aboutsummaryrefslogtreecommitdiffstats
path: root/common
diff options
context:
space:
mode:
Diffstat (limited to 'common')
-rw-r--r--common/polyphase_resampler.cpp214
-rw-r--r--common/polyphase_resampler.h45
2 files changed, 259 insertions, 0 deletions
diff --git a/common/polyphase_resampler.cpp b/common/polyphase_resampler.cpp
new file mode 100644
index 00000000..4605b732
--- /dev/null
+++ b/common/polyphase_resampler.cpp
@@ -0,0 +1,214 @@
+
+#include "polyphase_resampler.h"
+
+#include <algorithm>
+#include <cmath>
+
+
+namespace {
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+#define EPSILON 1e-9
+
+using uint = unsigned int;
+
+/* This is the normalized cardinal sine (sinc) function.
+ *
+ * sinc(x) = { 1, x = 0
+ * { sin(pi x) / (pi x), otherwise.
+ */
+double Sinc(const double x)
+{
+ if(std::abs(x) < EPSILON)
+ return 1.0;
+ return std::sin(M_PI * x) / (M_PI * x);
+}
+
+/* The zero-order modified Bessel function of the first kind, used for the
+ * Kaiser window.
+ *
+ * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
+ * = sum_{k=0}^inf ((x / 2)^k / k!)^2
+ */
+double BesselI_0(const double x)
+{
+ double term, sum, x2, y, last_sum;
+ int k;
+
+ // Start at k=1 since k=0 is trivial.
+ term = 1.0;
+ sum = 1.0;
+ x2 = x/2.0;
+ k = 1;
+
+ // Let the integration converge until the term of the sum is no longer
+ // significant.
+ do {
+ y = x2 / k;
+ k++;
+ last_sum = sum;
+ term *= y * y;
+ sum += term;
+ } while(sum != last_sum);
+ return sum;
+}
+
+/* Calculate a Kaiser window from the given beta value and a normalized k
+ * [-1, 1].
+ *
+ * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
+ * { 0, elsewhere.
+ *
+ * Where k can be calculated as:
+ *
+ * k = i / l, where -l <= i <= l.
+ *
+ * or:
+ *
+ * k = 2 i / M - 1, where 0 <= i <= M.
+ */
+double Kaiser(const double b, const double k)
+{
+ if(!(k >= -1.0 && k <= 1.0))
+ return 0.0;
+ return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
+}
+
+// Calculates the greatest common divisor of a and b.
+uint Gcd(uint x, uint y)
+{
+ while(y > 0)
+ {
+ uint z{y};
+ y = x % y;
+ x = z;
+ }
+ return x;
+}
+
+/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
+ * the transition width is normalized frequency (0.5 is nyquist).
+ *
+ * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
+ * { ceil(5.79 / 2 pi f_t), r <= 21.
+ *
+ */
+uint CalcKaiserOrder(const double rejection, const double transition)
+{
+ double w_t = 2.0 * M_PI * transition;
+ if(rejection > 21.0)
+ return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
+ return static_cast<uint>(std::ceil(5.79 / w_t));
+}
+
+// Calculates the beta value of the Kaiser window. Rejection is in dB.
+double CalcKaiserBeta(const double rejection)
+{
+ if(rejection > 50.0)
+ return 0.1102 * (rejection - 8.7);
+ if(rejection >= 21.0)
+ return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
+ (0.07886 * (rejection - 21.0));
+ return 0.0;
+}
+
+/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
+ * width, beta, gain, and cutoff. The point is specified in non-normalized
+ * samples, from 0 to M, where M = (2 l + 1).
+ *
+ * w(k) 2 p f_t sinc(2 f_t x)
+ *
+ * x -- centered sample index (i - l)
+ * k -- normalized and centered window index (x / l)
+ * w(k) -- window function (Kaiser)
+ * p -- gain compensation factor when sampling
+ * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
+ */
+double SincFilter(const uint l, const double b, const double gain, const double cutoff,
+ const uint i)
+{
+ const double x{static_cast<double>(i) - l};
+ return Kaiser(b, x / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * x);
+}
+
+} // namespace
+
+// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
+// that's used to cut frequencies above the destination nyquist.
