheaper than FIRs),
+ * accumulating into a 256-bin FFT buffer. The input history is then shifted to
+ * align with later impulse response segments for next time.
+ *
+ * An inverse FFT is then applied to the accumulated FFT buffer to get a 256-
+ * sample time-domain response for output, which is split in two halves. The
+ * first half is the 128-sample output, and the second half is a 128-sample
+ * (really, 127) delayed extension, which gets added to the output next time.
+ * Convolving two time-domain responses of lengths N and M results in a time-
+ * domain signal of length N+M-1, and this holds true regardless of the
+ * convolution being applied in the frequency domain, so these "overflow"
+ * samples need to be accounted for.
+ *
+ * To avoid a delay with gathering enough input samples to apply an FFT with,
+ * the first segment is applied directly in the time-domain as the samples come
+ * in. Once enough have been retrieved, the FFT is applied on the input and
+ * it's paired with the remaining (FFT'd) filter segments for processing.
+ */
+
+
+void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
+ const size_t samples) noexcept
+{
+#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
+ switch(srctype)
+ {
+ HANDLE_FMT(FmtUByte);
+ HANDLE_FMT(FmtShort);
+ HANDLE_FMT(FmtFloat);
+ HANDLE_FMT(FmtDouble);
+ HANDLE_FMT(FmtMulaw);
+ HANDLE_FMT(FmtAlaw);
+ /* FIXME: Handle ADPCM decoding here. */
+ case FmtIMA4:
+ case FmtMSADPCM:
+ std::fill_n(dst, samples, 0.0f);
+ break;
+ }
+#undef HANDLE_FMT
+}
+
+
+inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
+{
+ switch(scaletype)
+ {
+ case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
+ case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
+ case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
+ case AmbiScaling::N3D: break;
+ }
+ return AmbiScale::FromN3D();
+}
+
+inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
+{
+ if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
+ return AmbiIndex::FromACN();
+}
+
+inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
+{
+ if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
+ return AmbiIndex::FromACN2D();
+}
+
+
+struct ChanMap {
+ Channel channel;
+ float angle;
+ float elevation;
+};
+
+constexpr float Deg2Rad(float x) noexcept
+{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
+
+
+using complex_f = std::complex<float>;
+
+constexpr size_t ConvolveUpdateSize{256};
+constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
+
+
+void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *RESTRICT filter)
+{
+#ifdef HAVE_SSE_INTRINSICS
+ for(float &output : dst)
+ {
+ __m128 r4{_mm_setzero_ps()};
+ for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
+ {
+ const __m128 coeffs{_mm_load_ps(&filter[j])};
+ const __m128 s{_mm_loadu_ps(&src[j])};
+
+ r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
+ }
+ r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
+ r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ output = _mm_cvtss_f32(r4);
+
+ ++src;
+ }
+
+#elif defined(HAVE_NEON)
+
+ for(float &output : dst)
+ {
+ float32x4_t r4{vdupq_n_f32(0.0f)};
+ for(size_t j{0};j < ConvolveUpdateSamples;j+=4)
+ r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j]));
+ r4 = vaddq_f32(r4, vrev64q_f32(r4));
+ output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
+
+ ++src;
+ }
+
+#else
+
+ for(float &output : dst)
+ {
+ float ret{0.0f};
+ for(size_t j{0};j < ConvolveUpdateSamples;++j)
+ ret += src[j] * filter[j];
+ output = ret;
+ ++src;
+ }
+#endif
+}
+
+struct ConvolutionState final : public EffectState {
+ FmtChannels mChannels{};
+ AmbiLayout mAmbiLayout{};
+ AmbiScaling mAmbiScaling{};
+ uint mAmbiOrder{};
+
+ size_t mFifoPos{0};
+ std::array<float,ConvolveUpdateSamples*2> mInput{};
+ al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
+ al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
+
+ alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{};
+
+ size_t mCurrentSegment{0};
+ size_t mNumConvolveSegs{0};
+
+ struct ChannelData {
+ alignas(16) FloatBufferLine mBuffer{};
+ float mHfScale{}, mLfScale{};
+ BandSplitter mFilter{};
+ float Current[MAX_OUTPUT_CHANNELS]{};
+ float Target[MAX_OUTPUT_CHANNELS]{};
+ };
+ using ChannelDataArray = al::FlexArray<ChannelData>;
+ std::unique_ptr<ChannelDataArray> mChans;
+ std::unique_ptr<complex_f[]> mComplexData;
+
+
+ ConvolutionState() = default;
+ ~ConvolutionState() override = default;
+
+ void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
+ void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
+ void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t)
+ {&ConvolutionState::NormalMix};
+
