aboutsummaryrefslogtreecommitdiffstats
path: root/core/voice.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/voice.cpp')
-rw-r--r--core/voice.cpp1304
1 files changed, 1304 insertions, 0 deletions
diff --git a/core/voice.cpp b/core/voice.cpp
new file mode 100644
index 00000000..e8fbcccd
--- /dev/null
+++ b/core/voice.cpp
@@ -0,0 +1,1304 @@
+
+#include "config.h"
+
+#include "voice.h"
+
+#include <algorithm>
+#include <array>
+#include <atomic>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <new>
+#include <stdlib.h>
+#include <utility>
+#include <vector>
+
+#include "albyte.h"
+#include "alnumeric.h"
+#include "aloptional.h"
+#include "alspan.h"
+#include "alstring.h"
+#include "ambidefs.h"
+#include "async_event.h"
+#include "buffer_storage.h"
+#include "context.h"
+#include "cpu_caps.h"
+#include "devformat.h"
+#include "device.h"
+#include "filters/biquad.h"
+#include "filters/nfc.h"
+#include "filters/splitter.h"
+#include "fmt_traits.h"
+#include "logging.h"
+#include "mixer.h"
+#include "mixer/defs.h"
+#include "mixer/hrtfdefs.h"
+#include "opthelpers.h"
+#include "resampler_limits.h"
+#include "ringbuffer.h"
+#include "vector.h"
+#include "voice_change.h"
+
+struct CTag;
+#ifdef HAVE_SSE
+struct SSETag;
+#endif
+#ifdef HAVE_NEON
+struct NEONTag;
+#endif
+
+
+static_assert(!(sizeof(DeviceBase::MixerBufferLine)&15),
+ "DeviceBase::MixerBufferLine must be a multiple of 16 bytes");
+static_assert(!(MaxResamplerEdge&3), "MaxResamplerEdge is not a multiple of 4");
+
+static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
+static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
+ "MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
+
+Resampler ResamplerDefault{Resampler::Cubic};
+
+namespace {
+
+using uint = unsigned int;
+using namespace std::chrono;
+
+using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const uint IrSize,
+ const MixHrtfFilter *hrtfparams, const size_t BufferSize);
+using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
+ const uint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
+ const size_t BufferSize);
+
+HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
+HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};
+
+inline MixerOutFunc SelectMixer()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Mix_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return Mix_<SSETag>;
+#endif
+ return Mix_<CTag>;
+}
+
+inline MixerOneFunc SelectMixerOne()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return Mix_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return Mix_<SSETag>;
+#endif
+ return Mix_<CTag>;
+}
+
+inline HrtfMixerFunc SelectHrtfMixer()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return MixHrtf_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixHrtf_<SSETag>;
+#endif
+ return MixHrtf_<CTag>;
+}
+
+inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
+{
+#ifdef HAVE_NEON
+ if((CPUCapFlags&CPU_CAP_NEON))
+ return MixHrtfBlend_<NEONTag>;
+#endif
+#ifdef HAVE_SSE
+ if((CPUCapFlags&CPU_CAP_SSE))
+ return MixHrtfBlend_<SSETag>;
+#endif
+ return MixHrtfBlend_<CTag>;
+}
+
+} // namespace
+
+void Voice::InitMixer(al::optional<std::string> resampler)
+{
+ if(resampler)
+ {
+ struct ResamplerEntry {
+ const char name[16];
+ const Resampler resampler;
+ };
+ constexpr ResamplerEntry ResamplerList[]{
+ { "none", Resampler::Point },
+ { "point", Resampler::Point },
+ { "linear", Resampler::Linear },
+ { "cubic", Resampler::Cubic },
+ { "bsinc12", Resampler::BSinc12 },
+ { "fast_bsinc12", Resampler::FastBSinc12 },
+ { "bsinc24", Resampler::BSinc24 },
+ { "fast_bsinc24", Resampler::FastBSinc24 },
+ };
+
+ const char *str{resampler->c_str()};
+ if(al::strcasecmp(str, "bsinc") == 0)
+ {
+ WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
+ str = "bsinc12";
+ }
+ else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
+ {
+ WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
+ str = "cubic";
+ }
+
+ auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
+ [str](const ResamplerEntry &entry) -> bool
+ { return al::strcasecmp(str, entry.name) == 0; });
+ if(iter == std::end(ResamplerList))
+ ERR("Invalid resampler: %s\n", str);
+ else
+ ResamplerDefault = iter->resampler;
+ }
+
+ MixSamplesOut = SelectMixer();
