diff options
Diffstat (limited to 'alc/effects/convolution.cpp')
-rw-r--r-- | alc/effects/convolution.cpp | 636 |
1 files changed, 636 insertions, 0 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp new file mode 100644 index 00000000..7f36c415 --- /dev/null +++ b/alc/effects/convolution.cpp @@ -0,0 +1,636 @@ + +#include "config.h" + +#include <algorithm> +#include <array> +#include <complex> +#include <cstddef> +#include <functional> +#include <iterator> +#include <memory> +#include <stdint.h> +#include <utility> + +#ifdef HAVE_SSE_INTRINSICS +#include <xmmintrin.h> +#elif defined(HAVE_NEON) +#include <arm_neon.h> +#endif + +#include "albyte.h" +#include "alcomplex.h" +#include "almalloc.h" +#include "alnumbers.h" +#include "alnumeric.h" +#include "alspan.h" +#include "base.h" +#include "core/ambidefs.h" +#include "core/bufferline.h" +#include "core/buffer_storage.h" +#include "core/context.h" +#include "core/devformat.h" +#include "core/device.h" +#include "core/effectslot.h" +#include "core/filters/splitter.h" +#include "core/fmt_traits.h" +#include "core/mixer.h" +#include "intrusive_ptr.h" +#include "polyphase_resampler.h" +#include "vector.h" + + +namespace { + +/* Convolution reverb is implemented using a segmented overlap-add method. The + * impulse response is broken up into multiple segments of 128 samples, and + * each segment has an FFT applied with a 256-sample buffer (the latter half + * left silent) to get its frequency-domain response. The resulting response + * has its positive/non-mirrored frequencies saved (129 bins) in each segment. + * + * Input samples are similarly broken up into 128-sample segments, with an FFT + * applied to each new incoming segment to get its 129 bins. A history of FFT'd + * input segments is maintained, equal to the length of the impulse response. + * + * To apply the reverberation, each impulse response segment is convolved with + * its paired input segment (using complex multiplies, far cheaper than FIRs), + * accumulating into a 256-bin FFT buffer. The input history is then shifted to + * align with later impulse response segments for next time. + * + * An inverse FFT is then applied to the accumulated FFT buffer to get a 256- + * sample time-domain response for output, which is split in two halves. The + * first half is the 128-sample output, and the second half is a 128-sample + * (really, 127) delayed extension, which gets added to the output next time. + * Convolving two time-domain responses of lengths N and M results in a time- + * domain signal of length N+M-1, and this holds true regardless of the + * convolution being applied in the frequency domain, so these "overflow" + * samples need to be accounted for. + * + * To avoid a delay with gathering enough input samples to apply an FFT with, + * the first segment is applied directly in the time-domain as the samples come + * in. Once enough have been retrieved, the FFT is applied on the input and + * it's paired with the remaining (FFT'd) filter segments for processing. + */ + + +void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype, + const size_t samples) noexcept +{ +#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break + switch(srctype) + { + HANDLE_FMT(FmtUByte); + HANDLE_FMT(FmtShort); + HANDLE_FMT(FmtFloat); + HANDLE_FMT(FmtDouble); + HANDLE_FMT(FmtMulaw); + HANDLE_FMT(FmtAlaw); + /* FIXME: Handle ADPCM decoding here. */ + case FmtIMA4: + case FmtMSADPCM: + std::fill_n(dst, samples, 0.0f); + break; + } +#undef HANDLE_FMT +} + + +inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept +{ + switch(scaletype) + { + case AmbiScaling::FuMa: return AmbiScale::FromFuMa(); + case AmbiScaling::SN3D: return AmbiScale::FromSN3D(); + case AmbiScaling::UHJ: return AmbiScale::FromUHJ(); + case AmbiScaling::N3D: break; + } + return AmbiScale::FromN3D(); +} + +inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept +{ + if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa(); + return AmbiIndex::FromACN(); +} + +inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept +{ + if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D(); + return AmbiIndex::FromACN2D(); +} + + +struct ChanMap { + Channel channel; + float angle; + float elevation; +}; + +constexpr float Deg2Rad(float x) noexcept +{ return static_cast<float>(al::numbers::pi / 180.0 * x); } + + +using complex_f = std::complex<float>; + +constexpr size_t ConvolveUpdateSize{256}; +constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2}; + + +void apply_fir(al::span<float> dst, const float *RESTRICT src, const float *RESTRICT filter) +{ +#ifdef HAVE_SSE_INTRINSICS + for(float &output : dst) + { + __m128 r4{_mm_setzero_ps()}; + for(size_t j{0};j < ConvolveUpdateSamples;j+=4) + { + const __m128 coeffs{_mm_load_ps(&filter[j])}; + const __m128 s{_mm_loadu_ps(&src[j])}; + + r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs)); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + output = _mm_cvtss_f32(r4); + + ++src; + } + +#elif defined(HAVE_NEON) + + for(float &output : dst) + { + float32x4_t r4{vdupq_n_f32(0.0f)}; + for(size_t j{0};j < ConvolveUpdateSamples;j+=4) + r4 = vmlaq_f32(r4, vld1q_f32(&src[j]), vld1q_f32(&filter[j])); + r4 = vaddq_f32(r4, vrev64q_f32(r4)); + output = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0); + + ++src; + } + +#else + + for(float &output : dst) + { + float ret{0.0f}; + for(size_t j{0};j < ConvolveUpdateSamples;++j) + ret += src[j] * filter[j]; + output = ret; + ++src; + } +#endif +} + +struct ConvolutionState final : public EffectState { + FmtChannels mChannels{}; + AmbiLayout mAmbiLayout{}; + AmbiScaling mAmbiScaling{}; + uint mAmbiOrder{}; + + size_t mFifoPos{0}; + std::array<float,ConvolveUpdateSamples*2> mInput{}; + al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter; + al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput; + + alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{}; + + size_t mCurrentSegment{0}; + size_t mNumConvolveSegs{0}; + + struct ChannelData { + alignas(16) FloatBufferLine mBuffer{}; + float mHfScale{}, mLfScale{}; + BandSplitter mFilter{}; + float Current[MAX_OUTPUT_CHANNELS]{}; + float Target[MAX_OUTPUT_CHANNELS]{}; + }; + using ChannelDataArray = al::FlexArray<ChannelData>; + std::unique_ptr<ChannelDataArray> mChans; + std::unique_ptr<complex_f[]> mComplexData; + + + ConvolutionState() = default; + ~ConvolutionState() override = default; + + void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo); + void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo); + void (ConvolutionState::*mMix)(const al::span<FloatBufferLine>,const size_t) + {&ConvolutionState::NormalMix}; + + void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; + void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, + const EffectTarget target) override; + void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, + const al::span<FloatBufferLine> samplesOut) override; + + DEF_NEWDEL(ConvolutionState) +}; + +void ConvolutionState::NormalMix(const al::span<FloatBufferLine> samplesOut, + const size_t samplesToDo) +{ + for(auto &chan : *mChans) + MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target, + samplesToDo, 0); +} + +void ConvolutionState::UpsampleMix(const al::span<FloatBufferLine> samplesOut, + const size_t samplesToDo) +{ + for(auto &chan : *mChans) + { + const al::span<float> src{chan.mBuffer.data(), samplesToDo}; + chan.mFilter.processScale(src, chan.mHfScale, chan.mLfScale); + MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0); + } +} + + +void ConvolutionState::deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) +{ + using UhjDecoderType = UhjDecoder<512>; + static constexpr auto DecoderPadding = UhjDecoderType::sInputPadding; + + constexpr uint MaxConvolveAmbiOrder{1u}; + + mFifoPos = 0; + mInput.fill(0.0f); + decltype(mFilter){}.swap(mFilter); + decltype(mOutput){}.swap(mOutput); + mFftBuffer.fill(complex_f{}); + + mCurrentSegment = 0; + mNumConvolveSegs = 0; + + mChans = nullptr; + mComplexData = nullptr; + + /* An empty buffer doesn't need a convolution filter. */ + if(!buffer || buffer->mSampleLen < 1) return; + + mChannels = buffer->mChannels; + mAmbiLayout = IsUHJ(mChannels) ? AmbiLayout::FuMa : buffer->mAmbiLayout; + mAmbiScaling = IsUHJ(mChannels) ? AmbiScaling::UHJ : buffer->mAmbiScaling; + mAmbiOrder = minu(buffer->mAmbiOrder, MaxConvolveAmbiOrder); + + constexpr size_t m{ConvolveUpdateSize/2 + 1}; + const auto bytesPerSample = BytesFromFmt(buffer->mType); + const auto realChannels = buffer->channelsFromFmt(); + const auto numChannels = (mChannels == FmtUHJ2) ? 