aboutsummaryrefslogtreecommitdiffstats
path: root/alc/effects/reverb.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'alc/effects/reverb.cpp')
-rw-r--r--alc/effects/reverb.cpp2102
1 files changed, 2102 insertions, 0 deletions
diff --git a/alc/effects/reverb.cpp b/alc/effects/reverb.cpp
new file mode 100644
index 00000000..ac996b3f
--- /dev/null
+++ b/alc/effects/reverb.cpp
@@ -0,0 +1,2102 @@
+/**
+ * Ambisonic reverb engine for the OpenAL cross platform audio library
+ * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ * Or go to http://www.gnu.org/copyleft/lgpl.html
+ */
+
+#include "config.h"
+
+#include <cstdio>
+#include <cstdlib>
+#include <cmath>
+
+#include <array>
+#include <numeric>
+#include <algorithm>
+#include <functional>
+
+#include "alcmain.h"
+#include "alcontext.h"
+#include "alu.h"
+#include "alAuxEffectSlot.h"
+#include "alListener.h"
+#include "alError.h"
+#include "bformatdec.h"
+#include "filters/biquad.h"
+#include "vector.h"
+#include "vecmat.h"
+
+/* This is a user config option for modifying the overall output of the reverb
+ * effect.
+ */
+ALfloat ReverbBoost = 1.0f;
+
+namespace {
+
+using namespace std::placeholders;
+
+/* The number of samples used for cross-faded delay lines. This can be used
+ * to balance the compensation for abrupt line changes and attenuation due to
+ * minimally lengthed recursive lines. Try to keep this below the device
+ * update size.
+ */
+constexpr int FADE_SAMPLES{128};
+
+/* The number of spatialized lines or channels to process. Four channels allows
+ * for a 3D A-Format response. NOTE: This can't be changed without taking care
+ * of the conversion matrices, and a few places where the length arrays are
+ * assumed to have 4 elements.
+ */
+constexpr int NUM_LINES{4};
+
+
+/* The B-Format to A-Format conversion matrix. The arrangement of rows is
+ * deliberately chosen to align the resulting lines to their spatial opposites
+ * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
+ * back left). It's not quite opposite, since the A-Format results in a
+ * tetrahedron, but it's close enough. Should the model be extended to 8-lines
+ * in the future, true opposites can be used.
+ */
+alignas(16) constexpr ALfloat B2A[NUM_LINES][MAX_AMBI_CHANNELS]{
+ { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
+ { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f },
+ { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
+ { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f }
+};
+
+/* Converts A-Format to B-Format. */
+alignas(16) constexpr ALfloat A2B[NUM_LINES][NUM_LINES]{
+ { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f },
+ { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f },
+ { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f },
+ { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f }
+};
+
+
+constexpr ALfloat FadeStep{1.0f / FADE_SAMPLES};
+
+/* The all-pass and delay lines have a variable length dependent on the
+ * effect's density parameter, which helps alter the perceived environment
+ * size. The size-to-density conversion is a cubed scale:
+ *
+ * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
+ *
+ * The line lengths scale linearly with room size, so the inverse density
+ * conversion is needed, taking the cube root of the re-scaled density to
+ * calculate the line length multiplier:
+ *
+ * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
+ *
+ * The density scale below will result in a max line multiplier of 50, for an
+ * effective size range of 5m to 50m.
+ */
+constexpr ALfloat DENSITY_SCALE{125000.0f};
+
+/* All delay line lengths are specified in seconds.
+ *
+ * To approximate early reflections, we break them up into primary (those
+ * arriving from the same direction as the source) and secondary (those
+ * arriving from the opposite direction).
+ *
+ * The early taps decorrelate the 4-channel signal to approximate an average
+ * room response for the primary reflections after the initial early delay.
+ *
+ * Given an average room dimension (d_a) and the speed of sound (c) we can
+ * calculate the average reflection delay (r_a) regardless of listener and
+ * source positions as:
+ *
+ * r_a = d_a / c
+ * c = 343.3
+ *
+ * This can extended to finding the average difference (r_d) between the
+ * maximum (r_1) and minimum (r_0) reflection delays:
+ *
+ * r_0 = 2 / 3 r_a
+ * = r_a - r_d / 2
+ * = r_d
+ * r_1 = 4 / 3 r_a
+ * = r_a + r_d / 2
+ * = 2 r_d
+ * r_d = 2 / 3 r_a
+ * = r_1 - r_0
+ *
+ * As can be determined by integrating the 1D model with a source (s) and
+ * listener (l) positioned across the dimension of length (d_a):
+ *
+ * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
+ *
+ * The initial taps (T_(i=0)^N) are then specified by taking a power series
+ * that ranges between r_0 and half of r_1 less r_0:
+ *
+ * R_i = 2^(i / (2 N - 1)) r_d
+ * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
+ * = r_0 + T_i
+ * T_i = R_i - r_0
+ * = (2^(i / (2 N - 1)) - 1) r_d
+ *
+ * Assuming an average of 1m, we get the following taps:
+ */
+constexpr std::array<ALfloat,NUM_LINES> EARLY_TAP_LENGTHS{{
+ 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
+}};
+
+/* The early all-pass filter lengths are based on the early tap lengths:
+ *
+ * A_i = R_i / a
+ *
+ * Where a is the approximate maximum all-pass cycle limit (20).
+ */
+constexpr std::array<ALfloat,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
+ 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
+}};
+
+/* The early delay lines are used to transform the primary reflections into
+ * the secondary reflections. The A-format is arranged in such a way that
+ * the channels/lines are spatially opposite:
+ *
+ * C_i is opposite C_(N-i-1)
+ *
+ * The delays of the two opposing reflections (R_i and O_i) from a source
+ * anywhere along a particular dimension always sum to twice its full delay:
+ *
+ * 2 r_a = R_i + O_i
+ *
+ * With that in mind we can determine the delay between the two reflections
+ * and thus specify our early line lengths (L_(i=0)^N) using:
+ *
+ * O_i = 2 r_a - R_(N-i-1)
+ * L_i = O_i - R_(N-i-1)
+ * = 2 (r_a - R_(N-i-1))
+ * = 2 (r_a - T_(N-i-1) - r_0)
+ * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
+ *
+ * Using an average dimension of 1m, we get:
+ */
+constexpr std::array<ALfloat,NUM_LINES> EARLY_LINE_LENGTHS{{
+ 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
+}};
+
+/* The late all-pass filter lengths are based on the late line lengths:
+ *
+ * A_i = (5 / 3) L_i / r_1
+ */
+constexpr std::array<ALfloat,NUM_LINES> LATE_ALLPASS_LENGTHS{{
+ 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
+}};
+constexpr auto LATE_ALLPASS_LENGTHS_size = LATE_ALLPASS_LENGTHS.size();
+
+/* The late lines are used to approximate the decaying cycle of recursive
+ * late reflections.
+ *
+ * Splitting the lines in half, we start with the shortest reflection paths
+ * (L_(i=0)^(N/2)):
+ *
+ * L_i = 2^(i / (N - 1)) r_d
+ *
+ * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
+ *
+ * L_i = 2 r_a - L_(i-N/2)
+ * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
+ *
+ * For our 1m average room, we get:
+ */
+constexpr std::array<ALfloat,NUM_LINES> LATE_LINE_LENGTHS{{
+ 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
+}};
+constexpr auto LATE_LINE_LENGTHS_size = LATE_LINE_LENGTHS.size();
+
+
+struct DelayLineI {
+ /* The delay lines use interleaved samples, with the lengths being powers
+ * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
+ */
+ ALsizei Mask{0};
+ ALfloat (*Line)[NUM_LINES]{nullptr};
+
+
+ void write(ALsizei offset, const ALsizei c, const ALfloat *RESTRICT in, const ALsizei count) const noexcept
+ {
+ ASSUME(count > 0);
+ for(ALsizei i{0};i < count;)
+ {
+ offset &= Mask;
+ ALsizei td{mini(Mask+1 - offset, count - i)};
+ do {
+ Line[offset++][c] = in[i++];
+ } while(--td);
+ }
+ }
+};
+
+struct VecAllpass {
+ DelayLineI Delay;
+ ALfloat Coeff{0.0f};
+ ALsizei Offset[NUM_LINES][2]{};
+
+ void processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo);
+ void processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo);
+};
+
+struct T60Filter {
+ /* Two filters are used to adjust the signal. One to control the low
+ * frequencies, and one to control the high frequencies.