+ MixSamplesOne = SelectMixerOne();
+ MixHrtfBlendSamples = SelectHrtfBlendMixer();
+ MixHrtfSamples = SelectHrtfMixer();
+}
+
+
+namespace {
+
+/* IMA ADPCM Stepsize table */
+constexpr int IMAStep_size[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19,
+ 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55,
+ 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157,
+ 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449,
+ 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
+ 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660,
+ 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,
+ 11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794,
+ 32767
+};
+
+/* IMA4 ADPCM Codeword decode table */
+constexpr int IMA4Codeword[16] = {
+ 1, 3, 5, 7, 9, 11, 13, 15,
+ -1,-3,-5,-7,-9,-11,-13,-15,
+};
+
+/* IMA4 ADPCM Step index adjust decode table */
+constexpr int IMA4Index_adjust[16] = {
+ -1,-1,-1,-1, 2, 4, 6, 8,
+ -1,-1,-1,-1, 2, 4, 6, 8
+};
+
+/* MSADPCM Adaption table */
+constexpr int MSADPCMAdaption[16] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 768, 614, 512, 409, 307, 230, 230, 230
+};
+
+/* MSADPCM Adaption Coefficient tables */
+constexpr int MSADPCMAdaptionCoeff[7][2] = {
+ { 256, 0 },
+ { 512, -256 },
+ { 0, 0 },
+ { 192, 64 },
+ { 240, 0 },
+ { 460, -208 },
+ { 392, -232 }
+};
+
+
+void SendSourceStoppedEvent(ContextBase *context, uint id)
+{
+ RingBuffer *ring{context->mAsyncEvents.get()};
+ auto evt_vec = ring->getWriteVector();
+ if(evt_vec.first.len < 1) return;
+
+ AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
+ AsyncEvent::SourceStateChange)};
+ evt->u.srcstate.id = id;
+ evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
+
+ ring->writeAdvance(1);
+}
+
+
+const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
+ const al::span<const float> src, int type)
+{
+ switch(type)
+ {
+ case AF_None:
+ lpfilter.clear();
+ hpfilter.clear();
+ break;
+
+ case AF_LowPass:
+ lpfilter.process(src, dst);
+ hpfilter.clear();
+ return dst;
+ case AF_HighPass:
+ lpfilter.clear();
+ hpfilter.process(src, dst);
+ return dst;
+
+ case AF_BandPass:
+ DualBiquad{lpfilter, hpfilter}.process(src, dst);
+ return dst;
+ }
+ return src.data();
+}
+
+
+template<FmtType Type>
+inline void LoadSamples(float *RESTRICT dstSamples, const al::byte *src, const size_t srcChan,
+ const size_t srcOffset, const size_t srcStep, const size_t /*samplesPerBlock*/,
+ const size_t samplesToLoad) noexcept
+{
+ constexpr size_t sampleSize{sizeof(typename al::FmtTypeTraits<Type>::Type)};
+ auto s = src + (srcOffset*srcStep + srcChan)*sampleSize;
+
+ al::LoadSampleArray<Type>(dstSamples, s, srcStep, samplesToLoad);
+}
+
+template<>
+inline void LoadSamples<FmtIMA4>(float *RESTRICT dstSamples, const al::byte *src,
+ const size_t srcChan, const size_t srcOffset, const size_t srcStep,
+ const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
+{
+ const size_t blockBytes{((samplesPerBlock-1)/2 + 4)*srcStep};
+
+ /* Skip to the ADPCM block containing the srcOffset sample. */
+ src += srcOffset/samplesPerBlock*blockBytes;
+ /* Calculate how many samples need to be skipped in the block. */
+ size_t skip{srcOffset % samplesPerBlock};
+
+ /* NOTE: This could probably be optimized better. */
+ size_t wrote{0};
+ do {
+ /* Each IMA4 block starts with a signed 16-bit sample, and a signed
+ * 16-bit table index. The table index needs to be clamped.
+ */
+ int sample{src[srcChan*4] | (src[srcChan*4 + 1] << 8)};
+ int index{src[srcChan*4 + 2] | (src[srcChan*4 + 3] << 8)};
+
+ sample = (sample^0x8000) - 32768;
+ index = clampi((index^0x8000) - 32768, 0, al::size(IMAStep_size)-1);
+
+ if(skip == 0)
+ {
+ dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
+ if(wrote == samplesToLoad) return;
+ }
+ else
+ --skip;
+
+ auto decode_sample = [&sample,&index](const uint nibble)
+ {
+ sample += IMA4Codeword[nibble] * IMAStep_size[index] / 8;
+ sample = clampi(sample, -32768, 32767);
+
+ index += IMA4Index_adjust[nibble];
+ index = clampi(index, 0, al::size(IMAStep_size)-1);
+
+ return sample;
+ };
+
+ /* The rest of the block is arranged as a series of nibbles, contained
+ * in 4 *bytes* per channel interleaved. So every 8 nibbles we need to
+ * skip 4 bytes per channel to get the next nibbles for this channel.