3u : ChannelsFromFmt(mChannels, mAmbiOrder); + + mChans = ChannelDataArray::Create(numChannels); + + /* The impulse response needs to have the same sample rate as the input and + * output. The bsinc24 resampler is decent, but there is high-frequency + * attenuation that some people may be able to pick up on. Since this is + * called very infrequently, go ahead and use the polyphase resampler. + */ + PPhaseResampler resampler; + if(device->Frequency != buffer->mSampleRate) + resampler.init(buffer->mSampleRate, device->Frequency); + const auto resampledCount = static_cast<uint>( + (uint64_t{buffer->mSampleLen}*device->Frequency+(buffer->mSampleRate-1)) / + buffer->mSampleRate); + + const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)}; + for(auto &e : *mChans) + e.mFilter = splitter; + + mFilter.resize(numChannels, {}); + mOutput.resize(numChannels, {}); + + /* Calculate the number of segments needed to hold the impulse response and + * the input history (rounded up), and allocate them. Exclude one segment + * which gets applied as a time-domain FIR filter. Make sure at least one + * segment is allocated to simplify handling. + */ + mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples; + mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1; + + const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)}; + mComplexData = std::make_unique<complex_f[]>(complex_length); + std::fill_n(mComplexData.get(), complex_length, complex_f{}); + + /* Load the samples from the buffer. */ + const size_t srclinelength{RoundUp(buffer->mSampleLen+DecoderPadding, 16)}; + auto srcsamples = std::make_unique<float[]>(srclinelength * numChannels); + std::fill_n(srcsamples.get(), srclinelength * numChannels, 0.0f); + for(size_t c{0};c < numChannels && c < realChannels;++c) + LoadSamples(srcsamples.get() + srclinelength*c, buffer->mData.data() + bytesPerSample*c, + realChannels, buffer->mType, buffer->mSampleLen); + + if(IsUHJ(mChannels)) + { + auto decoder = std::make_unique<UhjDecoderType>(); + std::array<float*,4> samples{}; + for(size_t c{0};c < numChannels;++c) + samples[c] = srcsamples.get() + srclinelength*c; + decoder->decode({samples.data(), numChannels}, buffer->mSampleLen, buffer->mSampleLen); + } + + auto ressamples = std::make_unique<double[]>(buffer->mSampleLen + + (resampler ? resampledCount : 0)); + complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m; + for(size_t c{0};c < numChannels;++c) + { + /* Resample to match the device. */ + if(resampler) + { + std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen, + ressamples.get() + resampledCount); + resampler.process(buffer->mSampleLen, ressamples.get()+resampledCount, + resampledCount, ressamples.get()); + } + else + std::copy_n(srcsamples.get() + srclinelength*c, buffer->mSampleLen, ressamples.get()); + + /* Store the first segment's samples in reverse in the time-domain, to + * apply as a FIR filter. + */ + const size_t first_size{minz(resampledCount, ConvolveUpdateSamples)}; + std::transform(ressamples.get(), ressamples.get()+first_size, mFilter[c].rbegin(), + [](const double d) noexcept -> float { return static_cast<float>(d); }); + + auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize); + size_t done{first_size}; + for(size_t s{0};s < mNumConvolveSegs;++s) + { + const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)}; + + auto iter = std::copy_n(&ressamples[done], todo, fftbuffer.begin()); + done += todo; + std::fill(iter, fftbuffer.end(), std::complex<double>{}); + + forward_fft(al::as_span(fftbuffer)); + filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter); + } + } +} + + +void