+ */
+ ALfloat MidGain[2]{0.0f, 0.0f};
+ BiquadFilter HFFilter, LFFilter;
+
+ void calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, const ALfloat mfDecayTime,
+ const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm);
+
+ /* Applies the two T60 damping filter sections. */
+ void process(ALfloat *samples, const ALsizei todo)
+ {
+ HFFilter.process(samples, samples, todo);
+ LFFilter.process(samples, samples, todo);
+ }
+};
+
+struct EarlyReflections {
+ /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
+ * The spread from this filter also helps smooth out the reverb tail.
+ */
+ VecAllpass VecAp;
+
+ /* An echo line is used to complete the second half of the early
+ * reflections.
+ */
+ DelayLineI Delay;
+ ALsizei Offset[NUM_LINES][2]{};
+ ALfloat Coeff[NUM_LINES][2]{};
+
+ /* The gain for each output channel based on 3D panning. */
+ ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+ ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+
+ void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime,
+ const ALfloat frequency);
+};
+
+struct LateReverb {
+ /* A recursive delay line is used fill in the reverb tail. */
+ DelayLineI Delay;
+ ALsizei Offset[NUM_LINES][2]{};
+
+ /* Attenuation to compensate for the modal density and decay rate of the
+ * late lines.
+ */
+ ALfloat DensityGain[2]{0.0f, 0.0f};
+
+ /* T60 decay filters are used to simulate absorption. */
+ T60Filter T60[NUM_LINES];
+
+ /* A Gerzon vector all-pass filter is used to simulate diffusion. */
+ VecAllpass VecAp;
+
+ /* The gain for each output channel based on 3D panning. */
+ ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+ ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
+
+ void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime,
+ const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
+ const ALfloat hf0norm, const ALfloat frequency);
+};
+
+struct ReverbState final : public EffectState {
+ /* All delay lines are allocated as a single buffer to reduce memory
+ * fragmentation and management code.
+ */
+ al::vector<ALfloat,16> mSampleBuffer;
+
+ struct {
+ /* Calculated parameters which indicate if cross-fading is needed after
+ * an update.
+ */
+ ALfloat Density{AL_EAXREVERB_DEFAULT_DENSITY};
+ ALfloat Diffusion{AL_EAXREVERB_DEFAULT_DIFFUSION};
+ ALfloat DecayTime{AL_EAXREVERB_DEFAULT_DECAY_TIME};
+ ALfloat HFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME};
+ ALfloat LFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME};
+ ALfloat HFReference{AL_EAXREVERB_DEFAULT_HFREFERENCE};
+ ALfloat LFReference{AL_EAXREVERB_DEFAULT_LFREFERENCE};
+ } mParams;
+
+ /* Master effect filters */
+ struct {
+ BiquadFilter Lp;
+ BiquadFilter Hp;
+ } mFilter[NUM_LINES];
+
+ /* Core delay line (early reflections and late reverb tap from this). */
+ DelayLineI mDelay;
+
+ /* Tap points for early reflection delay. */
+ ALsizei mEarlyDelayTap[NUM_LINES][2]{};
+ ALfloat mEarlyDelayCoeff[NUM_LINES][2]{};
+
+ /* Tap points for late reverb feed and delay. */
+ ALsizei mLateFeedTap{};
+ ALsizei mLateDelayTap[NUM_LINES][2]{};
+
+ /* Coefficients for the all-pass and line scattering matrices. */
+ ALfloat mMixX{0.0f};
+ ALfloat mMixY{0.0f};
+
+ EarlyReflections mEarly;
+
+ LateReverb mLate;
+
+ /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */
+ ALsizei mFadeCount{0};
+
+ /* Maximum number of samples to process at once. */
+ ALsizei mMaxUpdate[2]{BUFFERSIZE, BUFFERSIZE};
+
+ /* The current write offset for all delay lines. */
+ ALsizei mOffset{0};
+
+ /* Temporary storage used when processing. */
+ alignas(16) std::array<FloatBufferLine,NUM_LINES> mTempSamples{};
+ alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlyBuffer{};
+ alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateBuffer{};
+
+ using MixOutT = void (ReverbState::*)(const al::span<FloatBufferLine> samplesOut,
+ const ALsizei todo);
+
+ MixOutT mMixOut{&ReverbState::MixOutPlain};
+ std::array<ALfloat,MAX_AMBI_ORDER+1> mOrderScales{};
+ std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
+
+
+ void MixOutPlain(const al::span<FloatBufferLine> samplesOut, const ALsizei todo)
+ {
+ ASSUME(todo > 0);
+
+ /* Convert back to B-Format, and mix the results to output. */
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ std::fill_n(mTempSamples[0].begin(), todo, 0.0f);
+ MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo);
+ MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c],
+ mEarly.PanGain[c], todo, 0, todo);
+ }
+
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ std::fill_n(mTempSamples[0].begin(), todo, 0.0f);
+ MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo);
+ MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c],
+ todo, 0, todo);
+ }
+ }
+
+ void MixOutAmbiUp(const al::span<FloatBufferLine> samplesOut, const ALsizei todo)
+ {
+ ASSUME(todo > 0);
+
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ std::fill_n(mTempSamples[0].begin(), todo, 0.0f);
+ MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, 0, todo);
+
+ /* Apply scaling to the B-Format's HF response to "upsample" it to
+ * higher-order output.
+ */
+ const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
+ mAmbiSplitter[0][c].applyHfScale(mTempSamples[0].data(), hfscale, todo);
+
+ MixSamples(mTempSamples[0].data(), samplesOut, mEarly.CurrentGain[c],
+ mEarly.PanGain[c], todo, 0, todo);
+ }
+
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ std::fill_n(mTempSamples[0].begin(), todo, 0.0f);
+ MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, 0, todo);
+
+ const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
+ mAmbiSplitter[1][c].applyHfScale(mTempSamples[0].data(), hfscale, todo);
+
+ MixSamples(mTempSamples[0].data(), samplesOut, mLate.CurrentGain[c], mLate.PanGain[c],
+ todo, 0, todo);
+ }
+ }
+
+ bool allocLines(const ALfloat frequency);
+
+ void updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density,
+ const ALfloat decayTime, const ALfloat frequency);
+ void update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
+ const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target);
+
+ ALboolean deviceUpdate(const ALCdevice *device) override;
+ void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
+ void process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut) override;
+
+ DEF_NEWDEL(ReverbState)
+};
+
+/**************************************
+ * Device Update *
+ **************************************/
+
+inline ALfloat CalcDelayLengthMult(ALfloat density)
+{ return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
+
+/* Given the allocated sample buffer, this function updates each delay line
+ * offset.
+ */
+inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
+{
+ union {
+ ALfloat *f;
+ ALfloat (*f4)[NUM_LINES];
+ } u;
+ u.f = &sampleBuffer[reinterpret_cast<ptrdiff_t>(Delay->Line) * NUM_LINES];
+ Delay->Line = u.f4;
+}
+
+/* Calculate the length of a delay line and store its mask and offset. */
+ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALfloat frequency,
+ const ALuint extra, DelayLineI *Delay)
+{
+ /* All line lengths are powers of 2, calculated from their lengths in
+ * seconds, rounded up.
+ */
+ auto samples = static_cast<ALuint>(float2int(std::ceil(length*frequency)));
+ samples = NextPowerOf2(samples + extra);
+
+ /* All lines share a single sample buffer. */
+ Delay->Mask = samples - 1;
+ Delay->Line = reinterpret_cast<ALfloat(*)[NUM_LINES]>(offset);
+
+ /* Return the sample count for accumulation. */
+ return samples;
+}
+
+/* Calculates the delay line metrics and allocates the shared sample buffer
+ * for all lines given the sample rate (frequency). If an allocation failure
+ * occurs, it returns AL_FALSE.
+ */
+bool ReverbState::allocLines(const ALfloat frequency)
+{
+ /* All delay line lengths are calculated to accomodate the full range of
+ * lengths given their respective paramters.
+ */
+ ALuint totalSamples{0u};
+
+ /* Multiplier for the maximum density value, i.e. density=1, which is
+ * actually the least density...
+ */
+ ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)};
+
+ /* The main delay length includes the maximum early reflection delay, the
+ * largest early tap width, the maximum late reverb delay, and the
+ * largest late tap width. Finally, it must also be extended by the
+ * update size (BUFFERSIZE) for block processing.
