diff options
Diffstat (limited to 'alc/effects/fshifter.cpp')
-rw-r--r-- | alc/effects/fshifter.cpp | 301 |
1 files changed, 301 insertions, 0 deletions
diff --git a/alc/effects/fshifter.cpp b/alc/effects/fshifter.cpp new file mode 100644 index 00000000..b47aa00e --- /dev/null +++ b/alc/effects/fshifter.cpp @@ -0,0 +1,301 @@ +/** + * OpenAL cross platform audio library + * Copyright (C) 2018 by Raul Herraiz. + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * Or go to http://www.gnu.org/copyleft/lgpl.html + */ + +#include "config.h" + +#include <cmath> +#include <cstdlib> +#include <array> +#include <complex> +#include <algorithm> + +#include "alcmain.h" +#include "alcontext.h" +#include "alAuxEffectSlot.h" +#include "alError.h" +#include "alu.h" + +#include "alcomplex.h" + +namespace { + +using complex_d = std::complex<double>; + +#define HIL_SIZE 1024 +#define OVERSAMP (1<<2) + +#define HIL_STEP (HIL_SIZE / OVERSAMP) +#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1)) + +/* Define a Hann window, used to filter the HIL input and output. */ +/* Making this constexpr seems to require C++14. */ +std::array<ALdouble,HIL_SIZE> InitHannWindow() +{ + std::array<ALdouble,HIL_SIZE> ret; + /* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */ + for(ALsizei i{0};i < HIL_SIZE>>1;i++) + { + ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{HIL_SIZE-1}); + ret[i] = ret[HIL_SIZE-1-i] = val * val; + } + return ret; +} +alignas(16) const std::array<ALdouble,HIL_SIZE> HannWindow = InitHannWindow(); + + +struct FshifterState final : public EffectState { + /* Effect parameters */ + ALsizei mCount{}; + ALsizei mPhaseStep{}; + ALsizei mPhase{}; + ALdouble mLdSign{}; + + /*Effects buffers*/ + ALfloat mInFIFO[HIL_SIZE]{}; + complex_d mOutFIFO[HIL_SIZE]{}; + complex_d mOutputAccum[HIL_SIZE]{}; + complex_d mAnalytic[HIL_SIZE]{}; + complex_d mOutdata[BUFFERSIZE]{}; + + alignas(16) ALfloat mBufferOut[BUFFERSIZE]{}; + + /* Effect gains for each output channel */ + ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]{}; + ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]{}; + + + ALboolean deviceUpdate(const ALCdevice *device) override; + void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override; + void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override; + + DEF_NEWDEL(FshifterState) +}; + +ALboolean FshifterState::deviceUpdate(const ALCdevice*) +{ + /* (Re-)initializing parameters and clear the buffers. */ + mCount = FIFO_LATENCY; + mPhaseStep = 0; + mPhase = 0; + mLdSign = 1.0; + + std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f); + std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{}); + std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{}); + std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{}); + + std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f); + std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f); + + return AL_TRUE; +} + +void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) +{ + const ALCdevice *device{context->Device}; + + ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)}; + mPhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE); + + switch(props->Fshifter.LeftDirection) + { + case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN: + mLdSign = -1.0; + break; + + case AL_FREQUENCY_SHIFTER_DIRECTION_UP: + mLdSign = 1.0; + break; + + case AL_FREQUENCY_SHIFTER_DIRECTION_OFF: + mPhase = 0; + mPhaseStep = 0; + break; + } + + ALfloat coeffs[MAX_AMBI_CHANNELS]; + CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs); + + mOutTarget = target.Main->Buffer; + ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains); +} + +void FshifterState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei /*numInput*/, const al::span<FloatBufferLine> samplesOut) +{ + static constexpr complex_d complex_zero{0.0, 0.0}; + ALfloat *RESTRICT BufferOut = mBufferOut; + ALsizei j, k, base; + + for(base = 0;base < samplesToDo;) + { + const ALsizei todo{mini(HIL_SIZE-mCount, samplesToDo-base)}; + + ASSUME(todo > 0); + + /* Fill FIFO buffer with samples data */ + k = mCount; + for(j = 0;j < todo;j++,k++) + { + mInFIFO[k] = samplesIn[0][base+j]; + mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY]; + } + mCount += todo; + base += todo; + + /* Check whether FIFO buffer is filled */ + if(mCount < HIL_SIZE) continue; + mCount = FIFO_LATENCY; + + /* Real signal windowing and store in Analytic buffer */ + for(k = 0;k < HIL_SIZE;k++) + { + mAnalytic[k].real(mInFIFO[k] * HannWindow[k]); + mAnalytic[k].imag(0.0); + } + + /* Processing signal by Discrete Hilbert Transform (analytical signal). */ + complex_hilbert(mAnalytic); + + /* Windowing and add to output accumulator */ + for(k = 0;k < HIL_SIZE;k++) + mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k]; + + /* Shift accumulator, input & output FIFO */ + for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k]; + for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k]; + for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero; + for(k = 0;k < FIFO_LATENCY;k++) + mInFIFO[k] = mInFIFO[k+HIL_STEP]; + } + + /* Process frequency shifter using the analytic signal obtained. */ + for(k = 0;k < samplesToDo;k++) + { + double phase = mPhase * ((1.0/FRACTIONONE) * al::MathDefs<double>::Tau()); + BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) + + mOutdata[k].imag()*std::sin(phase)*mLdSign); + + mPhase += mPhaseStep; + mPhase &= FRACTIONMASK; + } + + /* Now, mix the processed sound data to the output. */ + MixSamples(BufferOut, samplesOut, mCurrentGains, mTargetGains, maxi(samplesToDo, 512), 0, + samplesToDo); +} + + +void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val) +{ + switch(param) + { + case AL_FREQUENCY_SHIFTER_FREQUENCY: + if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY)) + SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range"); + props->Fshifter.Frequency = val; + break; + + default: + alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); + } +} +void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals) +{ Fshifter_setParamf(props, context, param, vals[0]); } + +void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val) +{ + switch(param) + { + case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: + if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION)) + SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range"); + props->Fshifter.LeftDirection = val; + break; + + case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: + if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION)) + SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range"); + props->Fshifter.RightDirection = val; + break; + + default: + alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); + } +} +void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals) +{ Fshifter_setParami(props, context, param, vals[0]); } + +void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val) +{ + switch(param) + { + case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION: + *val = props->Fshifter.LeftDirection; + break; + case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION: + *val = props->Fshifter.RightDirection; + break; + default: + alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param); + } +} +void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals) +{ Fshifter_getParami(props, context, param, vals); } + +void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val) +{ + switch(param) + { + case AL_FREQUENCY_SHIFTER_FREQUENCY: + *val = props->Fshifter.Frequency; + break; + + default: + alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param); + } +} +void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals) +{ Fshifter_getParamf(props, context, param, vals); } + +DEFINE_ALEFFECT_VTABLE(Fshifter); + + +struct FshifterStateFactory final : public EffectStateFactory { + EffectState *create() override { return new FshifterState{}; } + EffectProps getDefaultProps() const noexcept override; + const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; } +}; + +EffectProps FshifterStateFactory::getDefaultProps() const noexcept +{ + EffectProps props{}; + props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY; + props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION; + props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION; + return props; +} + +} // namespace + +EffectStateFactory *FshifterStateFactory_getFactory() +{ + static FshifterStateFactory FshifterFactory{}; + return &FshifterFactory; +} |