diff options
Diffstat (limited to 'core/mixer/mixer_sse.cpp')
-rw-r--r-- | core/mixer/mixer_sse.cpp | 327 |
1 files changed, 327 insertions, 0 deletions
diff --git a/core/mixer/mixer_sse.cpp b/core/mixer/mixer_sse.cpp new file mode 100644 index 00000000..0aa5d5fb --- /dev/null +++ b/core/mixer/mixer_sse.cpp @@ -0,0 +1,327 @@ +#include "config.h" + +#include <xmmintrin.h> + +#include <cmath> +#include <limits> + +#include "alnumeric.h" +#include "core/bsinc_defs.h" +#include "core/cubic_defs.h" +#include "defs.h" +#include "hrtfbase.h" + +struct SSETag; +struct CubicTag; +struct BSincTag; +struct FastBSincTag; + + +#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__) +#pragma GCC target("sse") +#endif + +namespace { + +constexpr uint BSincPhaseDiffBits{MixerFracBits - BSincPhaseBits}; +constexpr uint BSincPhaseDiffOne{1 << BSincPhaseDiffBits}; +constexpr uint BSincPhaseDiffMask{BSincPhaseDiffOne - 1u}; + +constexpr uint CubicPhaseDiffBits{MixerFracBits - CubicPhaseBits}; +constexpr uint CubicPhaseDiffOne{1 << CubicPhaseDiffBits}; +constexpr uint CubicPhaseDiffMask{CubicPhaseDiffOne - 1u}; + +#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z)) + +inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs, + const float left, const float right) +{ + const __m128 lrlr{_mm_setr_ps(left, right, left, right)}; + + ASSUME(IrSize >= MinIrLength); + /* This isn't technically correct to test alignment, but it's true for + * systems that support SSE, which is the only one that needs to know the + * alignment of Values (which alternates between 8- and 16-byte aligned). + */ + if(!(reinterpret_cast<uintptr_t>(Values)&15)) + { + for(size_t i{0};i < IrSize;i += 2) + { + const __m128 coeffs{_mm_load_ps(Coeffs[i].data())}; + __m128 vals{_mm_load_ps(Values[i].data())}; + vals = MLA4(vals, lrlr, coeffs); + _mm_store_ps(Values[i].data(), vals); + } + } + else + { + __m128 imp0, imp1; + __m128 coeffs{_mm_load_ps(Coeffs[0].data())}; + __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(Values[0].data()))}; + imp0 = _mm_mul_ps(lrlr, coeffs); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(Values[0].data()), vals); + size_t td{((IrSize+1)>>1) - 1}; + size_t i{1}; + do { + coeffs = _mm_load_ps(Coeffs[i+1].data()); + vals = _mm_load_ps(Values[i].data()); + imp1 = _mm_mul_ps(lrlr, coeffs); + imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2)); + vals = _mm_add_ps(imp0, vals); + _mm_store_ps(Values[i].data(), vals); + imp0 = imp1; + i += 2; + } while(--td); + vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(Values[i].data())); + imp0 = _mm_movehl_ps(imp0, imp0); + vals = _mm_add_ps(imp0, vals); + _mm_storel_pi(reinterpret_cast<__m64*>(Values[i].data()), vals); + } +} + +force_inline void MixLine(const al::span<const float> InSamples, float *RESTRICT dst, + float &CurrentGain, const float TargetGain, const float delta, const size_t min_len, + const size_t aligned_len, size_t Counter) +{ + float gain{CurrentGain}; + const float step{(TargetGain-gain) * delta}; + + size_t pos{0}; + if(!(std::abs(step) > std::numeric_limits<float>::epsilon())) + gain = TargetGain; + else + { + float step_count{0.0f}; + /* Mix with applying gain steps in aligned multiples of 4. */ + if(size_t todo{min_len >> 2}) + { + const __m128 four4{_mm_set1_ps(4.0f)}; + const __m128 step4{_mm_set1_ps(step)}; + const __m128 gain4{_mm_set1_ps(gain)}; + __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)}; + do { + const __m128 val4{_mm_load_ps(&InSamples[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; + + /* dry += val * (gain + step*step_count) */ + dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4)); + + _mm_store_ps(&dst[pos], dry4); + step_count4 = _mm_add_ps(step_count4, four4); + pos += 4; + } while(--todo); + /* NOTE: step_count4 now represents the next four counts after the + * last four mixed samples, so the lowest element represents the + * next step count to apply. + */ + step_count = _mm_cvtss_f32(step_count4); + } + /* Mix with applying left over gain steps that aren't aligned multiples of 4. */ + for(size_t leftover{min_len&3};leftover;++pos,--leftover) + { + dst[pos] += InSamples[pos] * (gain + step*step_count); + step_count += 1.0f; + } + if(pos == Counter) + gain = TargetGain; + else + gain += step*step_count; + + /* Mix until pos is aligned with 4 or the mix is done. */ + for(size_t leftover{aligned_len&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; + } + CurrentGain = gain; + + if(!