+ void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
+ void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
+ const EffectTarget target) override;
+ void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
+ const al::span<FloatBufferLine> samplesOut) override;
+
+ DEF_NEWDEL(ConvolutionState)
+};
+
+void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut,
+ const size_t samplesToDo)
+{
+ for(auto &chan : *mChans)
+ MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
+ samplesToDo, 0);
+}
+
+void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
+ const size_t samplesToDo)
+{
+ for(auto &chan : *mChans)
+ {
+ const al::span<float> src{chan.mBuffer.data(), samplesToDo};
+ chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale);
+ MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
+ }
+}
+
+
+void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorage *buffer)
+{
+ using UhjDecoderType = UhjDecoder<512>;
+ static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding;
+
+ constexpr uint MaxConvolveAmbiOrder{1u};
+
+ mFifoPos = 0;
+ mInput.fill(0.0f);
+ decltype(mFilter){}.swap(mFilter);
+ decltype(mOutput){}.swap(mOutput);
+ mFftBuffer.fill(complex_f{});
+
+ mCurrentSegment = 0;
+ mNumConvolveSegs = 0;
+
+ mChans = nullptr;
+ mComplexData = nullptr;
+
+ /* An empty buffer doesn't need a convolution filter. */
+ if(!buffer || buffer->mSampleLen < 1) return;
+
+ mChannels = buffer->mChannels;
+ mAmbiLayout = IsUHJ(mChannels) ? AmbiLayout::FuMa : buffer->mAmbiLayout;
+ mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling;
+ mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder);
+
+ constexpr size_t m{ConvolveUpdateSize/2 + 1};
+ const auto bytesPerSample = BytesFromFmt(buffer->mType);
+ const auto realChannels = buffer->channelsFromFmt();
+ const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder);
+
+ mChans = ChannelDataArray::Create(numChannels);
+
+ /* The impulse response needs to have the same sample rate as the input and
+ * output. The bsinc24 resampler is decent, but there is high-frequency
+ * attenuation that some people may be able to pick up on. Since this is
+ * called very infrequently, go ahead and use the polyphase resampler.
+ */
+ PPhaseResampler resampler;
+ if(device->Frequency != buffer->mSampleRate)
+ resampler.init(buffer->mSampleRate, device->Frequency);
+ const auto resampledCount = static_cast<uint>(
+ (uint64_t{buffer->mSampleLen}*device->Frequency+(buffer->mSampleRate-1)) /
+ buffer->mSampleRate);
+
+ const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
+ for(auto &e : *mChans)
+ e.mFilter = splitter;
+
+ mFilter.resize(numChannels, {});
+ mOutput.resize(numChannels, {});
+
+ /* Calculate the number of segments needed to hold the impulse response and
+ * the input history (rounded up), and allocate them. Exclude one segment
+ * which gets applied as a time-domain FIR filter. Make sure at least one
+ * segment is allocated to simplify handling.
+ */
+ mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
+ mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
+
+ const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
+ mComplexData = std::make_unique<complex_f[]>(complex_length);
+ std::fill_n(mComplexData.get(), complex_length, complex_f{});
+
+ /* Load the samples from the buffer. */
+ const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)};
+ auto srcsamples = std::make_unique<float[]>(srclinelength * numChannels);
+ std::fill_n(srcsamples.get(), srclinelength * numChannels, 0.0f);
+ for(size_t c{0};c < numChannels && c < realChannels;++c)
+ LoadSamples(srcsamples.get() + srclinelength*c, buffer->mData.data() + bytesPerSample*c,
+ realChannels, buffer->mType, buffer->mSampleLen);
+
+ if(IsUHJ(mChannels))
+ {
+ auto decoder = std::make_unique<UhjDecoderType>();
+ std::array<float*,4> samples{};
+ for(size_t c{0};c < numChannels;++c)
+ samples[c] = srcsamples.get() + srclinelength*c;
+ decoder->decode({samples.data(), numChannels}, buffer->mSampleLen, buffer->mSampleLen);
+ }
+
+ auto ressamples = std::make_unique<double[]>(buffer->mSampleLen +
+ (resampler ? resampledCount : 0));
+ complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m;
+ for(size_t c{0};c < numChannels;++c)
+ {
+ /* Resample to match the device. */
+ if(resampler)
+ {
+ std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen,
+ ressamples.get() + resampledCount);
+ resampler.process(buffer->mSampleLen, ressamples.get()+resampledCount,
+ resampledCount, ressamples.get());
+ }
+ else
+ std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen, ressamples.get());
+
+ /* Store the first segment's samples in reverse in the time-domain, to
+ * apply as a FIR filter.