+ */
+ ALfloat length{AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier +
+ AL_EAXREVERB_MAX_LATE_REVERB_DELAY +
+ (LATE_LINE_LENGTHS.back() - LATE_LINE_LENGTHS.front())/float{LATE_LINE_LENGTHS_size}*multiplier};
+ totalSamples += CalcLineLength(length, totalSamples, frequency, BUFFERSIZE, &mDelay);
+
+ /* The early vector all-pass line. */
+ length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.VecAp.Delay);
+
+ /* The early reflection line. */
+ length = EARLY_LINE_LENGTHS.back() * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.Delay);
+
+ /* The late vector all-pass line. */
+ length = LATE_ALLPASS_LENGTHS.back() * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.VecAp.Delay);
+
+ /* The late delay lines are calculated from the largest maximum density
+ * line length.
+ */
+ length = LATE_LINE_LENGTHS.back() * multiplier;
+ totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.Delay);
+
+ totalSamples *= NUM_LINES;
+ if(totalSamples != mSampleBuffer.size())
+ {
+ mSampleBuffer.resize(totalSamples);
+ mSampleBuffer.shrink_to_fit();
+ }
+
+ /* Clear the sample buffer. */
+ std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
+
+ /* Update all delays to reflect the new sample buffer. */
+ RealizeLineOffset(mSampleBuffer.data(), &mDelay);
+ RealizeLineOffset(mSampleBuffer.data(), &mEarly.VecAp.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mEarly.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mLate.VecAp.Delay);
+ RealizeLineOffset(mSampleBuffer.data(), &mLate.Delay);
+
+ return true;
+}
+
+ALboolean ReverbState::deviceUpdate(const ALCdevice *device)
+{
+ const auto frequency = static_cast<ALfloat>(device->Frequency);
+
+ /* Allocate the delay lines. */
+ if(!allocLines(frequency))
+ return AL_FALSE;
+
+ const ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)};
+
+ /* The late feed taps are set a fixed position past the latest delay tap. */
+ mLateFeedTap = float2int(
+ (AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier) * frequency);
+
+ /* Clear filters and gain coefficients since the delay lines were all just
+ * cleared (if not reallocated).
+ */
+ for(auto &filter : mFilter)
+ {
+ filter.Lp.clear();
+ filter.Hp.clear();
+ }
+
+ for(auto &coeff : mEarlyDelayCoeff)
+ std::fill(std::begin(coeff), std::end(coeff), 0.0f);
+ for(auto &coeff : mEarly.Coeff)
+ std::fill(std::begin(coeff), std::end(coeff), 0.0f);
+
+ mLate.DensityGain[0] = 0.0f;
+ mLate.DensityGain[1] = 0.0f;
+ for(auto &t60 : mLate.T60)
+ {
+ t60.MidGain[0] = 0.0f;
+ t60.MidGain[1] = 0.0f;
+ t60.HFFilter.clear();
+ t60.LFFilter.clear();
+ }
+
+ for(auto &gains : mEarly.CurrentGain)
+ std::fill(std::begin(gains), std::end(gains), 0.0f);
+ for(auto &gains : mEarly.PanGain)
+ std::fill(std::begin(gains), std::end(gains), 0.0f);
+ for(auto &gains : mLate.CurrentGain)
+ std::fill(std::begin(gains), std::end(gains), 0.0f);
+ for(auto &gains : mLate.PanGain)
+ std::fill(std::begin(gains), std::end(gains), 0.0f);
+
+ /* Reset counters and offset base. */
+ mFadeCount = 0;
+ std::fill(std::begin(mMaxUpdate), std::end(mMaxUpdate), BUFFERSIZE);
+ mOffset = 0;
+
+ if(device->mAmbiOrder > 1)
+ {
+ mMixOut = &ReverbState::MixOutAmbiUp;
+ mOrderScales = BFormatDec::GetHFOrderScales(1, device->mAmbiOrder);
+ }
+ else
+ {
+ mMixOut = &ReverbState::MixOutPlain;
+ mOrderScales.fill(1.0f);
+ }
+ mAmbiSplitter[0][0].init(400.0f / frequency);
+ std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
+ std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
+
+ return AL_TRUE;
+}
+
+/**************************************
+ * Effect Update *
+ **************************************/
+
+/* Calculate a decay coefficient given the length of each cycle and the time
+ * until the decay reaches -60 dB.
+ */
+inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
+{ return std::pow(REVERB_DECAY_GAIN, length/decayTime); }
+
+/* Calculate a decay length from a coefficient and the time until the decay
+ * reaches -60 dB.
+ */
+inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
+{ return std::log10(coeff) * decayTime / std::log10(REVERB_DECAY_GAIN); }
+
+/* Calculate an attenuation to be applied to the input of any echo models to
+ * compensate for modal density and decay time.
+ */
+inline ALfloat CalcDensityGain(const ALfloat a)
+{
+ /* The energy of a signal can be obtained by finding the area under the
+ * squared signal. This takes the form of Sum(x_n^2), where x is the
+ * amplitude for the sample n.
+ *
+ * Decaying feedback matches exponential decay of the form Sum(a^n),
+ * where a is the attenuation coefficient, and n is the sample. The area
+ * under this decay curve can be calculated as: 1 / (1 - a).
+ *
+ * Modifying the above equation to find the area under the squared curve
+ * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
+ * calculated by inverting the square root of this approximation,
+ * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
+ */
+ return std::sqrt(1.0f - a*a);
+}
+
+/* Calculate the scattering matrix coefficients given a diffusion factor. */
+inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
+{
+ /* The matrix is of order 4, so n is sqrt(4 - 1). */
+ ALfloat n{std::sqrt(3.0f)};
+ ALfloat t{diffusion * std::atan(n)};
+
+ /* Calculate the first mixing matrix coefficient. */
+ *x = std::cos(t);
+ /* Calculate the second mixing matrix coefficient. */
+ *y = std::sin(t) / n;
+}
+
+/* Calculate the limited HF ratio for use with the late reverb low-pass
+ * filters.
+ */
+ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
+ const ALfloat decayTime, const ALfloat SpeedOfSound)
+{
+ /* Find the attenuation due to air absorption in dB (converting delay
+ * time to meters using the speed of sound). Then reversing the decay
+ * equation, solve for HF ratio. The delay length is cancelled out of
+ * the equation, so it can be calculated once for all lines.
+ */
+ ALfloat limitRatio{1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound)};
+
+ /* Using the limit calculated above, apply the upper bound to the HF ratio.
+ */
+ return minf(limitRatio, hfRatio);
+}
+
+
+/* Calculates the 3-band T60 damping coefficients for a particular delay line
+ * of specified length, using a combination of two shelf filter sections given
+ * decay times for each band split at two reference frequencies.
+ */
+void T60Filter::calcCoeffs(const ALfloat length, const ALfloat lfDecayTime,
+ const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
+ const ALfloat hf0norm)
+{
+ const ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)};
+ const ALfloat lfGain{maxf(CalcDecayCoeff(length, lfDecayTime)/mfGain, 0.001f)};
+ const ALfloat hfGain{maxf(CalcDecayCoeff(length, hfDecayTime)/mfGain, 0.001f)};
+
+ MidGain[1] = mfGain;
+ LFFilter.setParams(BiquadType::LowShelf, lfGain, lf0norm,
+ LFFilter.rcpQFromSlope(lfGain, 1.0f));
+ HFFilter.setParams(BiquadType::HighShelf, hfGain, hf0norm,
+ HFFilter.rcpQFromSlope(hfGain, 1.0f));
+}
+
+/* Update the early reflection line lengths and gain coefficients. */
+void EarlyReflections::updateLines(const ALfloat density, const ALfloat diffusion,
+ const ALfloat decayTime, const ALfloat frequency)
+{
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
+
+ /* Calculate the all-pass feed-back/forward coefficient. */
+ VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ /* Calculate the length (in seconds) of each all-pass line. */
+ ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier};
+
+ /* Calculate the delay offset for each all-pass line. */
+ VecAp.Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the length (in seconds) of each delay line. */
+ length = EARLY_LINE_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each delay line. */
+ Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the gain (coefficient) for each line. */
+ Coeff[i][1] = CalcDecayCoeff(length, decayTime);
+ }
+}
+
+/* Update the late reverb line lengths and T60 coefficients. */
+void LateReverb::updateLines(const ALfloat density, const ALfloat diffusion,
+ const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime,
+ const ALfloat lf0norm, const ALfloat hf0norm, const ALfloat frequency)
+{
+ /* Scaling factor to convert the normalized reference frequencies from
+ * representing 0...freq to 0...max_reference.
+ */
+ const ALfloat norm_weight_factor{frequency / AL_EAXREVERB_MAX_HFREFERENCE};
+
+ const ALfloat late_allpass_avg{
+ std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
+ float{LATE_ALLPASS_LENGTHS_size}};
+
+ /* To compensate for changes in modal density and decay time of the late
+ * reverb signal, the input is attenuated based on the maximal energy of
+ * the outgoing signal. This approximation is used to keep the apparent
+ * energy of the signal equal for all ranges of density and decay time.