+ *
+ * First, decode the samples that we need to skip in the block (will
+ * always be less than the block size). They need to be decoded despite
+ * being ignored for proper state on the remaining samples.
+ */
+ const al::byte *nibbleData{src + (srcStep+srcChan)*4};
+ size_t nibbleOffset{0};
+ const size_t startOffset{skip + 1};
+ for(;skip;--skip)
+ {
+ const size_t byteShift{(nibbleOffset&1) * 4};
+ const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
+ const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
+ ++nibbleOffset;
+
+ std::ignore = decode_sample((nibbleData[byteOffset]>>byteShift) & 15u);
+ }
+
+ /* Second, decode the rest of the block and write to the output, until
+ * the end of the block or the end of output.
+ */
+ const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
+ for(size_t i{0};i < todo;++i)
+ {
+ const size_t byteShift{(nibbleOffset&1) * 4};
+ const size_t wordOffset{(nibbleOffset>>1) & ~size_t{3}};
+ const size_t byteOffset{wordOffset*srcStep + ((nibbleOffset>>1)&3u)};
+ ++nibbleOffset;
+
+ const int result{decode_sample((nibbleData[byteOffset]>>byteShift) & 15u)};
+ dstSamples[wrote++] = static_cast<float>(result) / 32768.0f;
+ }
+ if(wrote == samplesToLoad)
+ return;
+
+ src += blockBytes;
+ } while(true);
+}
+
+template<>
+inline void LoadSamples<FmtMSADPCM>(float *RESTRICT dstSamples, const al::byte *src,
+ const size_t srcChan, const size_t srcOffset, const size_t srcStep,
+ const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
+{
+ const size_t blockBytes{((samplesPerBlock-2)/2 + 7)*srcStep};
+
+ src += srcOffset/samplesPerBlock*blockBytes;
+ size_t skip{srcOffset % samplesPerBlock};
+
+ size_t wrote{0};
+ do {
+ /* Each MS ADPCM block starts with an 8-bit block predictor, used to
+ * dictate how the two sample history values are mixed with the decoded
+ * sample, and an initial signed 16-bit delta value which scales the
+ * nibble sample value. This is followed by the two initial 16-bit
+ * sample history values.
+ */
+ const al::byte *input{src};
+ const uint8_t blockpred{std::min(input[srcChan], uint8_t{6})};
+ input += srcStep;
+ int delta{input[2*srcChan + 0] | (input[2*srcChan + 1] << 8)};
+ input += srcStep*2;
+
+ int sampleHistory[2]{};
+ sampleHistory[0] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
+ input += srcStep*2;
+ sampleHistory[1] = input[2*srcChan + 0] | (input[2*srcChan + 1]<<8);
+ input += srcStep*2;
+
+ const auto coeffs = al::as_span(MSADPCMAdaptionCoeff[blockpred]);
+ delta = (delta^0x8000) - 32768;
+ sampleHistory[0] = (sampleHistory[0]^0x8000) - 32768;
+ sampleHistory[1] = (sampleHistory[1]^0x8000) - 32768;
+
+ /* The second history sample is "older", so it's the first to be
+ * written out.
+ */
+ if(skip == 0)
+ {
+ dstSamples[wrote++] = static_cast<float>(sampleHistory[1]) / 32768.0f;
+ if(wrote == samplesToLoad) return;
+ dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
+ if(wrote == samplesToLoad) return;
+ }
+ else if(skip == 1)
+ {
+ --skip;
+ dstSamples[wrote++] = static_cast<float>(sampleHistory[0]) / 32768.0f;
+ if(wrote == samplesToLoad) return;
+ }
+ else
+ skip -= 2;
+
+ auto decode_sample = [&sampleHistory,&delta,coeffs](const int nibble)
+ {
+ int pred{(sampleHistory[0]*coeffs[0] + sampleHistory[1]*coeffs[1]) / 256};
+ pred += ((nibble^0x08) - 0x08) * delta;
+ pred = clampi(pred, -32768, 32767);
+
+ sampleHistory[1] = sampleHistory[0];
+ sampleHistory[0] = pred;
+
+ delta = (MSADPCMAdaption[nibble] * delta) / 256;
+ delta = maxi(16, delta);
+
+ return pred;
+ };
+
+ /* The rest of the block is a series of nibbles, interleaved per-
+ * channel. First, skip samples.
+ */
+ const size_t startOffset{skip + 2};
+ size_t nibbleOffset{srcChan};
+ for(;skip;--skip)
+ {
+ const size_t byteOffset{nibbleOffset>>1};
+ const size_t byteShift{((nibbleOffset&1)^1) * 4};
+ nibbleOffset += srcStep;
+
+ std::ignore = decode_sample((input[byteOffset]>>byteShift) & 15);
+ }
+
+ /* Now decode the rest of the block, until the end of the block or the
+ * dst buffer is filled.