ConvolutionState::update(const ContextBase *context, const EffectSlot *slot, + const EffectProps* /*props*/, const EffectTarget target) +{ + /* NOTE: Stereo and Rear are slightly different from normal mixing (as + * defined in alu.cpp). These are 45 degrees from center, rather than the + * 30 degrees used there. + * + * TODO: LFE is not mixed to output. This will require each buffer channel + * to have its own output target since the main mixing buffer won't have an + * LFE channel (due to being B-Format). + */ + static constexpr ChanMap MonoMap[1]{ + { FrontCenter, 0.0f, 0.0f } + }, StereoMap[2]{ + { FrontLeft, Deg2Rad(-45.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) } + }, RearMap[2]{ + { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) } + }, QuadMap[4]{ + { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) }, + { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) } + }, X51Map[6]{ + { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) } + }, X61Map[7]{ + { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) }, + { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } + }, X71Map[8]{ + { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) }, + { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }, + { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) }, + { LFE, 0.0f, 0.0f }, + { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) }, + { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }, + { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) }, + { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) } + }; + + if(mNumConvolveSegs < 1) UNLIKELY + return; + + mMix = &ConvolutionState::NormalMix; + + for(auto &chan : *mChans) + std::fill(std::begin(chan.Target), std::end(chan.Target), 0.0f); + const float gain{slot->Gain}; + if(IsAmbisonic(mChannels)) + { + DeviceBase *device{context->mDevice}; + if(mChannels == FmtUHJ2 && !device->mUhjEncoder) + { + mMix = &ConvolutionState::UpsampleMix; + (*mChans)[0].mHfScale = 1.0f; + (*mChans)[0].mLfScale = DecoderBase::sWLFScale; + (*mChans)[1].mHfScale = 1.0f; + (*mChans)[1].mLfScale = DecoderBase::sXYLFScale; + (*mChans)[2].mHfScale = 1.0f; + (*mChans)[2].mLfScale = DecoderBase::sXYLFScale; + } + else if(device->mAmbiOrder > mAmbiOrder) + { + mMix = &ConvolutionState::UpsampleMix; + const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder, + device->m2DMixing); + (*mChans)[0].mHfScale = scales[0]; + (*mChans)[0].mLfScale = 1.0f; + for(size_t i{1};i < mChans->size();++i) + { + (*mChans)[i].mHfScale = scales[1]; + (*mChans)[i].mLfScale = 1.0f; + } + } + mOutTarget = target.Main->Buffer; + + auto&& scales = GetAmbiScales(mAmbiScaling); + const uint8_t *index_map{Is2DAmbisonic(mChannels) ? + GetAmbi2DLayout(mAmbiLayout).data() : + GetAmbiLayout(mAmbiLayout).data()}; + + std::array<float,MaxAmbiChannels> coeffs{}; + for(size_t c{0u};c < mChans->size();++c) + { + const size_t acn{index_map[c]}; + coeffs[acn] = scales[acn]; + ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[c].Target); + coeffs[acn] = 0.0f; + } + } + else + { + DeviceBase *device{context->mDevice}; + al::span<const ChanMap> chanmap{}; + switch(mChannels) + { + case FmtMono: chanmap = MonoMap; break; + case FmtSuperStereo: + case FmtStereo: chanmap = StereoMap; break; + case FmtRear: chanmap = RearMap; break; + case FmtQuad: chanmap = QuadMap; break; + case FmtX51: chanmap = X51Map; break; + case FmtX61: chanmap = X61Map; break; + case FmtX71: chanmap = X71Map; break; + case FmtBFormat2D: + case FmtBFormat3D: + case FmtUHJ2: + case FmtUHJ3: + case FmtUHJ4: + break; + } + + mOutTarget = target.Main->Buffer; + if(device->mRenderMode == RenderMode::Pairwise) + { + auto ScaleAzimuthFront = [](float azimuth, float scale) -> float + { + constexpr float half_pi{al::numbers::pi_v<float>*0.5f}; + const float abs_azi{std::fabs(azimuth)}; + if(!