+ */
+ const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)};
+ std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(),
+ [](const double d) noexcept -> float { return static_cast<float>(d); });
+
+ auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
+ size_t done{first_size};
+ for(size_t s{0};s < mNumConvolveSegs;++s)
+ {
+ const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
+
+ auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin());
+ done += todo;
+ std::fill(iter, fftbuffer.end(), std::complex<double>{});
+
+ forward_fft(al::as_span(fftbuffer));
+ filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter);
+ }
+ }
+}
+
+
+void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot,
+ const EffectProps* /*props*/, const EffectTarget target)
+{
+ /* NOTE: Stereo and Rear are slightly different from normal mixing (as
+ * defined in alu.cpp). These are 45 degrees from center, rather than the
+ * 30 degrees used there.
+ *
+ * TODO: LFE is not mixed to output. This will require each buffer channel
+ * to have its own output target since the main mixing buffer won't have an
+ * LFE channel (due to being B-Format).
+ */
+ static constexpr ChanMap MonoMap[1]{
+ { FrontCenter, 0.0f, 0.0f }
+ }, StereoMap[2]{
+ { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }
+ }, RearMap[2]{
+ { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ }, QuadMap[4]{
+ { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
+ { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
+ }, X51Map[6]{
+ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
+ }, X61Map[7]{
+ { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
+ { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ }, X71Map[8]{
+ { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
+ { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
+ { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
+ { LFE, 0.0f, 0.0f },
+ { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
+ { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
+ { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
+ { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
+ };
+
+ if(mNumConvolveSegs < 1) UNLIKELY
+ return;
+
+ mMix = &ConvolutionState::NormalMix;
+
+ for(auto &chan : *mChans)
+ std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f);
+ const float gain{slot->Gain};
+ if(IsAmbisonic(mChannels))
+ {
+ DeviceBase *device{context->mDevice};
+ if(mChannels == FmtUHJ2 && !device->mUhjEncoder)
+ {
+ mMix = &ConvolutionState::UpsampleMix;
+ (*mChans)[0].mHfScale = 1.0f;
+ (*mChans)[0].mLfScale = DecoderBase::sWLFScale;
+ (*mChans)[1].mHfScale = 1.0f;
+ (*mChans)[1].mLfScale = DecoderBase::sXYLFScale;
+ (*mChans)[2].mHfScale = 1.0f;
+ (*mChans)[2].mLfScale = DecoderBase::sXYLFScale;
+ }
+ else if(device->mAmbiOrder > mAmbiOrder)
+ {
+ mMix = &ConvolutionState::UpsampleMix;
+ const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
+ device->m2DMixing);
+ (*mChans)[0].mHfScale = scales[0];
+ (*mChans)[0].mLfScale = 1.0f;
+ for(size_t i{1};i < mChans->size();++i)
+ {
+ (*mChans)[i].mHfScale = scales[1];
+ (*mChans)[i].mLfScale = 1.0f;
+ }
+ }
+ mOutTarget = target.Main->Buffer;
+
+ auto&& scales = GetAmbiScales(mAmbiScaling);
+ const uint8_t *index_map{Is2DAmbisonic(mChannels) ?
