diff options
Diffstat (limited to 'alc')
-rw-r--r-- | alc/effects/convolution.cpp | 43 | ||||
-rw-r--r-- | alc/effects/pshifter.cpp | 4 |
2 files changed, 23 insertions, 24 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp index f655cf89..26ef6fd9 100644 --- a/alc/effects/convolution.cpp +++ b/alc/effects/convolution.cpp @@ -124,7 +124,7 @@ constexpr float Deg2Rad(float x) noexcept { return static_cast<float>(al::numbers::pi / 180.0 * x); } -using complex_d = std::complex<double>; +using complex_f = std::complex<float>; constexpr size_t ConvolveUpdateSize{256}; constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2}; @@ -187,7 +187,7 @@ struct ConvolutionState final : public EffectState { al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter; al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput; - alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{}; + alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{}; size_t mCurrentSegment{0}; size_t mNumConvolveSegs{0}; @@ -201,7 +201,7 @@ struct ConvolutionState final : public EffectState { }; using ChannelDataArray = al::FlexArray<ChannelData>; std::unique_ptr<ChannelDataArray> mChans; - std::unique_ptr<complex_d[]> mComplexData; + std::unique_ptr<complex_f[]> mComplexData; ConvolutionState() = default; @@ -249,7 +249,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff mInput.fill(0.0f); decltype(mFilter){}.swap(mFilter); decltype(mOutput){}.swap(mOutput); - mFftBuffer.fill(complex_d{}); + mFftBuffer.fill(complex_f{}); mCurrentSegment = 0; mNumConvolveSegs = 0; @@ -296,8 +296,8 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1; const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)}; - mComplexData = std::make_unique<complex_d[]>(complex_length); - std::fill_n(mComplexData.get(), complex_length, complex_d{}); + mComplexData = std::make_unique<complex_f[]>(complex_length); + std::fill_n(mComplexData.get(), complex_length, complex_f{}); mChannels = buffer.storage->mChannels; mAmbiLayout = buffer.storage->mAmbiLayout; @@ -305,7 +305,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff mAmbiOrder = minu(buffer.storage->mAmbiOrder, MaxConvolveAmbiOrder); auto srcsamples = std::make_unique<double[]>(maxz(buffer.storage->mSampleLen, resampledCount)); - complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m; + complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m; for(size_t c{0};c < numChannels;++c) { /* Load the samples from the buffer, and resample to match the device. */ @@ -322,17 +322,18 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff std::transform(srcsamples.get(), srcsamples.get()+first_size, mFilter[c].rbegin(), [](const double d) noexcept -> float { return static_cast<float>(d); }); + auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize); size_t done{first_size}; for(size_t s{0};s < mNumConvolveSegs;++s) { const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)}; - auto iter = std::copy_n(&srcsamples[done], todo, mFftBuffer.begin()); + auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer.begin()); done += todo; - std::fill(iter, mFftBuffer.end(), complex_d{}); + std::fill(iter, fftbuffer.end(), std::complex<double>{}); - forward_fft(mFftBuffer); - filteriter = std::copy_n(mFftBuffer.cbegin(), m, filteriter); + forward_fft<double>(fftbuffer); + filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter); } } } @@ -537,20 +538,20 @@ void ConvolutionState::process(const size_t samplesToDo, * frequency bins to the FFT history. */ auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin()); - std::fill(fftiter, mFftBuffer.end(), complex_d{}); - forward_fft(mFftBuffer); + std::fill(fftiter, mFftBuffer.end(), complex_f{}); + forward_fft<float>(mFftBuffer); std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]); - const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m}; + const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m}; for(size_t c{0};c < chans.size();++c) { - std::fill_n(mFftBuffer.begin(), m, complex_d{}); + std::fill_n(mFftBuffer.begin(), m, complex_f{}); /* Convolve each input segment with its IR filter counterpart * (aligned in time). */ - const complex_d *RESTRICT input{&mComplexData[curseg*m]}; + const complex_f *RESTRICT input{&mComplexData[curseg*m]}; for(size_t s{curseg};s < mNumConvolveSegs;++s) { for(size_t i{0};i < m;++i,++input,++filter) @@ -574,19 +575,17 @@ void ConvolutionState::process(const size_t samplesToDo, * second-half samples (and this output's second half is * subsequently saved for next time). */ - inverse_fft(mFftBuffer); + inverse_fft<float>(mFftBuffer); /* The iFFT'd response is scaled up by the number of bins, so apply * the inverse to normalize the output. */ for(size_t i{0};i < ConvolveUpdateSamples;++i) mOutput[c][i] = - static_cast<float>(mFftBuffer[i].real() * (1.0/double{ConvolveUpdateSize})) + - mOutput[c][ConvolveUpdateSamples+i]; + (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) * + (1.0f/float{ConvolveUpdateSize}); for(size_t i{0};i < ConvolveUpdateSamples;++i) - mOutput[c][ConvolveUpdateSamples+i] = - static_cast<float>(mFftBuffer[ConvolveUpdateSamples+i].real() * - (1.0/double{ConvolveUpdateSize})); + mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real(); } /* Shift the input history. */ diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp index b1f6d859..f8409292 100644 --- a/alc/effects/pshifter.cpp +++ b/alc/effects/pshifter.cpp @@ -184,7 +184,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float mFftBuffer[k] = mFIFO[src] * HannWindow[k]; for(size_t src{0u}, k{STFT_SIZE-mPos};src < mPos;++src,++k) mFftBuffer[k] = mFIFO[src] * HannWindow[k]; - forward_fft(mFftBuffer); + forward_fft<double>(mFftBuffer); /* Analyze the obtained data. Since the real FFT is symmetric, only * STFT_HALF_SIZE+1 samples are needed. @@ -243,7 +243,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float /* Apply an inverse FFT to get the time-domain siganl, and accumulate * for the output with windowing. */ - inverse_fft(mFftBuffer); + inverse_fft<double>(mFftBuffer); for(size_t dst{mPos}, k{0u};dst < STFT_SIZE;++dst,++k) mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * (4.0/OVERSAMP/STFT_SIZE); for(size_t dst{0u}, k{STFT_SIZE-mPos};dst < mPos;++dst,++k) |