+ */
+ const size_t todo{minz(samplesPerBlock-startOffset, samplesToLoad-wrote)};
+ for(size_t j{0};j < todo;++j)
+ {
+ const size_t byteOffset{nibbleOffset>>1};
+ const size_t byteShift{((nibbleOffset&1)^1) * 4};
+ nibbleOffset += srcStep;
+
+ const int sample{decode_sample((input[byteOffset]>>byteShift) & 15)};
+ dstSamples[wrote++] = static_cast<float>(sample) / 32768.0f;
+ }
+ if(wrote == samplesToLoad)
+ return;
+
+ src += blockBytes;
+ } while(true);
+}
+
+void LoadSamples(float *dstSamples, const al::byte *src, const size_t srcChan,
+ const size_t srcOffset, const FmtType srcType, const size_t srcStep,
+ const size_t samplesPerBlock, const size_t samplesToLoad) noexcept
+{
+#define HANDLE_FMT(T) case T: \
+ LoadSamples<T>(dstSamples, src, srcChan, srcOffset, srcStep, \
+ samplesPerBlock, samplesToLoad); \
+ break
+
+ switch(srcType)
+ {
+ HANDLE_FMT(FmtUByte);
+ HANDLE_FMT(FmtShort);
+ HANDLE_FMT(FmtFloat);
+ HANDLE_FMT(FmtDouble);
+ HANDLE_FMT(FmtMulaw);
+ HANDLE_FMT(FmtAlaw);
+ HANDLE_FMT(FmtIMA4);
+ HANDLE_FMT(FmtMSADPCM);
+ }
+#undef HANDLE_FMT
+}
+
+void LoadBufferStatic(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
+ const size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
+ const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
+ float *voiceSamples)
+{
+ if(!bufferLoopItem)
+ {
+ /* Load what's left to play from the buffer */
+ if(buffer->mSampleLen > dataPosInt) LIKELY
+ {
+ const size_t buffer_remaining{buffer->mSampleLen - dataPosInt};
+ const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer_remaining)};
+ LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
+ sampleType, srcStep, buffer->mBlockAlign, remaining);
+ samplesLoaded += remaining;
+ }
+
+ if(const size_t toFill{samplesToLoad - samplesLoaded})
+ {
+ auto srcsamples = voiceSamples + samplesLoaded;
+ std::fill_n(srcsamples, toFill, *(srcsamples-1));
+ }
+ }
+ else
+ {
+ const size_t loopStart{buffer->mLoopStart};
+ const size_t loopEnd{buffer->mLoopEnd};
+ ASSUME(loopEnd > loopStart);
+
+ const size_t intPos{(dataPosInt < loopEnd) ? dataPosInt
+ : (((dataPosInt-loopStart)%(loopEnd-loopStart)) + loopStart)};
+
+ /* Load what's left of this loop iteration */
+ const size_t remaining{minz(samplesToLoad-samplesLoaded, loopEnd-dataPosInt)};
+ LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, intPos, sampleType,
+ srcStep, buffer->mBlockAlign, remaining);
+ samplesLoaded += remaining;
+
+ /* Load repeats of the loop to fill the buffer. */
+ const size_t loopSize{loopEnd - loopStart};
+ while(const size_t toFill{minz(samplesToLoad - samplesLoaded, loopSize)})
+ {
+ LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, loopStart,
+ sampleType, srcStep, buffer->mBlockAlign, toFill);
+ samplesLoaded += toFill;
+ }
+ }
+}
+
+void LoadBufferCallback(VoiceBufferItem *buffer, const size_t dataPosInt,
+ const size_t numCallbackSamples, const FmtType sampleType, const size_t srcChannel,
+ const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad, float *voiceSamples)
+{
+ /* Load what's left to play from the buffer */
+ if(numCallbackSamples > dataPosInt) LIKELY
+ {
+ const size_t remaining{minz(samplesToLoad-samplesLoaded, numCallbackSamples-dataPosInt)};
+ LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
+ sampleType, srcStep, buffer->mBlockAlign, remaining);
+ samplesLoaded += remaining;
+ }
+
+ if(const size_t toFill{samplesToLoad - samplesLoaded})
+ {
+ auto srcsamples = voiceSamples + samplesLoaded;
+ std::fill_n(srcsamples, toFill, *(srcsamples-1));
+ }
+}
+
+void LoadBufferQueue(VoiceBufferItem *buffer, VoiceBufferItem *bufferLoopItem,
+ size_t dataPosInt, const FmtType sampleType, const size_t srcChannel,
+ const size_t srcStep, size_t samplesLoaded, const size_t samplesToLoad,
+ float *voiceSamples)
+{
+ /* Crawl the buffer queue to fill in the temp buffer */
+ while(buffer && samplesLoaded != samplesToLoad)
+ {
+ if(dataPosInt >= buffer->mSampleLen)
+ {
+ dataPosInt -= buffer->mSampleLen;
+ buffer = buffer->mNext.load(std::memory_order_acquire);
+ if(!buffer) buffer = bufferLoopItem;
+ continue;
+ }
+
+ const size_t remaining{minz(samplesToLoad-samplesLoaded, buffer->mSampleLen-dataPosInt)};
+ LoadSamples(voiceSamples+samplesLoaded, buffer->mSamples, srcChannel, dataPosInt,
+ sampleType, srcStep, buffer->mBlockAlign, remaining);
+