(std::abs(gain) > GainSilenceThreshold)) + return; + if(size_t todo{(InSamples.size()-pos) >> 2}) + { + const __m128 gain4{_mm_set1_ps(gain)}; + do { + const __m128 val4{_mm_load_ps(&InSamples[pos])}; + __m128 dry4{_mm_load_ps(&dst[pos])}; + dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4)); + _mm_store_ps(&dst[pos], dry4); + pos += 4; + } while(--todo); + } + for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover) + dst[pos] += InSamples[pos] * gain; +} + +} // namespace + +template<> +void Resample_<CubicTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ + ASSUME(frac < MixerFracOne); + + const CubicCoefficients *RESTRICT filter = al::assume_aligned<16>(state->cubic.filter); + + src -= 1; + for(float &out_sample : dst) + { + const uint pi{frac >> CubicPhaseDiffBits}; + const float pf{static_cast<float>(frac&CubicPhaseDiffMask) * (1.0f/CubicPhaseDiffOne)}; + const __m128 pf4{_mm_set1_ps(pf)}; + + /* Apply the phase interpolated filter. */ + + /* f = fil + pf*phd */ + const __m128 f4 = MLA4(_mm_load_ps(filter[pi].mCoeffs), pf4, + _mm_load_ps(filter[pi].mDeltas)); + /* r = f*src */ + __m128 r4{_mm_mul_ps(f4, _mm_loadu_ps(src))}; + + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + out_sample = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } +} + +template<> +void Resample_<BSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const __m128 sf4{_mm_set1_ps(state->bsinc.sf)}; + const size_t m{state->bsinc.m}; + ASSUME(m > 0); + ASSUME(frac < MixerFracOne); + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> BSincPhaseDiffBits}; + const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)}; + + // Apply the scale and phase interpolated filter. + __m128 r4{_mm_setzero_ps()}; + { + const __m128 pf4{_mm_set1_ps(pf)}; + const float *RESTRICT fil{filter + m*pi*2}; + const float *RESTRICT phd{fil + m}; + const float *RESTRICT scd{fil + BSincPhaseCount*2*m}; + const float *RESTRICT spd{scd + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */ + const __m128 f4 = MLA4( + MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])), + pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j]))); + /* r += f*src */ + r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); + j += 4; + } while(--td); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + out_sample = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } +} + +template<> +void Resample_<FastBSincTag,SSETag>(const InterpState *state, const float *RESTRICT src, uint frac, + const uint increment, const al::span<float> dst) +{ + const float *const filter{state->bsinc.filter}; + const size_t m{state->bsinc.m}; + ASSUME(m > 0); + ASSUME(frac < MixerFracOne); + + src -= state->bsinc.l; + for(float &out_sample : dst) + { + // Calculate the phase index and factor. + const uint pi{frac >> BSincPhaseDiffBits}; + const float pf{static_cast<float>(frac&BSincPhaseDiffMask) * (1.0f/BSincPhaseDiffOne)}; + + // Apply the phase interpolated filter. + __m128 r4{_mm_setzero_ps()}; + { + const __m128 pf4{_mm_set1_ps(pf)}; + const float *RESTRICT fil{filter + m*pi*2}; + const float *RESTRICT phd{fil + m}; + size_t td{m >> 2}; + size_t j{0u}; + + do { + /* f = fil + pf*phd */ + const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j])); + /* r += f*src */ + r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j])); + j += 4; + } while(--td); + } + r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3))); + r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); + out_sample = _mm_cvtss_f32(r4); + + frac += increment; + src += frac>>MixerFracBits; + frac &= MixerFracMask; + } +} + + +template<> +void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const MixHrtfFilter *hrtfparams, const size_t BufferSize) +{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); } + +template<> +void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize, + const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize) +{ + MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams, + BufferSize); +} + +template<> +void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut, + const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, + float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize) +{ + MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState, + IrSize, BufferSize); +} + + +template<> +void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer, + float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; + + for(FloatBufferLine &output : OutBuffer) + MixLine(InSamples, al::assume_aligned<16>(output.data()+OutPos), *CurrentGains++, + *TargetGains++, delta, min_len, aligned_len, Counter); +} + +template<> +void Mix_<SSETag>(const al::span<const float> InSamples, float *OutBuffer, float &CurrentGain, + const float TargetGain, const size_t Counter) +{ + const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f}; + const auto min_len = minz(Counter, InSamples.size()); + const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len; + + MixLine(InSamples, al::assume_aligned<16>(OutBuffer), CurrentGain, TargetGain, delta, min_len, + aligned_len, Counter); +} |