diff options
Diffstat (limited to 'common/bsinc_tables.cpp')
-rw-r--r-- | common/bsinc_tables.cpp | 340 |
1 files changed, 340 insertions, 0 deletions
diff --git a/common/bsinc_tables.cpp b/common/bsinc_tables.cpp new file mode 100644 index 00000000..99033a0b --- /dev/null +++ b/common/bsinc_tables.cpp @@ -0,0 +1,340 @@ + +#include "bsinc_tables.h" + +#include <algorithm> +#include <cassert> +#include <cmath> +#include <limits> +#include <stdexcept> + +#include "math_defs.h" +#include "vector.h" + + +namespace { + +/* The max points includes the doubling for downsampling, so the maximum number + * of base sample points is 24, which is 23rd order. + */ +constexpr int BSincPointsMax{BSINC_POINTS_MAX}; +constexpr int BSincPointsHalf{BSincPointsMax / 2}; + +constexpr int BSincPhaseCount{BSINC_PHASE_COUNT}; +constexpr int BSincScaleCount{BSINC_SCALE_COUNT}; + + +template<typename T> +constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sqrt(T x) +{ + if(!(x >= 0 && x < std::numeric_limits<double>::infinity())) + throw std::domain_error{"Invalid sqrt value"}; + + T cur{x}, prev{0}; + while(cur != prev) + { + prev = cur; + cur = 0.5f*(cur + x/cur); + } + return cur; +} + +template<typename T> +constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sin(T x) +{ + if(x >= al::MathDefs<T>::Tau()) + { + if(!(x < 65536)) + throw std::domain_error{"Invalid sin value"}; + do { + x -= al::MathDefs<T>::Tau(); + } while(x >= al::MathDefs<T>::Tau()); + } + else if(x < 0) + { + if(!(x > -65536)) + throw std::domain_error{"Invalid sin value"}; + do { + x += al::MathDefs<T>::Tau(); + } while(x < 0); + } + + T prev{x}, n{6}; + int i{4}, s{-1}; + const T xx{x*x}; + T t{xx*x}; + + T cur{prev + t*s/n}; + while(prev != cur) + { + prev = cur; + n *= i*(i+1); + i += 2; + s = -s; + t *= xx; + + cur += t*s/n; + } + return cur; +} + + +/* This is the normalized cardinal sine (sinc) function. + * + * sinc(x) = { 1, x = 0 + * { sin(pi x) / (pi x), otherwise. + */ +constexpr double Sinc(const double x) +{ + if(std::abs(x) < 1e-15) + return 1.0; + return sin(al::MathDefs<double>::Pi()*x) / (al::MathDefs<double>::Pi()*x); +} + +/* The zero-order modified Bessel function of the first kind, used for the + * Kaiser window. + * + * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) + * = sum_{k=0}^inf ((x / 2)^k / k!)^2 + */ +constexpr double BesselI_0(const double x) +{ + /* Start at k=1 since k=0 is trivial. */ + const double x2{x / 2.0}; + double term{1.0}; + double sum{1.0}; + double last_sum{}; + int k{1}; + + /* Let the integration converge until the term of the sum is no longer + * significant. + */ + do { + const double y{x2 / k}; + ++k; + last_sum = sum; + term *= y * y; + sum += term; + } while(sum != last_sum); + + return sum; +} + +/* Calculate a Kaiser window from the given beta value and a normalized k + * [-1, 1]. + * + * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 + * { 0, elsewhere. + * + * Where k can be calculated as: + * + * k = i / l, where -l <= i <= l. + * + * or: + * + * k = 2 i / M - 1, where 0 <= i <= M. + */ +constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta) +{ + if(!(k >= -1.0 && k <= 1.0)) + return 0.0; + return BesselI_0(beta * sqrt(1.0 - k*k)) / besseli_0_beta; +} + +/* Calculates the (normalized frequency) transition width of the Kaiser window. + * Rejection is in dB. + */ +constexpr double CalcKaiserWidth(const double rejection, const int order) +{ + if(rejection > 21.19) + return (rejection - 7.95) / (order * 2.285 * al::MathDefs<double>::Tau()); + /* This enforces a minimum rejection of just above 21.18dB */ + return 5.79 / (order * al::MathDefs<double>::Tau()); +} + +/* Calculates the beta value of the Kaiser window. Rejection is in dB. */ +constexpr double CalcKaiserBeta(const double rejection) +{ + if(rejection > 50.0) + return 0.1102 * (rejection-8.7); + else if(rejection >= 21.0) + return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0)); + return 0.0; +} + + +struct BSincHeader { + double width; + double beta; + double scaleBase; + double scaleRange; + double besseli_0_beta; + + int a[BSINC_SCALE_COUNT]; + int total_size; +}; + +constexpr BSincHeader GenerateBSincHeader(int Rejection, int Order) +{ + BSincHeader ret{}; + ret.width = CalcKaiserWidth(Rejection, Order); + ret.beta = CalcKaiserBeta(Rejection); + ret.scaleBase = ret.width / 2.0; + ret.scaleRange = 1.0 - ret.scaleBase; + ret.besseli_0_beta = BesselI_0(ret.beta); + + int num_points{Order+1}; + for(int si{0};si < BSincScaleCount;++si) + { + const double scale{ret.scaleBase + (ret.scaleRange * si / (BSincScaleCount - 