+ samplesLoaded += remaining;
+ if(samplesLoaded == samplesToLoad)
+ break;
+
+ dataPosInt = 0;
+ buffer = buffer->mNext.load(std::memory_order_acquire);
+ if(!buffer) buffer = bufferLoopItem;
+ }
+ if(const size_t toFill{samplesToLoad - samplesLoaded})
+ {
+ auto srcsamples = voiceSamples + samplesLoaded;
+ std::fill_n(srcsamples, toFill, *(srcsamples-1));
+ }
+}
+
+
+void DoHrtfMix(const float *samples, const uint DstBufferSize, DirectParams &parms,
+ const float TargetGain, const uint Counter, uint OutPos, const bool IsPlaying,
+ DeviceBase *Device)
+{
+ const uint IrSize{Device->mIrSize};
+ auto &HrtfSamples = Device->HrtfSourceData;
+ auto &AccumSamples = Device->HrtfAccumData;
+
+ /* Copy the HRTF history and new input samples into a temp buffer. */
+ auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
+ std::begin(HrtfSamples));
+ std::copy_n(samples, DstBufferSize, src_iter);
+ /* Copy the last used samples back into the history buffer for later. */
+ if(IsPlaying) LIKELY
+ std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
+ parms.Hrtf.History.begin());
+
+ /* If fading and this is the first mixing pass, fade between the IRs. */
+ uint fademix{0u};
+ if(Counter && OutPos == 0)
+ {
+ fademix = minu(DstBufferSize, Counter);
+
+ float gain{TargetGain};
+
+ /* The new coefficients need to fade in completely since they're
+ * replacing the old ones. To keep the gain fading consistent,
+ * interpolate between the old and new target gains given how much of
+ * the fade time this mix handles.
+ */
+ if(Counter > fademix)
+ {
+ const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
+ gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
+ }
+
+ MixHrtfFilter hrtfparams{
+ parms.Hrtf.Target.Coeffs,
+ parms.Hrtf.Target.Delay,
+ 0.0f, gain / static_cast<float>(fademix)};
+ MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
+ fademix);
+
+ /* Update the old parameters with the result. */
+ parms.Hrtf.Old = parms.Hrtf.Target;
+ parms.Hrtf.Old.Gain = gain;
+ OutPos += fademix;
+ }
+
+ if(fademix < DstBufferSize)
+ {
+ const uint todo{DstBufferSize - fademix};
+ float gain{TargetGain};
+
+ /* Interpolate the target gain if the gain fading lasts longer than
+ * this mix.
+ */
+ if(Counter > DstBufferSize)
+ {
+ const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
+ gain = lerpf(parms.Hrtf.Old.Gain, TargetGain, a);
+ }
+
+ MixHrtfFilter hrtfparams{
+ parms.Hrtf.Target.Coeffs,
+ parms.Hrtf.Target.Delay,
+ parms.Hrtf.Old.Gain,
+ (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo)};
+ MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);
+
+ /* Store the now-current gain for next time. */
+ parms.Hrtf.Old.Gain = gain;
+ }
+}
+
+void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
+ const float *TargetGains, const uint Counter, const uint OutPos, DeviceBase *Device)
+{
+ using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
+ static constexpr FilterProc NfcProcess[MaxAmbiOrder+1]{
+ nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};
+
+ float *CurrentGains{parms.Gains.Current.data()};
+ MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
+ ++OutBuffer;
+ ++CurrentGains;
+ ++TargetGains;
+
+ const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
+ size_t order{1};
+ while(const size_t chancount{Device->NumChannelsPerOrder[order]})
+ {
+ (parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
+ MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
+ OutBuffer += chancount;
+ CurrentGains += chancount;
+ TargetGains += chancount;
+ if(++order == MaxAmbiOrder+1)
+ break;
+ }
+}
+
+} // namespace
+
+void Voice::mix(const State vstate, ContextBase *Context, const nanoseconds deviceTime,
+ const uint SamplesToDo)
+{
+ static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};
+
+ ASSUME(SamplesToDo > 0);
+
+ DeviceBase *Device{Context->mDevice};
+ const uint NumSends{Device->NumAuxSends};
+
+ /* Get voice info */
+ int DataPosInt{mPosition.load(std::memory_order_relaxed)};
+ uint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
+ VoiceBufferItem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
+ VoiceBufferItem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
+ const uint increment{mStep};
+ if(increment < 1) UNLIKELY
+ {
+ /* If the voice is supposed to be stopping but can't be mixed, just
+ * stop it before bailing.