+void PPhaseResampler::init(const uint srcRate, const uint dstRate)
+{
+ const uint gcd{Gcd(srcRate, dstRate)};
+ mP = dstRate / gcd;
+ mQ = srcRate / gcd;
+
+ /* The cutoff is adjusted by half the transition width, so the transition
+ * ends before the nyquist (0.5). Both are scaled by the downsampling
+ * factor.
+ */
+ double cutoff, width;
+ if(mP > mQ)
+ {
+ cutoff = 0.475 / mP;
+ width = 0.05 / mP;
+ }
+ else
+ {
+ cutoff = 0.475 / mQ;
+ width = 0.05 / mQ;
+ }
+ // A rejection of -180 dB is used for the stop band. Round up when
+ // calculating the left offset to avoid increasing the transition width.
+ const uint l{(CalcKaiserOrder(180.0, width)+1) / 2};
+ const double beta{CalcKaiserBeta(180.0)};
+ mM = l*2 + 1;
+ mL = l;
+ mF.resize(mM);
+ for(uint i{0};i < mM;i++)
+ mF[i] = SincFilter(l, beta, mP, cutoff, i);
+}
+
+// Perform the upsample-filter-downsample resampling operation using a
+// polyphase filter implementation.
+void PPhaseResampler::process(const uint inN, const double *in, const uint outN, double *out)
+{
+ if(outN == 0)
+ return;
+
+ const uint p{mP}, q{mQ}, m{mM}, l{mL};
+
+ // Handle in-place operation.
+ std::vector<double> workspace;
+ double *work{out};
+ if(work == in)
+ {
+ workspace.resize(outN);
+ work = workspace.data();
+ }
+
+ // Resample the input.
+ const double *f{mF.data()};
+ for(uint i{0};i < outN;i++)
+ {
+ double r{0.0};
+ // Input starts at l to compensate for the filter delay. This will
+ // drop any build-up from the first half of the filter.
+ uint j_f{(l + (q * i)) % p};
+ uint j_s{(l + (q * i)) / p};
+ while(j_f < m)
+ {
+ // Only take input when 0 <= j_s < inN. This single unsigned
+ // comparison catches both cases.
+ if(j_s < inN)
+ r += f[j_f] * in[j_s];
+ j_f += p;
+ j_s--;
+ }
+ work[i] = r;
+ }
+ // Clean up after in-place operation.
+ if(work != out)
+ std::copy_n(work, outN, out);
+}
diff --git a/common/polyphase_resampler.h b/common/polyphase_resampler.h
new file mode 100644
index 00000000..e9833d12
--- /dev/null
+++ b/common/polyphase_resampler.h
@@ -0,0 +1,45 @@
+#ifndef POLYPHASE_RESAMPLER_H
+#define POLYPHASE_RESAMPLER_H
+
+#include <vector>
+
+
+/* This is a polyphase sinc-filtered resampler. It is built for very high
+ * quality results, rather than real-time performance.
+ *
+ * Upsample Downsample
+ *
+ * p/q = 3/2 p/q = 3/5
+ *
+ * M-+-+-+-> M-+-+-+->
+ * -------------------+ ---------------------+
+ * p s * f f f f|f| | p s * f f f f f |
+ * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
+ * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
+ * s * f|f|f f f | s * f f|f|f f |
+ * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
+ * --------+=+--------+ 0 * |0|0 0 0 0 |
+ * d . d .|d|. d . d ----------+=+--------+
+ * d . . . .|d|. . . .
+ * q->
+ * q-+-+-+->
+ *
+ * P_f(i,j) = q i mod p + pj
+ * P_s(i,j) = floor(q i / p) - j
+ * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
+ * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
+ * { 0, P_f(i,j) >= M. }
+ */
+
+struct PPhaseResampler {
+ using uint = unsigned int;
+
+ void init(const uint srcRate, const uint dstRate);
+ void process(const uint inN, const double *in, const uint outN, double *out);
+
+private:
+ uint mP, mQ, mM, mL;
+ std::vector<double> mF;
+};
+
+#endif /* POLYPHASE_RESAMPLER_H */