1))}; + const int a{std::min(static_cast<int>(num_points / 2.0 / scale), num_points)}; + const int m{2 * a}; + + ret.a[si] = a; + ret.total_size += 4 * BSincPhaseCount * ((m+3) & ~3); + } + + return ret; +} + +/* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop + * at nyquist. Each filter will scale up the order when downsampling, to 23 and + * 47th order respectively. + */ +constexpr BSincHeader bsinc12_hdr{GenerateBSincHeader(60, 11)}; +constexpr BSincHeader bsinc24_hdr{GenerateBSincHeader(60, 23)}; + + +/* std::array is missing constexpr for several methods. */ +template<typename T, size_t N> +struct Array { + T data[N]; +}; + +template<size_t total_size> +constexpr auto GenerateBSincCoeffs(const BSincHeader hdr) +{ + double filter[BSincScaleCount][BSincPhaseCount+1][BSincPointsMax]{}; + double phDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{}; + double scDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{}; + double spDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{}; + + /* Calculate the Kaiser-windowed Sinc filter coefficients for each scale + * and phase. + */ + for(unsigned int si{0};si < BSincScaleCount;++si) + { + const int m{hdr.a[si] * 2}; + const int o{BSincPointsHalf - (m/2)}; + const int l{hdr.a[si] - 1}; + const int a{hdr.a[si]}; + const double scale{hdr.scaleBase + (hdr.scaleRange * si / (BSincScaleCount - 1))}; + const double cutoff{scale - (hdr.scaleBase * std::max(0.5, scale) * 2.0)}; + + for(int pi{0};pi <= BSincPhaseCount;++pi) + { + const double phase{l + (pi/double{BSincPhaseCount})}; + + for(int i{0};i < m;++i) + { + const double x{i - phase}; + filter[si][pi][o + i] = Kaiser(hdr.beta, x/a, hdr.besseli_0_beta) * cutoff * + Sinc(cutoff*x); + } + } + } + + /* Linear interpolation between phases is simplified by pre-calculating the + * delta (b - a) in: x = a + f (b - a) + */ + for(unsigned int si{0};si < BSincScaleCount;++si) + { + const int m{hdr.a[si] * 2}; + const int o{BSincPointsHalf - (m/2)}; + + for(int pi{0};pi < BSincPhaseCount;++pi) + { + for(int i{0};i < m;++i) + phDeltas[si][pi][o + i] = filter[si][pi + 1][o + i] - filter[si][pi][o + i]; + } + } + + /* Linear interpolation between scales is also simplified. + * + * Given a difference in points between scales, the destination points will + * be 0, thus: x = a + f (-a) + */ + for(unsigned int si{0};si < (BSincScaleCount-1);++si) + { + const int m{hdr.a[si] * 2}; + const int o{BSincPointsHalf - (m/2)}; + + for(int pi{0};pi < BSincPhaseCount;++pi) + { + for(int i{0};i < m;++i) + scDeltas[si][pi][o + i] = filter[si + 1][pi][o + i] - filter[si][pi][o + i]; + } + } + + /* This last simplification is done to complete the bilinear equation for + * the combination of phase and scale. + */ + for(unsigned int si{0};si < (BSincScaleCount-1);++si) + { + const int m{hdr.a[si] * 2}; + const int o{BSincPointsHalf - (m/2)}; + + for(int pi{0};pi < BSincPhaseCount;++pi) + { + for(int i{0};i < m;++i) + spDeltas[si][pi][o + i] = phDeltas[si + 1][pi][o + i] - phDeltas[si][pi][o + i]; + } + } + + Array<float,total_size> ret{}; + size_t idx{0}; + + for(unsigned int si{0};si < BSincScaleCount;++si) + { + const int m{((hdr.a[si]*2) + 3) & ~3}; + const int o{BSincPointsHalf - (m/2)}; + + for(int pi{0};pi < BSincPhaseCount;++pi) + { + for(int i{0};i < m;++i) + ret.data[idx++] = static_cast<float>(filter[si][pi][o + i]); + for(int i{0};i < m;++i) + ret.data[idx++] = static_cast<float>(phDeltas[si][pi][o + i]); + for(int i{0};i < m;++i) + ret.data[idx++] = static_cast<float>(scDeltas[si][pi][o + i]); + for(int i{0};i < m;++i) + ret.data[idx++] = static_cast<float>(spDeltas[si][pi][o + i]); + } + } + assert(idx == total_size); + + return ret; +} + +/* FIXME: These can't be constexpr due to reaching the step limit. */ +const auto bsinc12_table = GenerateBSincCoeffs<bsinc12_hdr.total_size>(bsinc12_hdr); +const auto bsinc24_table = GenerateBSincCoeffs<bsinc24_hdr.total_size>(bsinc24_hdr); + + +constexpr BSincTable GenerateBSincTable(const BSincHeader hdr, const float *tab) +{ + BSincTable ret{}; + ret.scaleBase = static_cast<float>(hdr.scaleBase); + ret.scaleRange = static_cast<float>(1.0 / hdr.scaleRange); + for(int i{0};i < BSincScaleCount;++i) + ret.m[i] = static_cast<unsigned int>(((hdr.a[i]*2) + 3) & ~3); + ret.filterOffset[0] = 0; + for(int i{1};i < BSincScaleCount;++i) + ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1]; + ret.Tab = tab; + return ret; +} + +} // namespace + +const BSincTable bsinc12{GenerateBSincTable(bsinc12_hdr, bsinc12_table.data)}; +const BSincTable bsinc24{GenerateBSincTable(bsinc24_hdr, bsinc24_table.data)}; |