aboutsummaryrefslogtreecommitdiffstats
path: root/alc
diff options
context:
space:
mode:
Diffstat (limited to 'alc')
-rw-r--r--alc/effects/convolution.cpp43
-rw-r--r--alc/effects/pshifter.cpp4
2 files changed, 23 insertions, 24 deletions
diff --git a/alc/effects/convolution.cpp b/alc/effects/convolution.cpp
index f655cf89..26ef6fd9 100644
--- a/alc/effects/convolution.cpp
+++ b/alc/effects/convolution.cpp
@@ -124,7 +124,7 @@ constexpr float Deg2Rad(float x) noexcept
{ return static_cast<float>(al::numbers::pi / 180.0 * x); }
-using complex_d = std::complex<double>;
+using complex_f = std::complex<float>;
constexpr size_t ConvolveUpdateSize{256};
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
@@ -187,7 +187,7 @@ struct ConvolutionState final : public EffectState {
al::vector<std::array<float,ConvolveUpdateSamples>,16> mFilter;
al::vector<std::array<float,ConvolveUpdateSamples*2>,16> mOutput;
- alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
+ alignas(16) std::array<complex_f,ConvolveUpdateSize> mFftBuffer{};
size_t mCurrentSegment{0};
size_t mNumConvolveSegs{0};
@@ -201,7 +201,7 @@ struct ConvolutionState final : public EffectState {
};
using ChannelDataArray = al::FlexArray<ChannelData>;
std::unique_ptr<ChannelDataArray> mChans;
- std::unique_ptr<complex_d[]> mComplexData;
+ std::unique_ptr<complex_f[]> mComplexData;
ConvolutionState() = default;
@@ -249,7 +249,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
mInput.fill(0.0f);
decltype(mFilter){}.swap(mFilter);
decltype(mOutput){}.swap(mOutput);
- mFftBuffer.fill(complex_d{});
+ mFftBuffer.fill(complex_f{});
mCurrentSegment = 0;
mNumConvolveSegs = 0;
@@ -296,8 +296,8 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
mNumConvolveSegs = maxz(mNumConvolveSegs, 2) - 1;
const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
- mComplexData = std::make_unique<complex_d[]>(complex_length);
- std::fill_n(mComplexData.get(), complex_length, complex_d{});
+ mComplexData = std::make_unique<complex_f[]>(complex_length);
+ std::fill_n(mComplexData.get(), complex_length, complex_f{});
mChannels = buffer.storage->mChannels;
mAmbiLayout = buffer.storage->mAmbiLayout;
@@ -305,7 +305,7 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
mAmbiOrder = minu(buffer.storage->mAmbiOrder, MaxConvolveAmbiOrder);
auto srcsamples = std::make_unique<double[]>(maxz(buffer.storage->mSampleLen, resampledCount));
- complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m;
+ complex_f *filteriter = mComplexData.get() + mNumConvolveSegs*m;
for(size_t c{0};c < numChannels;++c)
{
/* Load the samples from the buffer, and resample to match the device. */
@@ -322,17 +322,18 @@ void ConvolutionState::deviceUpdate(const DeviceBase *device, const Buffer &buff
std::transform(srcsamples.get(), srcsamples.get()+first_size, mFilter[c].rbegin(),
[](const double d) noexcept -> float { return static_cast<float>(d); });
+ auto fftbuffer = std::vector<std::complex<double>>(ConvolveUpdateSize);
size_t done{first_size};
for(size_t s{0};s < mNumConvolveSegs;++s)
{
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
- auto iter = std::copy_n(&srcsamples[done], todo, mFftBuffer.begin());
+ auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer.begin());
done += todo;
- std::fill(iter, mFftBuffer.end(), complex_d{});
+ std::fill(iter, fftbuffer.end(), std::complex<double>{});
- forward_fft(mFftBuffer);
- filteriter = std::copy_n(mFftBuffer.cbegin(), m, filteriter);
+ forward_fft<double>(fftbuffer);
+ filteriter = std::copy_n(fftbuffer.cbegin(), m, filteriter);
}
}
}
@@ -537,20 +538,20 @@ void ConvolutionState::process(const size_t samplesToDo,
* frequency bins to the FFT history.
*/
auto fftiter = std::copy_n(mInput.cbegin(), ConvolveUpdateSamples, mFftBuffer.begin());
- std::fill(fftiter, mFftBuffer.end(), complex_d{});
- forward_fft(mFftBuffer);
+ std::fill(fftiter, mFftBuffer.end(), complex_f{});
+ forward_fft<float>(mFftBuffer);
std::copy_n(mFftBuffer.cbegin(), m, &mComplexData[curseg*m]);
- const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
+ const complex_f *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
for(size_t c{0};c < chans.size();++c)
{
- std::fill_n(mFftBuffer.begin(), m, complex_d{});
+ std::fill_n(mFftBuffer.begin(), m, complex_f{});
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
- const complex_d *RESTRICT input{&mComplexData[curseg*m]};
+ const complex_f *RESTRICT input{&mComplexData[curseg*m]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
for(size_t i{0};i < m;++i,++input,++filter)
@@ -574,19 +575,17 @@ void ConvolutionState::process(const size_t samplesToDo,
* second-half samples (and this output's second half is
* subsequently saved for next time).
*/
- inverse_fft(mFftBuffer);
+ inverse_fft<float>(mFftBuffer);
/* The iFFT'd response is scaled up by the number of bins, so apply
* the inverse to normalize the output.
*/
for(size_t i{0};i < ConvolveUpdateSamples;++i)
mOutput[c][i] =
- static_cast<float>(mFftBuffer[i].real() * (1.0/double{ConvolveUpdateSize})) +
- mOutput[c][ConvolveUpdateSamples+i];
+ (mFftBuffer[i].real()+mOutput[c][ConvolveUpdateSamples+i]) *
+ (1.0f/float{ConvolveUpdateSize});
for(size_t i{0};i < ConvolveUpdateSamples;++i)
- mOutput[c][ConvolveUpdateSamples+i] =
- static_cast<float>(mFftBuffer[ConvolveUpdateSamples+i].real() *
- (1.0/double{ConvolveUpdateSize}));
+ mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
}
/* Shift the input history. */
diff --git a/alc/effects/pshifter.cpp b/alc/effects/pshifter.cpp
index b1f6d859..f8409292 100644
--- a/alc/effects/pshifter.cpp
+++ b/alc/effects/pshifter.cpp
@@ -184,7 +184,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
mFftBuffer[k] = mFIFO[src] * HannWindow[k];
for(size_t src{0u}, k{STFT_SIZE-mPos};src < mPos;++src,++k)
mFftBuffer[k] = mFIFO[src] * HannWindow[k];
- forward_fft(mFftBuffer);
+ forward_fft<double>(mFftBuffer);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
@@ -243,7 +243,7 @@ void PshifterState::process(const size_t samplesToDo, const al::span<const Float
/* Apply an inverse FFT to get the time-domain siganl, and accumulate
* for the output with windowing.
*/
- inverse_fft(mFftBuffer);
+ inverse_fft<double>(mFftBuffer);
for(size_t dst{mPos}, k{0u};dst < STFT_SIZE;++dst,++k)
mOutputAccum[dst] += HannWindow[k]*mFftBuffer[k].real() * (4.0/OVERSAMP/STFT_SIZE);
for(size_t dst{0u}, k{STFT_SIZE-mPos};dst < mPos;++dst,++k)