(abs_azi >= half_pi)) + return std::copysign(minf(abs_azi*scale, half_pi), azimuth); + return azimuth; + }; + + for(size_t i{0};i < chanmap.size();++i) + { + if(chanmap[i].channel == LFE) continue; + const auto coeffs = CalcAngleCoeffs(ScaleAzimuthFront(chanmap[i].angle, 2.0f), + chanmap[i].elevation, 0.0f); + ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target); + } + } + else for(size_t i{0};i < chanmap.size();++i) + { + if(chanmap[i].channel == LFE) continue; + const auto coeffs = CalcAngleCoeffs(chanmap[i].angle, chanmap[i].elevation, 0.0f); + ComputePanGains(target.Main, coeffs.data(), gain, (*mChans)[i].Target); + } + } +} + +void ConvolutionState::process(const size_t samplesToDo, + const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) +{ + if(mNumConvolveSegs < 1) UNLIKELY + return; + + constexpr size_t m{ConvolveUpdateSize/2 + 1}; + size_t curseg{mCurrentSegment}; + auto &chans = *mChans; + + for(size_t base{0u};base < samplesToDo;) + { + const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)}; + + std::copy_n(samplesIn[0].begin() + base, todo, + mInput.begin()+ConvolveUpdateSamples+mFifoPos); + + /* Apply the FIR for the newly retrieved input samples, and combine it + * with the inverse FFT'd output samples. + */ + for(size_t c{0};c < chans.size();++c) + { + auto buf_iter = chans[c].mBuffer.begin() + base; + apply_fir({buf_iter, todo}, mInput.data()+1 + mFifoPos, mFilter[c].data()); + + auto fifo_iter = mOutput[c].begin() + mFifoPos; + std::transform(fifo_iter, fifo_iter+todo, buf_iter, buf_iter, std::plus<>{}); + } + + mFifoPos += todo; + base += todo; + + /* Check whether the input buffer is filled with new samples. */ + if(mFifoPos < ConvolveUpdateSamples) break; + mFifoPos = 0; + + /* Move the newest input to the front for the next iteration's history. */ + std::copy(mInput.cbegin()+ConvolveUpdateSamples, mInput.cend(), mInput.begin()); + + /* Calculate the frequency domain response and add the relevant + * frequency bins to the FFT history. + */ + auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin()); + std::fill(fftiter, mFftBuffer.end(), complex_f{}); + forward_fft(al::as_span(mFftBuffer)); + + std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]); + + const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m}; + for(size_t c{0};c < chans.size();++c) + { + std::fill_n(mFftBuffer.begin(), m, complex_f{}); + + /* Convolve each input segment with its IR filter counterpart + * (aligned in time). + */ + const complex_f *RESTRICT input{&mComplexData[curseg*m]}; + for(size_t s{curseg};s < mNumConvolveSegs;++s) + { + for(size_t i{0};i < m;++i,++input,++filter) + mFftBuffer[i] += *input * *filter; + } + input = mComplexData.get(); + for(size_t s{0};s < curseg;++s) + { + for(size_t i{0};i < m;++i,++input,++filter) + mFftBuffer[i] += *input * *filter; + } + + /* Reconstruct the mirrored/negative frequencies to do a proper + * inverse FFT. + */ + for(size_t i{m};i < ConvolveUpdateSize;++i) + mFftBuffer[i] = std::conj(mFftBuffer[ConvolveUpdateSize-i]); + + /* Apply iFFT to get the 256 (really 255) samples for output. The + * 128 output samples are combined with the last output's 127 + * second-half samples (and this output's second half is + * subsequently saved for next time). + */ + inverse_fft(al::as_span(mFftBuffer)); + + /* The iFFT'd response is scaled up by the number of bins, so apply + * the inverse to normalize the output. + */ + for(size_t i{0};i < ConvolveUpdateSamples;++i) + mOutput[c][i] = + (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) * + (1.0f/float{ConvolveUpdateSize}); + for(size_t i{0};i < ConvolveUpdateSamples;++i) + mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real(); + } + + /* Shift the input history. */ + curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1); + } + mCurrentSegment = curseg; + + /* Finally, mix to the output. */ + (this->*mMix)(samplesOut, samplesToDo); +} + + +struct ConvolutionStateFactory final : public EffectStateFactory { + al::intrusive_ptr<EffectState> create() override + { return al::intrusive_ptr<EffectState>{new ConvolutionState{}}; } +}; + +} // namespace + +EffectStateFactory *ConvolutionStateFactory_getFactory() +{ + static ConvolutionStateFactory ConvolutionFactory{}; + return &ConvolutionFactory; +} |