+ *
+ * The average length of the delay lines is used to calculate the
+ * attenuation coefficient.
+ */
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
+ ALfloat length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
+ float{LATE_LINE_LENGTHS_size} * multiplier};
+ length += late_allpass_avg * multiplier;
+ /* The density gain calculation uses an average decay time weighted by
+ * approximate bandwidth. This attempts to compensate for losses of energy
+ * that reduce decay time due to scattering into highly attenuated bands.
+ */
+ const ALfloat bandWeights[3]{
+ lf0norm*norm_weight_factor,
+ hf0norm*norm_weight_factor - lf0norm*norm_weight_factor,
+ 1.0f - hf0norm*norm_weight_factor};
+ DensityGain[1] = CalcDensityGain(
+ CalcDecayCoeff(length,
+ bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
+ )
+ );
+
+ /* Calculate the all-pass feed-back/forward coefficient. */
+ VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
+
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ /* Calculate the length (in seconds) of each all-pass line. */
+ length = LATE_ALLPASS_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each all-pass line. */
+ VecAp.Offset[i][1] = float2int(length * frequency);
+
+ /* Calculate the length (in seconds) of each delay line. */
+ length = LATE_LINE_LENGTHS[i] * multiplier;
+
+ /* Calculate the delay offset for each delay line. */
+ Offset[i][1] = float2int(length*frequency + 0.5f);
+
+ /* Approximate the absorption that the vector all-pass would exhibit
+ * given the current diffusion so we don't have to process a full T60
+ * filter for each of its four lines.
+ */
+ length += lerp(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion) * multiplier;
+
+ /* Calculate the T60 damping coefficients for each line. */
+ T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
+ }
+}
+
+
+/* Update the offsets for the main effect delay line. */
+void ReverbState::updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay,
+ const ALfloat density, const ALfloat decayTime, const ALfloat frequency)
+{
+ const ALfloat multiplier{CalcDelayLengthMult(density)};
+
+ /* Early reflection taps are decorrelated by means of an average room
+ * reflection approximation described above the definition of the taps.
+ * This approximation is linear and so the above density multiplier can
+ * be applied to adjust the width of the taps. A single-band decay
+ * coefficient is applied to simulate initial attenuation and absorption.
+ *
+ * Late reverb taps are based on the late line lengths to allow a zero-
+ * delay path and offsets that would continue the propagation naturally
+ * into the late lines.
+ */
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier};
+ mEarlyDelayTap[i][1] = float2int(length * frequency);
+
+ length = EARLY_TAP_LENGTHS[i]*multiplier;
+ mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
+
+ length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front()) /
+ float{LATE_LINE_LENGTHS_size} * multiplier;
+ mLateDelayTap[i][1] = mLateFeedTap + float2int(length * frequency);
+ }
+}
+
+/* Creates a transform matrix given a reverb vector. The vector pans the reverb
+ * reflections toward the given direction, using its magnitude (up to 1) as a
+ * focal strength. This function results in a B-Format transformation matrix
+ * that spatially focuses the signal in the desired direction.
+ */
+alu::Matrix GetTransformFromVector(const ALfloat *vec)
+{
+ /* Normalize the panning vector according to the N3D scale, which has an
+ * extra sqrt(3) term on the directional components. Converting from OpenAL
+ * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
+ * that the reverb panning vectors use left-handed coordinates, unlike the
+ * rest of OpenAL which use right-handed. This is fixed by negating Z,
+ * which cancels out with the B-Format Z negation.
+ */
+ ALfloat norm[3];
+ ALfloat mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
+ if(mag > 1.0f)
+ {
+ norm[0] = vec[0] / mag * -al::MathDefs<float>::Sqrt3();
+ norm[1] = vec[1] / mag * al::MathDefs<float>::Sqrt3();
+ norm[2] = vec[2] / mag * al::MathDefs<float>::Sqrt3();
+ mag = 1.0f;
+ }
+ else
+ {
+ /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
+ * term. There's no need to renormalize the magnitude since it would
+ * just be reapplied in the matrix.
+ */
+ norm[0] = vec[0] * -al::MathDefs<float>::Sqrt3();
+ norm[1] = vec[1] * al::MathDefs<float>::Sqrt3();
+ norm[2] = vec[2] * al::MathDefs<float>::Sqrt3();
+ }
+
+ return alu::Matrix{
+ 1.0f, 0.0f, 0.0f, 0.0f,
+ norm[0], 1.0f-mag, 0.0f, 0.0f,
+ norm[1], 0.0f, 1.0f-mag, 0.0f,
+ norm[2], 0.0f, 0.0f, 1.0f-mag
+ };
+}
+
+/* Update the early and late 3D panning gains. */
+void ReverbState::update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
+ const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target)
+{
+ /* Create matrices that transform a B-Format signal according to the
+ * panning vectors.
+ */
+ const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)};
+ const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)};
+
+ mOutTarget = target.Main->Buffer;
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ const ALfloat coeffs[MAX_AMBI_CHANNELS]{earlymat[0][i], earlymat[1][i], earlymat[2][i],
+ earlymat[3][i]};
+ ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]);
+ }
+ for(ALsizei i{0};i < NUM_LINES;i++)
+ {
+ const ALfloat coeffs[MAX_AMBI_CHANNELS]{latemat[0][i], latemat[1][i], latemat[2][i],
+ latemat[3][i]};
+ ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]);
+ }
+}
+
+void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target)
+{
+ const ALCdevice *Device{Context->Device};
+ const ALlistener &Listener = Context->Listener;
+ const auto frequency = static_cast<ALfloat>(Device->Frequency);
+
+ /* Calculate the master filters */
+ ALfloat hf0norm{minf(props->Reverb.HFReference / frequency, 0.49f)};
+ /* Restrict the filter gains from going below -60dB to keep the filter from
+ * killing most of the signal.
+ */
+ ALfloat gainhf{maxf(props->Reverb.GainHF, 0.001f)};
+ mFilter[0].Lp.setParams(BiquadType::HighShelf, gainhf, hf0norm,
+ mFilter[0].Lp.rcpQFromSlope(gainhf, 1.0f));
+ ALfloat lf0norm{minf(props->Reverb.LFReference / frequency, 0.49f)};
+ ALfloat gainlf{maxf(props->Reverb.GainLF, 0.001f)};
+ mFilter[0].Hp.setParams(BiquadType::LowShelf, gainlf, lf0norm,
+ mFilter[0].Hp.rcpQFromSlope(gainlf, 1.0f));
+ for(ALsizei i{1};i < NUM_LINES;i++)
+ {
+ mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp);
+ mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp);
+ }
+
+ /* Update the main effect delay and associated taps. */
+ updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
+ props->Reverb.Density, props->Reverb.DecayTime, frequency);
+
+ /* Update the early lines. */
+ mEarly.updateLines(props->Reverb.Density, props->Reverb.Diffusion, props->Reverb.DecayTime,
+ frequency);
+
+ /* Get the mixing matrix coefficients. */
+ CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY);
+
+ /* If the HF limit parameter is flagged, calculate an appropriate limit
+ * based on the air absorption parameter.
+ */
+ ALfloat hfRatio{props->Reverb.DecayHFRatio};
+ if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
+ hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
+ props->Reverb.DecayTime, Listener.Params.ReverbSpeedOfSound
+ );
+
+ /* Calculate the LF/HF decay times. */
+ const ALfloat lfDecayTime{clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
+ const ALfloat hfDecayTime{clampf(props->Reverb.DecayTime * hfRatio,
+ AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
+
+ /* Update the late lines. */
+ mLate.updateLines(props->Reverb.Density, props->Reverb.Diffusion, lfDecayTime,
+ props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
+
+ /* Update early and late 3D panning. */
+ const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost};
+ update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
+ props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target);
+
+ /* Calculate the max update size from the smallest relevant delay. */
+ mMaxUpdate[1] = mini(BUFFERSIZE, mini(mEarly.Offset[0][1], mLate.Offset[0][1]));
+
+ /* Determine if delay-line cross-fading is required. Density is essentially
+ * a master control for the feedback delays, so changes the offsets of many
+ * delay lines.
+ */
+ if(mParams.Density != props->Reverb.Density ||
+ /* Diffusion and decay times influences the decay rate (gain) of the
+ * late reverb T60 filter.