+ */
+ if(vstate == Stopping)
+ mPlayState.store(Stopped, std::memory_order_release);
+ return;
+ }
+
+ /* If the static voice's current position is beyond the buffer loop end
+ * position, disable looping.
+ */
+ if(mFlags.test(VoiceIsStatic) && BufferLoopItem)
+ {
+ if(DataPosInt >= 0 && static_cast<uint>(DataPosInt) >= BufferListItem->mLoopEnd)
+ BufferLoopItem = nullptr;
+ }
+
+ uint OutPos{0u};
+
+ /* Check if we're doing a delayed start, and we start in this update. */
+ if(mStartTime > deviceTime) UNLIKELY
+ {
+ /* If the voice is supposed to be stopping but hasn't actually started
+ * yet, make sure its stopped.
+ */
+ if(vstate == Stopping)
+ {
+ mPlayState.store(Stopped, std::memory_order_release);
+ return;
+ }
+
+ /* If the start time is too far ahead, don't bother. */
+ auto diff = mStartTime - deviceTime;
+ if(diff >= seconds{1})
+ return;
+
+ /* Get the number of samples ahead of the current time that output
+ * should start at. Skip this update if it's beyond the output sample
+ * count.
+ *
+ * Round the start position to a multiple of 4, which some mixers want.
+ * This makes the start time accurate to 4 samples. This could be made
+ * sample-accurate by forcing non-SIMD functions on the first run.
+ */
+ seconds::rep sampleOffset{duration_cast<seconds>(diff * Device->Frequency).count()};
+ sampleOffset = (sampleOffset+2) & ~seconds::rep{3};
+ if(sampleOffset >= SamplesToDo)
+ return;
+
+ OutPos = static_cast<uint>(sampleOffset);
+ }
+
+ /* Calculate the number of samples to mix, and the number of (resampled)
+ * samples that need to be loaded (mixing samples and decoder padding).
+ */
+ const uint samplesToMix{SamplesToDo - OutPos};
+ const uint samplesToLoad{samplesToMix + mDecoderPadding};
+
+ /* Get a span of pointers to hold the floating point, deinterlaced,
+ * resampled buffer data to be mixed.
+ */
+ std::array<float*,DeviceBase::MixerChannelsMax> SamplePointers;
+ const al::span<float*> MixingSamples{SamplePointers.data(), mChans.size()};
+ auto get_bufferline = [](DeviceBase::MixerBufferLine &bufline) noexcept -> float*
+ { return bufline.data(); };
+ std::transform(Device->mSampleData.end() - mChans.size(), Device->mSampleData.end(),
+ MixingSamples.begin(), get_bufferline);
+
+ /* If there's a matching sample step and no phase offset, use a simple copy
+ * for resampling.
+ */
+ const ResamplerFunc Resample{(increment == MixerFracOne && DataPosFrac == 0)
+ ? ResamplerFunc{[](const InterpState*, const float *RESTRICT src, uint, const uint,
+ const al::span<float> dst) { std::copy_n(src, dst.size(), dst.begin()); }}
+ : mResampler};
+
+ /* UHJ2 and SuperStereo only have 2 buffer channels, but 3 mixing channels
+ * (3rd channel is generated from decoding).
+ */
+ const size_t realChannels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 2u
+ : MixingSamples.size()};
+ for(size_t chan{0};chan < realChannels;++chan)
+ {
+ using ResBufType = decltype(DeviceBase::mResampleData);
+ static constexpr uint srcSizeMax{static_cast<uint>(ResBufType{}.size()-MaxResamplerEdge)};
+
+ const auto prevSamples = al::as_span(mPrevSamples[chan]);
+ const auto resampleBuffer = std::copy(prevSamples.cbegin(), prevSamples.cend(),
+ Device->mResampleData.begin()) - MaxResamplerEdge;
+ int intPos{DataPosInt};
+ uint fracPos{DataPosFrac};
+
+ /* Load samples for this channel from the available buffer(s), with
+ * resampling.
+ */
+ for(uint samplesLoaded{0};samplesLoaded < samplesToLoad;)
+ {
+ /* Calculate the number of dst samples that can be loaded this
+ * iteration, given the available resampler buffer size, and the
+ * number of src samples that are needed to load it.
+ */
+ auto calc_buffer_sizes = [fracPos,increment](uint dstBufferSize)
+ {
+ /* If ext=true, calculate the last written dst pos from the dst
+ * count, convert to the last read src pos, then add one to get
+ * the src count.
+ *
+ * If ext=false, convert the dst count to src count directly.