+ GetAmbi2DLayout(mAmbiLayout).data() :
+ GetAmbiLayout(mAmbiLayout).data()};
+
+ std::array<float,MaxAmbiChannels> coeffs{};
+ for(size_t c{0u};c < mChans->size();++c)
+ {
+ const size_t acn{index_map[c]};
+ coeffs[acn] = scales[acn];
+ ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target);
+ coeffs[acn] = 0.0f;
+ }
+ }
+ else
+ {
+ DeviceBase *device{context->mDevice};
+ al::span<const ChanMap> chanmap{};
+ switch(mChannels)
+ {
+ case FmtMono: chanmap = MonoMap; break;
+ case FmtSuperStereo:
+ case FmtStereo: chanmap = StereoMap; break;
+ case FmtRear: chanmap = RearMap; break;
+ case FmtQuad: chanmap = QuadMap; break;
+ case FmtX51: chanmap = X51Map; break;
+ case FmtX61: chanmap = X61Map; break;
+ case FmtX71: chanmap = X71Map; break;
+ case FmtBFormat2D:
+ case FmtBFormat3D:
+ case FmtUHJ2:
+ case FmtUHJ3:
+ case FmtUHJ4:
+ break;
+ }
+
+ mOutTarget = target.Main->Buffer;
+ if(device->mRenderMode == RenderMode::Pairwise)
+ {
+ auto ScaleAzimuthFront = [](float azimuth, float scale) -> float
+ {
+ constexpr float half_pi{al::numbers::pi_v<float>*0.5f};
+ const float abs_azi{std::fabs(azimuth)};
+ if(!(abs_azi >= half_pi))
+ return std::copysign(minf(abs_azi*scale, half_pi), azimuth);
+ return azimuth;
+ };
+
+ for(size_t i{0};i < chanmap.size();++i)
+ {
+ if(chanmap[i].channel == LFE) continue;
+ const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f),
+ chanmap[i].elevation, 0.0f);
+ ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ }
+ }
+ else for(size_t i{0};i < chanmap.size();++i)
+ {
+ if(chanmap[i].channel == LFE) continue;
+ const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f);
+ ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target);
+ }
+ }
+}
+
+void ConvolutionState::process(const size_t samplesToDo,
+ const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
+{
+ if(mNumConvolveSegs < 1) UNLIKELY
+ return;
+
+ constexpr size_t m{ConvolveUpdateSize/2 + 1};
+ size_t curseg{mCurrentSegment};
+ auto &chans = *mChans;
+
+ for(size_t base{0u};base < samplesToDo;)
+ {
+ const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
+
+ std::copy_n(samplesIn[0].begin() + base, todo,
+ mInput.begin()+ConvolveUpdateSamples+mFifoPos);
+
+ /* Apply the FIR for the newly retrieved input samples, and combine it
+ * with the inverse FFT'd output samples.
+ */
+ for(size_t c{0};c < chans.size();++c)
+ {
+ auto buf_iter = chans[c].mBuffer.begin() + base;
+ apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data());
+
+ auto fifo_iter = mOutput[c].begin() + mFifoPos;
+ std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{});
+ }
+
+ mFifoPos += todo;
+ base += todo;
+
+ /* Check whether the input buffer is filled with new samples. */
+ if(mFifoPos < ConvolveUpdateSamples) break;
+ mFifoPos = 0;
+
+ /* Move the newest input to the front for the next iteration's history. */
+ std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin());
+
+ /* Calculate the frequency domain response and add the relevant
+ * frequency bins to the FFT history.
+ */
+ auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
+ std::fill(fftiter, mFftBuffer.end(), complex_f{});
+ forward_fft(al::as_span(mFftBuffer));
+
+ std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
+
+ const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
+ for(size_t c{0};c < chans.size();++c)
+ {
+ std::fill_n(mFftBuffer.begin(), m, complex_f{});
+
+ /* Convolve each input segment with its IR filter counterpart
+ * (aligned in time).
+ */
+ const complex_f *RESTRICT input{&mComplexData[curseg*m]};
+ for(size_t s{curseg};s < mNumConvolveSegs;++s)
+ {
+ for(size_t i{0};i < m;++i,++input,++filter)
+ mFftBuffer[i] += *input * *filter;
+ }
+ input = mComplexData.get();
+ for(size_t s{0};s < curseg;++s)
+ {
+ for(size_t i{0};i < m;++i,++input,++filter)
+ mFftBuffer[i] += *input * *filter;
+ }
+
+ /* Reconstruct the mirrored/negative frequencies to do a proper
+ * inverse FFT.
+ */
+ for(size_t i{m};i < ConvolveUpdateSize;++i)
+ mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]);
+
+ /* Apply iFFT to get the 256 (really 255) samples for output. The
+ * 128 output samples are combined with the last output's 127
+ * second-half samples (and this output's second half is
+ * subsequently saved for next time).
+ */
+ inverse_fft(al::as_span(mFftBuffer));
+
+ /* The iFFT'd response is scaled up by the number of bins, so apply
+ * the inverse to normalize the output.
+ */
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ mOutput[c][i] =
+ (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) *
+ (1.0f/float{ConvolveUpdateSize});
+ for(size_t i{0};i < ConvolveUpdateSamples;++i)
+ mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
+ }
+
+ /* Shift the input history. */
+ curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
+ }
+ mCurrentSegment = curseg;
+
+ /* Finally, mix to the output. */
+ (this->*mMix)(samplesOut, samplesToDo);
+}
+
+
+struct ConvolutionStateFactory final : public EffectStateFactory {
+ al::intrusive_ptr<EffectState> create() override
+ { return al::intrusive_ptr<EffectState>{new ConvolutionState{}}; }
+};
+
+} // namespace
+
+EffectStateFactory *ConvolutionStateFactory_getFactory()
+{
+ static ConvolutionStateFactory ConvolutionFactory{};
+ return &ConvolutionFactory;
+}