+ */
+ mParams.Diffusion != props->Reverb.Diffusion ||
+ mParams.DecayTime != props->Reverb.DecayTime ||
+ mParams.HFDecayTime != hfDecayTime ||
+ mParams.LFDecayTime != lfDecayTime ||
+ /* HF/LF References control the weighting used to calculate the density
+ * gain.
+ */
+ mParams.HFReference != props->Reverb.HFReference ||
+ mParams.LFReference != props->Reverb.LFReference)
+ mFadeCount = 0;
+ mParams.Density = props->Reverb.Density;
+ mParams.Diffusion = props->Reverb.Diffusion;
+ mParams.DecayTime = props->Reverb.DecayTime;
+ mParams.HFDecayTime = hfDecayTime;
+ mParams.LFDecayTime = lfDecayTime;
+ mParams.HFReference = props->Reverb.HFReference;
+ mParams.LFReference = props->Reverb.LFReference;
+}
+
+
+/**************************************
+ * Effect Processing *
+ **************************************/
+
+/* Applies a scattering matrix to the 4-line (vector) input. This is used
+ * for both the below vector all-pass model and to perform modal feed-back
+ * delay network (FDN) mixing.
+ *
+ * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
+ * matrix with a single unitary rotational parameter:
+ *
+ * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
+ * [ -a, d, c, -b ]
+ * [ -b, -c, d, a ]
+ * [ -c, b, -a, d ]
+ *
+ * The rotation is constructed from the effect's diffusion parameter,
+ * yielding:
+ *
+ * 1 = x^2 + 3 y^2
+ *
+ * Where a, b, and c are the coefficient y with differing signs, and d is the
+ * coefficient x. The final matrix is thus:
+ *
+ * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
+ * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
+ * [ y, -y, x, y ] x = cos(t)
+ * [ -y, -y, -y, x ] y = sin(t) / n
+ *
+ * Any square orthogonal matrix with an order that is a power of two will
+ * work (where ^T is transpose, ^-1 is inverse):
+ *
+ * M^T = M^-1
+ *
+ * Using that knowledge, finding an appropriate matrix can be accomplished
+ * naively by searching all combinations of:
+ *
+ * M = D + S - S^T
+ *
+ * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
+ * whose combination of signs are being iterated.
+ */
+inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in,
+ const ALfloat xCoeff, const ALfloat yCoeff)
+{
+ out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]);
+ out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]);
+ out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]);
+ out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] );
+}
+
+/* Utilizes the above, but reverses the input channels. */
+void VectorScatterRevDelayIn(const DelayLineI delay, ALint offset, const ALfloat xCoeff,
+ const ALfloat yCoeff, const ALsizei base, const al::span<const FloatBufferLine,NUM_LINES> in,
+ const ALsizei count)
+{
+ ASSUME(base >= 0);
+ ASSUME(count > 0);
+
+ for(ALsizei i{0};i < count;)
+ {
+ offset &= delay.Mask;
+ ALsizei td{mini(delay.Mask+1 - offset, count-i)};
+ do {
+ ALfloat f[NUM_LINES];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ f[NUM_LINES-1-j] = in[j][base+i];
+ ++i;
+
+ VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
+ } while(--td);
+ }
+}
+
+/* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
+ * filter to the 4-line input.
+ *
+ * It works by vectorizing a regular all-pass filter and replacing the delay
+ * element with a scattering matrix (like the one above) and a diagonal
+ * matrix of delay elements.
+ *
+ * Two static specializations are used for transitional (cross-faded) delay
+ * line processing and non-transitional processing.
+ */
+void VecAllpass::processUnfaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo)
+{
+ const DelayLineI delay{Delay};
+ const ALfloat feedCoeff{Coeff};
+
+ ASSUME(todo > 0);
+
+ ALsizei vap_offset[NUM_LINES];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ vap_offset[j] = offset - Offset[j][0];
+ for(ALsizei i{0};i < todo;)
+ {
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ vap_offset[j] &= delay.Mask;
+ offset &= delay.Mask;
+
+ ALsizei maxoff{offset};
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ maxoff = maxi(maxoff, vap_offset[j]);
+ ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)};
+
+ do {
+ ALfloat f[NUM_LINES];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ const ALfloat input{samples[j][i]};
+ const ALfloat out{delay.Line[vap_offset[j]++][j] - feedCoeff*input};
+ f[j] = input + feedCoeff*out;
+
+ samples[j][i] = out;
+ }
+ ++i;
+
+ VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
+ } while(--td);
+ }
+}
+void VecAllpass::processFaded(const al::span<FloatBufferLine,NUM_LINES> samples, ALsizei offset,
+ const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo)
+{
+ const DelayLineI delay{Delay};
+ const ALfloat feedCoeff{Coeff};
+
+ ASSUME(todo > 0);
+
+ fade *= 1.0f/FADE_SAMPLES;
+ ALsizei vap_offset[NUM_LINES][2];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ vap_offset[j][0] = offset - Offset[j][0];
+ vap_offset[j][1] = offset - Offset[j][1];
+ }
+ for(ALsizei i{0};i < todo;)
+ {
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ vap_offset[j][0] &= delay.Mask;
+ vap_offset[j][1] &= delay.Mask;
+ }
+ offset &= delay.Mask;
+
+ ALsizei maxoff{offset};
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ maxoff = maxi(maxoff, maxi(vap_offset[j][0], vap_offset[j][1]));
+ ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)};
+
+ do {
+ fade += FadeStep;
+ ALfloat f[NUM_LINES];
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ f[j] = delay.Line[vap_offset[j][0]++][j]*(1.0f-fade) +
+ delay.Line[vap_offset[j][1]++][j]*fade;
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ const ALfloat input{samples[j][i]};
+ const ALfloat out{f[j] - feedCoeff*input};
+ f[j] = input + feedCoeff*out;
+
+ samples[j][i] = out;
+ }
+ ++i;
+
+ VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
+ } while(--td);
+ }
+}
+
+/* This generates early reflections.
+ *
+ * This is done by obtaining the primary reflections (those arriving from the
+ * same direction as the source) from the main delay line. These are
+ * attenuated and all-pass filtered (based on the diffusion parameter).
+ *
+ * The early lines are then fed in reverse (according to the approximately
+ * opposite spatial location of the A-Format lines) to create the secondary
+ * reflections (those arriving from the opposite direction as the source).
+ *
+ * The early response is then completed by combining the primary reflections
+ * with the delayed and attenuated output from the early lines.
+ *
+ * Finally, the early response is reversed, scattered (based on diffusion),
+ * and fed into the late reverb section of the main delay line.
+ *
+ * Two static specializations are used for transitional (cross-faded) delay
+ * line processing and non-transitional processing.
+ */
+void EarlyReflection_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo,
+ const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out)
+{
+ const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples};
+ const DelayLineI early_delay{State->mEarly.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
+
+ ASSUME(todo > 0);
+
+ /* First, load decorrelated samples from the main delay line as the primary
+ * reflections.
+ */
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]};
+ const ALfloat coeff{State->mEarlyDelayCoeff[j][0]};
+ for(ALsizei i{0};i < todo;)
+ {
+ early_delay_tap &= main_delay.Mask;
+ ALsizei td{mini(main_delay.Mask+1 - early_delay_tap, todo - i)};
+ do {
+ temps[j][i++] = main_delay.Line[early_delay_tap++][j] * coeff;
+ } while(--td);
+ }
+ }
+
+ /* Apply a vector all-pass, to help color the initial reflections based on
+ * the diffusion strength.
+ */
+ State->mEarly.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
+
+ /* Apply a delay and bounce to generate secondary reflections, combine with
+ * the primary reflections and write out the result for mixing.
+ */
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ ALint feedb_tap{offset - State->mEarly.Offset[j][0]};
+ const ALfloat feedb_coeff{State->mEarly.Coeff[j][0]};
+
+ ASSUME(base >= 0);
+ for(ALsizei i{0};i < todo;)
+ {
+ feedb_tap &= early_delay.Mask;
+ ALsizei td{mini(early_delay.Mask+1 - feedb_tap, todo - i)};
+ do {
+ out[j][base+i] = temps[j][i] + early_delay.Line[feedb_tap++][j]*feedb_coeff;
+ ++i;
+ } while(--td);
+ }
+ }
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo);
+
+ /* Also write the result back to the main delay line for the late reverb
+ * stage to pick up at the appropriate time, appplying a scatter and
+ * bounce to improve the initial diffusion in the late reverb.