+ *
+ * Without this, the src count could be short by one when
+ * increment < 1.0, or not have a full src at the end when
+ * increment > 1.0.
+ */
+ const bool ext{increment <= MixerFracOne};
+ uint64_t dataSize64{dstBufferSize - ext};
+ dataSize64 = (dataSize64*increment + fracPos) >> MixerFracBits;
+ /* Also include resampler padding. */
+ dataSize64 += ext + MaxResamplerEdge;
+
+ if(dataSize64 <= srcSizeMax)
+ return std::make_pair(dstBufferSize, static_cast<uint>(dataSize64));
+
+ /* If the source size got saturated, we can't fill the desired
+ * dst size. Figure out how many dst samples we can fill.
+ */
+ dataSize64 = srcSizeMax - MaxResamplerEdge;
+ dataSize64 = ((dataSize64<<MixerFracBits) - fracPos) / increment;
+ if(dataSize64 < dstBufferSize)
+ {
+ /* Some resamplers require the destination being 16-byte
+ * aligned, so limit to a multiple of 4 samples to maintain
+ * alignment if we need to do another iteration after this.
+ */
+ dstBufferSize = static_cast<uint>(dataSize64) & ~3u;
+ }
+ return std::make_pair(dstBufferSize, srcSizeMax);
+ };
+ const auto bufferSizes = calc_buffer_sizes(samplesToLoad - samplesLoaded);
+ const auto dstBufferSize = bufferSizes.first;
+ const auto srcBufferSize = bufferSizes.second;
+
+ /* Load the necessary samples from the given buffer(s). */
+ if(!BufferListItem)
+ {
+ const uint avail{minu(srcBufferSize, MaxResamplerEdge)};
+ const uint tofill{maxu(srcBufferSize, MaxResamplerEdge)};
+
+ /* When loading from a voice that ended prematurely, only take
+ * the samples that get closest to 0 amplitude. This helps
+ * certain sounds fade out better.
+ */
+ auto abs_lt = [](const float lhs, const float rhs) noexcept -> bool
+ { return std::abs(lhs) < std::abs(rhs); };
+ auto srciter = std::min_element(resampleBuffer, resampleBuffer+avail, abs_lt);
+
+ std::fill(srciter+1, resampleBuffer+tofill, *srciter);
+ }
+ else
+ {
+ size_t srcSampleDelay{0};
+ if(intPos < 0) UNLIKELY
+ {
+ /* If the current position is negative, there's that many
+ * silent samples to load before using the buffer.
+ */
+ srcSampleDelay = static_cast<uint>(-intPos);
+ if(srcSampleDelay >= srcBufferSize)
+ {
+ /* If the number of silent source samples exceeds the
+ * number to load, the output will be silent.
+ */
+ std::fill_n(MixingSamples[chan]+samplesLoaded, dstBufferSize, 0.0f);
+ std::fill_n(resampleBuffer, srcBufferSize, 0.0f);
+ goto skip_resample;
+ }
+
+ std::fill_n(resampleBuffer, srcSampleDelay, 0.0f);
+ }
+ const uint uintPos{static_cast<uint>(maxi(intPos, 0))};
+
+ if(mFlags.test(VoiceIsStatic))
+ LoadBufferStatic(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
+ mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
+ else if(mFlags.test(VoiceIsCallback))
+ {
+ const uint callbackBase{mCallbackBlockBase * mSamplesPerBlock};
+ const size_t bufferOffset{uintPos - callbackBase};
+ const size_t needSamples{bufferOffset + srcBufferSize - srcSampleDelay};
+ const size_t needBlocks{(needSamples + mSamplesPerBlock-1) / mSamplesPerBlock};
+ if(!mFlags.test(VoiceCallbackStopped) && needBlocks > mNumCallbackBlocks)
+ {
+ const size_t byteOffset{mNumCallbackBlocks*mBytesPerBlock};
+ const size_t needBytes{(needBlocks-mNumCallbackBlocks)*mBytesPerBlock};
+
+ const int gotBytes{BufferListItem->mCallback(BufferListItem->mUserData,
+ &BufferListItem->mSamples[byteOffset], static_cast<int>(needBytes))};
+ if(gotBytes < 0)
+ mFlags.set(VoiceCallbackStopped);
+ else if(static_cast<uint>(gotBytes) < needBytes)
+ {
+ mFlags.set(VoiceCallbackStopped);
+ mNumCallbackBlocks += static_cast<uint>(gotBytes) / mBytesPerBlock;
+ }
+ else
+ mNumCallbackBlocks = static_cast<uint>(needBlocks);
+ }
+ const size_t numSamples{uint{mNumCallbackBlocks} * mSamplesPerBlock};
+ LoadBufferCallback(BufferListItem, bufferOffset, numSamples, mFmtType, chan,
+ mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
+ }
+ else
+ LoadBufferQueue(BufferListItem, BufferLoopItem, uintPos, mFmtType, chan,
+ mFrameStep, srcSampleDelay, srcBufferSize, al::to_address(resampleBuffer));
+ }
+
+ Resample(&mResampleState, al::to_address(resampleBuffer), fracPos, increment,
+ {MixingSamples[chan]+samplesLoaded, dstBufferSize});
+
+ /* Store the last source samples used for next time. */
+ if(vstate == Playing) LIKELY
+ {
+ /* Only store samples for the end of the mix, excluding what
+ * gets loaded for decoder padding.