+ */
+ const ALsizei late_feed_tap{offset - State->mLateFeedTap};
+ VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base,
+ {out.cbegin(), out.cend()}, todo);
+}
+void EarlyReflection_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo,
+ const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out)
+{
+ const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples};
+ const DelayLineI early_delay{State->mEarly.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
+
+ ASSUME(todo > 0);
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ ALsizei early_delay_tap0{offset - State->mEarlyDelayTap[j][0]};
+ ALsizei early_delay_tap1{offset - State->mEarlyDelayTap[j][1]};
+ const ALfloat oldCoeff{State->mEarlyDelayCoeff[j][0]};
+ const ALfloat oldCoeffStep{-oldCoeff / FADE_SAMPLES};
+ const ALfloat newCoeffStep{State->mEarlyDelayCoeff[j][1] / FADE_SAMPLES};
+ ALfloat fadeCount{fade};
+
+ for(ALsizei i{0};i < todo;)
+ {
+ early_delay_tap0 &= main_delay.Mask;
+ early_delay_tap1 &= main_delay.Mask;
+ ALsizei td{mini(main_delay.Mask+1 - maxi(early_delay_tap0, early_delay_tap1), todo-i)};
+ do {
+ fadeCount += 1.0f;
+ const ALfloat fade0{oldCoeff + oldCoeffStep*fadeCount};
+ const ALfloat fade1{newCoeffStep*fadeCount};
+ temps[j][i++] =
+ main_delay.Line[early_delay_tap0++][j]*fade0 +
+ main_delay.Line[early_delay_tap1++][j]*fade1;
+ } while(--td);
+ }
+ }
+
+ State->mEarly.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ ALint feedb_tap0{offset - State->mEarly.Offset[j][0]};
+ ALint feedb_tap1{offset - State->mEarly.Offset[j][1]};
+ const ALfloat feedb_oldCoeff{State->mEarly.Coeff[j][0]};
+ const ALfloat feedb_oldCoeffStep{-feedb_oldCoeff / FADE_SAMPLES};
+ const ALfloat feedb_newCoeffStep{State->mEarly.Coeff[j][1] / FADE_SAMPLES};
+ ALfloat fadeCount{fade};
+
+ ASSUME(base >= 0);
+ for(ALsizei i{0};i < todo;)
+ {
+ feedb_tap0 &= early_delay.Mask;
+ feedb_tap1 &= early_delay.Mask;
+ ALsizei td{mini(early_delay.Mask+1 - maxi(feedb_tap0, feedb_tap1), todo - i)};
+
+ do {
+ fadeCount += 1.0f;
+ const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount};
+ const ALfloat fade1{feedb_newCoeffStep*fadeCount};
+ out[j][base+i] = temps[j][i] +
+ early_delay.Line[feedb_tap0++][j]*fade0 +
+ early_delay.Line[feedb_tap1++][j]*fade1;
+ ++i;
+ } while(--td);
+ }
+ }
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ early_delay.write(offset, NUM_LINES-1-j, temps[j].data(), todo);
+
+ const ALsizei late_feed_tap{offset - State->mLateFeedTap};
+ VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, base,
+ {out.cbegin(), out.cend()}, todo);
+}
+
+/* This generates the reverb tail using a modified feed-back delay network
+ * (FDN).
+ *
+ * Results from the early reflections are mixed with the output from the late
+ * delay lines.
+ *
+ * The late response is then completed by T60 and all-pass filtering the mix.
+ *
+ * Finally, the lines are reversed (so they feed their opposite directions)
+ * and scattered with the FDN matrix before re-feeding the delay lines.
+ *
+ * Two variations are made, one for for transitional (cross-faded) delay line
+ * processing and one for non-transitional processing.
+ */
+void LateReverb_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo,
+ const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out)
+{
+ const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples};
+ const DelayLineI late_delay{State->mLate.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
+
+ ASSUME(todo > 0);
+
+ /* First, load decorrelated samples from the main and feedback delay lines.
+ * Filter the signal to apply its frequency-dependent decay.
+ */
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ ALsizei late_delay_tap{offset - State->mLateDelayTap[j][0]};
+ ALsizei late_feedb_tap{offset - State->mLate.Offset[j][0]};
+ const ALfloat midGain{State->mLate.T60[j].MidGain[0]};
+ const ALfloat densityGain{State->mLate.DensityGain[0] * midGain};
+ for(ALsizei i{0};i < todo;)
+ {
+ late_delay_tap &= main_delay.Mask;
+ late_feedb_tap &= late_delay.Mask;
+ ALsizei td{mini(
+ mini(main_delay.Mask+1 - late_delay_tap, late_delay.Mask+1 - late_feedb_tap),
+ todo - i)};
+ do {
+ temps[j][i++] =
+ main_delay.Line[late_delay_tap++][j]*densityGain +
+ late_delay.Line[late_feedb_tap++][j]*midGain;
+ } while(--td);
+ }
+ State->mLate.T60[j].process(temps[j].data(), todo);
+ }
+
+ /* Apply a vector all-pass to improve micro-surface diffusion, and write
+ * out the results for mixing.
+ */
+ State->mLate.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ std::copy_n(temps[j].begin(), todo, out[j].begin()+base);
+
+ /* Finally, scatter and bounce the results to refeed the feedback buffer. */
+ VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base,
+ {out.cbegin(), out.cend()}, todo);
+}
+void LateReverb_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo,
+ const ALfloat fade, const ALsizei base, const al::span<FloatBufferLine,NUM_LINES> out)
+{
+ const al::span<FloatBufferLine,NUM_LINES> temps{State->mTempSamples};
+ const DelayLineI late_delay{State->mLate.Delay};
+ const DelayLineI main_delay{State->mDelay};
+ const ALfloat mixX{State->mMixX};
+ const ALfloat mixY{State->mMixY};
+
+ ASSUME(todo > 0);
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ {
+ const ALfloat oldMidGain{State->mLate.T60[j].MidGain[0]};
+ const ALfloat midGain{State->mLate.T60[j].MidGain[1]};
+ const ALfloat oldMidStep{-oldMidGain / FADE_SAMPLES};
+ const ALfloat midStep{midGain / FADE_SAMPLES};
+ const ALfloat oldDensityGain{State->mLate.DensityGain[0] * oldMidGain};
+ const ALfloat densityGain{State->mLate.DensityGain[1] * midGain};
+ const ALfloat oldDensityStep{-oldDensityGain / FADE_SAMPLES};
+ const ALfloat densityStep{densityGain / FADE_SAMPLES};
+ ALsizei late_delay_tap0{offset - State->mLateDelayTap[j][0]};
+ ALsizei late_delay_tap1{offset - State->mLateDelayTap[j][1]};
+ ALsizei late_feedb_tap0{offset - State->mLate.Offset[j][0]};
+ ALsizei late_feedb_tap1{offset - State->mLate.Offset[j][1]};
+ ALfloat fadeCount{fade};
+
+ for(ALsizei i{0};i < todo;)
+ {
+ late_delay_tap0 &= main_delay.Mask;
+ late_delay_tap1 &= main_delay.Mask;
+ late_feedb_tap0 &= late_delay.Mask;
+ late_feedb_tap1 &= late_delay.Mask;
+ ALsizei td{mini(
+ mini(main_delay.Mask+1 - maxi(late_delay_tap0, late_delay_tap1),
+ late_delay.Mask+1 - maxi(late_feedb_tap0, late_feedb_tap1)),
+ todo - i)};
+ do {
+ fadeCount += 1.0f;
+ const ALfloat fade0{oldDensityGain + oldDensityStep*fadeCount};
+ const ALfloat fade1{densityStep*fadeCount};
+ const ALfloat gfade0{oldMidGain + oldMidStep*fadeCount};
+ const ALfloat gfade1{midStep*fadeCount};
+ temps[j][i++] =
+ main_delay.Line[late_delay_tap0++][j]*fade0 +
+ main_delay.Line[late_delay_tap1++][j]*fade1 +
+ late_delay.Line[late_feedb_tap0++][j]*gfade0 +
+ late_delay.Line[late_feedb_tap1++][j]*gfade1;
+ } while(--td);
+ }
+ State->mLate.T60[j].process(temps[j].data(), todo);
+ }
+
+ State->mLate.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
+
+ for(ALsizei j{0};j < NUM_LINES;j++)
+ std::copy_n(temps[j].begin(), todo, out[j].begin()+base);
+
+ VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, base,
+ {out.cbegin(), out.cend()}, todo);
+}
+
+void ReverbState::process(const ALsizei samplesToDo, const FloatBufferLine *RESTRICT samplesIn, const ALsizei numInput, const al::span<FloatBufferLine> samplesOut)
+{
+ ALsizei fadeCount{mFadeCount};
+
+ ASSUME(samplesToDo > 0);
+
+ /* Convert B-Format to A-Format for processing. */
+ const al::span<FloatBufferLine,NUM_LINES> afmt{mTempSamples};
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ std::fill_n(afmt[c].begin(), samplesToDo, 0.0f);
+ MixRowSamples(afmt[c], B2A[c], {samplesIn, samplesIn+numInput}, 0, samplesToDo);
+
+ /* Band-pass the incoming samples. */
+ mFilter[c].Lp.process(afmt[c].data(), afmt[c].data(), samplesToDo);
+ mFilter[c].Hp.process(afmt[c].data(), afmt[c].data(), samplesToDo);
+ }
+
+ /* Process reverb for these samples. */
+ for(ALsizei base{0};base < samplesToDo;)
+ {
+ ALsizei todo{samplesToDo - base};
+ /* If cross-fading, don't do more samples than there are to fade. */
+ if(FADE_SAMPLES-fadeCount > 0)
+ {
+ todo = mini(todo, FADE_SAMPLES-fadeCount);
+ todo = mini(todo, mMaxUpdate[0]);
+ }
+ todo = mini(todo, mMaxUpdate[1]);
+ ASSUME(todo > 0 && todo <= BUFFERSIZE);
+
+ const ALsizei offset{mOffset + base};
+ ASSUME(offset >= 0);
+
+ /* Feed the initial delay line. */
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ mDelay.write(offset, c, afmt[c].data()+base, todo);
+
+ /* Process the samples for reverb. */
+ if(UNLIKELY(fadeCount < FADE_SAMPLES))
+ {
+ auto fade = static_cast<ALfloat>(fadeCount);
+
+ /* Generate early reflections and late reverb. */
+ EarlyReflection_Faded(this, offset, todo, fade, base, mEarlyBuffer);
+
+ LateReverb_Faded(this, offset, todo, fade, base, mLateBuffer);
+
+ /* Step fading forward. */
+ fadeCount += todo;
+ if(fadeCount >= FADE_SAMPLES)
+ {
+ /* Update the cross-fading delay line taps. */
+ fadeCount = FADE_SAMPLES;
+ for(ALsizei c{0};c < NUM_LINES;c++)
+ {
+ mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1];
+ mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1];
+ mEarly.VecAp.Offset[c][0] = mEarly.VecAp.Offset[c][1];
+ mEarly.Offset[c][0] = mEarly.Offset[c][1];
+ mEarly.Coeff[c][0] = mEarly.Coeff[c][1];
+ mLateDelayTap[c][0] = mLateDelayTap[c][1];
+ mLate.VecAp.Offset[c][0] = mLate.VecAp.Offset[c][1];
+ mLate.Offset[c][0] = mLate.Offset[c][1];
+ mLate.T60[c].MidGain[0] = mLate.T60[c].MidGain[1];
+ }
+ mLate.DensityGain[0] = mLate.DensityGain[1];
+ mMaxUpdate[0] = mMaxUpdate[1];
+ }
+ }
+ else
+ {
+ /* Generate early reflections and late reverb. */
+ EarlyReflection_Unfaded(this, offset, todo, base, mEarlyBuffer);
+
+ LateReverb_Unfaded(this, offset, todo, base, mLateBuffer);
+ }
+
+ base += todo;
+ }
+ mOffset = (mOffset+samplesToDo) & 0x3fffffff;
+ mFadeCount = fadeCount;
+
+ /* Finally, mix early reflections and late reverb. */
+ (this->*mMixOut)(samplesOut, samplesToDo);
+}
+
+
+void EAXReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range");
+ props->Reverb.DecayHFLimit = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
+ param);
+ }
+}
+void EAXReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
+{ EAXReverb_setParami(props, context, param, vals[0]); }
+void EAXReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range");
+ props->Reverb.Density = val;
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range");
+ props->Reverb.Diffusion = val;
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range");
+ props->Reverb.Gain = val;
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range");
+ props->Reverb.GainHF = val;
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range");
+ props->Reverb.GainLF = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range");
+ props->Reverb.DecayTime = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range");
+ props->Reverb.DecayHFRatio = val;
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range");
+ props->Reverb.DecayLFRatio = val;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range");
+ props->Reverb.ReflectionsGain = val;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range");
+ props->Reverb.ReflectionsDelay = val;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range");
+ props->Reverb.LateReverbGain = val;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range");
+ props->Reverb.LateReverbDelay = val;
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range");
+ props->Reverb.AirAbsorptionGainHF = val;
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range");
+ props->Reverb.EchoTime = val;
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range");
+ props->Reverb.EchoDepth = val;
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range");
+ props->Reverb.ModulationTime = val;
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range");
+ props->Reverb.ModulationDepth = val;
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range");
+ props->Reverb.HFReference = val;
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range");
+ props->Reverb.LFReference = val;
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range");
+ props->Reverb.RoomRolloffFactor = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
+ param);
+ }
+}
+void EAXReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2])))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range");
+ props->Reverb.ReflectionsPan[0] = vals[0];
+ props->Reverb.ReflectionsPan[1] = vals[1];
+ props->Reverb.ReflectionsPan[2] = vals[2];
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2])))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range");
+ props->Reverb.LateReverbPan[0] = vals[0];
+ props->Reverb.LateReverbPan[1] = vals[1];
+ props->Reverb.LateReverbPan[2] = vals[2];
+ break;
+
+ default:
+ EAXReverb_setParamf(props, context, param, vals[0]);
+ break;
+ }
+}
+
+void EAXReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DECAY_HFLIMIT:
+ *val = props->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
+ param);
+ }
+}
+void EAXReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
+{ EAXReverb_getParami(props, context, param, vals); }
+void EAXReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_DENSITY:
+ *val = props->Reverb.Density;
+ break;
+
+ case AL_EAXREVERB_DIFFUSION:
+ *val = props->Reverb.Diffusion;
+ break;
+
+ case AL_EAXREVERB_GAIN:
+ *val = props->Reverb.Gain;
+ break;
+
+ case AL_EAXREVERB_GAINHF:
+ *val = props->Reverb.GainHF;
+ break;
+
+ case AL_EAXREVERB_GAINLF:
+ *val = props->Reverb.GainLF;
+ break;
+
+ case AL_EAXREVERB_DECAY_TIME:
+ *val = props->Reverb.DecayTime;
+ break;
+
+ case AL_EAXREVERB_DECAY_HFRATIO:
+ *val = props->Reverb.DecayHFRatio;
+ break;
+
+ case AL_EAXREVERB_DECAY_LFRATIO:
+ *val = props->Reverb.DecayLFRatio;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_GAIN:
+ *val = props->Reverb.ReflectionsGain;
+ break;
+
+ case AL_EAXREVERB_REFLECTIONS_DELAY:
+ *val = props->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_GAIN:
+ *val = props->Reverb.LateReverbGain;
+ break;
+
+ case AL_EAXREVERB_LATE_REVERB_DELAY:
+ *val = props->Reverb.LateReverbDelay;
+ break;
+
+ case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
+ *val = props->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_EAXREVERB_ECHO_TIME:
+ *val = props->Reverb.EchoTime;
+ break;
+
+ case AL_EAXREVERB_ECHO_DEPTH:
+ *val = props->Reverb.EchoDepth;
+ break;
+
+ case AL_EAXREVERB_MODULATION_TIME:
+ *val = props->Reverb.ModulationTime;
+ break;
+
+ case AL_EAXREVERB_MODULATION_DEPTH:
+ *val = props->Reverb.ModulationDepth;
+ break;
+
+ case AL_EAXREVERB_HFREFERENCE:
+ *val = props->Reverb.HFReference;
+ break;
+
+ case AL_EAXREVERB_LFREFERENCE:
+ *val = props->Reverb.LFReference;
+ break;
+
+ case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
+ *val = props->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
+ param);
+ }
+}
+void EAXReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
+{
+ switch(param)
+ {
+ case AL_EAXREVERB_REFLECTIONS_PAN:
+ vals[0] = props->Reverb.ReflectionsPan[0];
+ vals[1] = props->Reverb.ReflectionsPan[1];
+ vals[2] = props->Reverb.ReflectionsPan[2];
+ break;
+ case AL_EAXREVERB_LATE_REVERB_PAN:
+ vals[0] = props->Reverb.LateReverbPan[0];
+ vals[1] = props->Reverb.LateReverbPan[1];
+ vals[2] = props->Reverb.LateReverbPan[2];
+ break;
+
+ default:
+ EAXReverb_getParamf(props, context, param, vals);
+ break;
+ }
+}
+
+DEFINE_ALEFFECT_VTABLE(EAXReverb);
+
+
+struct ReverbStateFactory final : public EffectStateFactory {
+ EffectState *create() override { return new ReverbState{}; }
+ EffectProps getDefaultProps() const noexcept override;
+ const EffectVtable *getEffectVtable() const noexcept override { return &EAXReverb_vtable; }
+};
+
+EffectProps ReverbStateFactory::getDefaultProps() const noexcept
+{
+ EffectProps props{};
+ props.Reverb.Density = AL_EAXREVERB_DEFAULT_DENSITY;
+ props.Reverb.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION;
+ props.Reverb.Gain = AL_EAXREVERB_DEFAULT_GAIN;
+ props.Reverb.GainHF = AL_EAXREVERB_DEFAULT_GAINHF;
+ props.Reverb.GainLF = AL_EAXREVERB_DEFAULT_GAINLF;
+ props.Reverb.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME;
+ props.Reverb.DecayHFRatio = AL_EAXREVERB_DEFAULT_DECAY_HFRATIO;
+ props.Reverb.DecayLFRatio = AL_EAXREVERB_DEFAULT_DECAY_LFRATIO;
+ props.Reverb.ReflectionsGain = AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN;
+ props.Reverb.ReflectionsDelay = AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY;
+ props.Reverb.ReflectionsPan[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
+ props.Reverb.ReflectionsPan[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
+ props.Reverb.ReflectionsPan[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
+ props.Reverb.LateReverbGain = AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN;
+ props.Reverb.LateReverbDelay = AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY;
+ props.Reverb.LateReverbPan[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
+ props.Reverb.LateReverbPan[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
+ props.Reverb.LateReverbPan[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
+ props.Reverb.EchoTime = AL_EAXREVERB_DEFAULT_ECHO_TIME;
+ props.Reverb.EchoDepth = AL_EAXREVERB_DEFAULT_ECHO_DEPTH;
+ props.Reverb.ModulationTime = AL_EAXREVERB_DEFAULT_MODULATION_TIME;
+ props.Reverb.ModulationDepth = AL_EAXREVERB_DEFAULT_MODULATION_DEPTH;
+ props.Reverb.AirAbsorptionGainHF = AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF;
+ props.Reverb.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE;
+ props.Reverb.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE;
+ props.Reverb.RoomRolloffFactor = AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR;
+ props.Reverb.DecayHFLimit = AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT;
+ return props;
+}
+
+
+void StdReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range");
+ props->Reverb.DecayHFLimit = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
+ }
+}
+void StdReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
+{ StdReverb_setParami(props, context, param, vals[0]); }
+void StdReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range");
+ props->Reverb.Density = val;
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range");
+ props->Reverb.Diffusion = val;
+ break;
+
+ case AL_REVERB_GAIN:
+ if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range");
+ props->Reverb.Gain = val;
+ break;
+
+ case AL_REVERB_GAINHF:
+ if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range");
+ props->Reverb.GainHF = val;
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range");
+ props->Reverb.DecayTime = val;
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range");
+ props->Reverb.DecayHFRatio = val;
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range");
+ props->Reverb.ReflectionsGain = val;
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range");
+ props->Reverb.ReflectionsDelay = val;
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range");
+ props->Reverb.LateReverbGain = val;
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range");
+ props->Reverb.LateReverbDelay = val;
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range");
+ props->Reverb.AirAbsorptionGainHF = val;
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
+ SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range");
+ props->Reverb.RoomRolloffFactor = val;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
+ }
+}
+void StdReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
+{ StdReverb_setParamf(props, context, param, vals[0]); }
+
+void StdReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DECAY_HFLIMIT:
+ *val = props->Reverb.DecayHFLimit;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
+ }
+}
+void StdReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
+{ StdReverb_getParami(props, context, param, vals); }
+void StdReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
+{
+ switch(param)
+ {
+ case AL_REVERB_DENSITY:
+ *val = props->Reverb.Density;
+ break;
+
+ case AL_REVERB_DIFFUSION:
+ *val = props->Reverb.Diffusion;
+ break;
+
+ case AL_REVERB_GAIN:
+ *val = props->Reverb.Gain;
+ break;
+
+ case AL_REVERB_GAINHF:
+ *val = props->Reverb.GainHF;
+ break;
+
+ case AL_REVERB_DECAY_TIME:
+ *val = props->Reverb.DecayTime;
+ break;
+
+ case AL_REVERB_DECAY_HFRATIO:
+ *val = props->Reverb.DecayHFRatio;
+ break;
+
+ case AL_REVERB_REFLECTIONS_GAIN:
+ *val = props->Reverb.ReflectionsGain;
+ break;
+
+ case AL_REVERB_REFLECTIONS_DELAY:
+ *val = props->Reverb.ReflectionsDelay;
+ break;
+
+ case AL_REVERB_LATE_REVERB_GAIN:
+ *val = props->Reverb.LateReverbGain;
+ break;
+
+ case AL_REVERB_LATE_REVERB_DELAY:
+ *val = props->Reverb.LateReverbDelay;
+ break;
+
+ case AL_REVERB_AIR_ABSORPTION_GAINHF:
+ *val = props->Reverb.AirAbsorptionGainHF;
+ break;
+
+ case AL_REVERB_ROOM_ROLLOFF_FACTOR:
+ *val = props->Reverb.RoomRolloffFactor;
+ break;
+
+ default:
+ alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
+ }
+}
+void StdReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
+{ StdReverb_getParamf(props, context, param, vals); }
+
+DEFINE_ALEFFECT_VTABLE(StdReverb);
+
+
+struct StdReverbStateFactory final : public EffectStateFactory {
+ EffectState *create() override { return new ReverbState{}; }
+ EffectProps getDefaultProps() const noexcept override;
+ const EffectVtable *getEffectVtable() const noexcept override { return &StdReverb_vtable; }
+};
+
+EffectProps StdReverbStateFactory::getDefaultProps() const noexcept
+{
+ EffectProps props{};
+ props.Reverb.Density = AL_REVERB_DEFAULT_DENSITY;
+ props.Reverb.Diffusion = AL_REVERB_DEFAULT_DIFFUSION;
+ props.Reverb.Gain = AL_REVERB_DEFAULT_GAIN;
+ props.Reverb.GainHF = AL_REVERB_DEFAULT_GAINHF;
+ props.Reverb.GainLF = 1.0f;
+ props.Reverb.DecayTime = AL_REVERB_DEFAULT_DECAY_TIME;
+ props.Reverb.DecayHFRatio = AL_REVERB_DEFAULT_DECAY_HFRATIO;
+ props.Reverb.DecayLFRatio = 1.0f;
+ props.Reverb.ReflectionsGain = AL_REVERB_DEFAULT_REFLECTIONS_GAIN;
+ props.Reverb.ReflectionsDelay = AL_REVERB_DEFAULT_REFLECTIONS_DELAY;
+ props.Reverb.ReflectionsPan[0] = 0.0f;
+ props.Reverb.ReflectionsPan[1] = 0.0f;
+ props.Reverb.ReflectionsPan[2] = 0.0f;
+ props.Reverb.LateReverbGain = AL_REVERB_DEFAULT_LATE_REVERB_GAIN;
+ props.Reverb.LateReverbDelay = AL_REVERB_DEFAULT_LATE_REVERB_DELAY;
+ props.Reverb.LateReverbPan[0] = 0.0f;
+ props.Reverb.LateReverbPan[1] = 0.0f;
+ props.Reverb.LateReverbPan[2] = 0.0f;
+ props.Reverb.EchoTime = 0.25f;
+ props.Reverb.EchoDepth = 0.0f;
+ props.Reverb.ModulationTime = 0.25f;
+ props.Reverb.ModulationDepth = 0.0f;
+ props.Reverb.AirAbsorptionGainHF = AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF;
+ props.Reverb.HFReference = 5000.0f;
+ props.Reverb.LFReference = 250.0f;
+ props.Reverb.RoomRolloffFactor = AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR;
+ props.Reverb.DecayHFLimit = AL_REVERB_DEFAULT_DECAY_HFLIMIT;
+ return props;
+}
+
+} // namespace
+
+EffectStateFactory *ReverbStateFactory_getFactory()
+{
+ static ReverbStateFactory ReverbFactory{};
+ return &ReverbFactory;
+}
+
+EffectStateFactory *StdReverbStateFactory_getFactory()
+{
+ static StdReverbStateFactory ReverbFactory{};
+ return &ReverbFactory;
+}