+ */
+ const uint loadEnd{samplesLoaded + dstBufferSize};
+ if(samplesToMix > samplesLoaded && samplesToMix <= loadEnd) LIKELY
+ {
+ const size_t dstOffset{samplesToMix - samplesLoaded};
+ const size_t srcOffset{(dstOffset*increment + fracPos) >> MixerFracBits};
+ std::copy_n(resampleBuffer-MaxResamplerEdge+srcOffset, prevSamples.size(),
+ prevSamples.begin());
+ }
+ }
+
+ skip_resample:
+ samplesLoaded += dstBufferSize;
+ if(samplesLoaded < samplesToLoad)
+ {
+ fracPos += dstBufferSize*increment;
+ const uint srcOffset{fracPos >> MixerFracBits};
+ fracPos &= MixerFracMask;
+ intPos += srcOffset;
+
+ /* If more samples need to be loaded, copy the back of the
+ * resampleBuffer to the front to reuse it. prevSamples isn't
+ * reliable since it's only updated for the end of the mix.
+ */
+ std::copy(resampleBuffer-MaxResamplerEdge+srcOffset,
+ resampleBuffer+MaxResamplerEdge+srcOffset, resampleBuffer-MaxResamplerEdge);
+ }
+ }
+ }
+ for(auto &samples : MixingSamples.subspan(realChannels))
+ std::fill_n(samples, samplesToLoad, 0.0f);
+
+ if(mDecoder)
+ mDecoder->decode(MixingSamples, samplesToMix, (vstate==Playing));
+
+ if(mFlags.test(VoiceIsAmbisonic))
+ {
+ auto voiceSamples = MixingSamples.begin();
+ for(auto &chandata : mChans)
+ {
+ chandata.mAmbiSplitter.processScale({*voiceSamples, samplesToMix},
+ chandata.mAmbiHFScale, chandata.mAmbiLFScale);
+ ++voiceSamples;
+ }
+ }
+
+ const uint Counter{mFlags.test(VoiceIsFading) ? minu(samplesToMix, 64u) : 0u};
+ if(!Counter)
+ {
+ /* No fading, just overwrite the old/current params. */
+ for(auto &chandata : mChans)
+ {
+ {
+ DirectParams &parms = chandata.mDryParams;
+ if(!mFlags.test(VoiceHasHrtf))
+ parms.Gains.Current = parms.Gains.Target;
+ else
+ parms.Hrtf.Old = parms.Hrtf.Target;
+ }
+ for(uint send{0};send < NumSends;++send)
+ {
+ if(mSend[send].Buffer.empty())
+ continue;
+
+ SendParams &parms = chandata.mWetParams[send];
+ parms.Gains.Current = parms.Gains.Target;
+ }
+ }
+ }
+
+ auto voiceSamples = MixingSamples.begin();
+ for(auto &chandata : mChans)
+ {
+ /* Now filter and mix to the appropriate outputs. */
+ const al::span<float,BufferLineSize> FilterBuf{Device->FilteredData};
+ {
+ DirectParams &parms = chandata.mDryParams;
+ const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
+ {*voiceSamples, samplesToMix}, mDirect.FilterType)};
+
+ if(mFlags.test(VoiceHasHrtf))
+ {
+ const float TargetGain{parms.Hrtf.Target.Gain * (vstate == Playing)};
+ DoHrtfMix(samples, samplesToMix, parms, TargetGain, Counter, OutPos,
+ (vstate == Playing), Device);
+ }
+ else
+ {
+ const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
+ : SilentTarget.data()};
+ if(mFlags.test(VoiceHasNfc))
+ DoNfcMix({samples, samplesToMix}, mDirect.Buffer.data(), parms,
+ TargetGains, Counter, OutPos, Device);
+ else
+ MixSamples({samples, samplesToMix}, mDirect.Buffer,
+ parms.Gains.Current.data(), TargetGains, Counter, OutPos);
+ }
+ }
+
+ for(uint send{0};send < NumSends;++send)
+ {
+ if(mSend[send].Buffer.empty())
+ continue;
+
+ SendParams &parms = chandata.mWetParams[send];
+ const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf.data(),
+ {*voiceSamples, samplesToMix}, mSend[send].FilterType)};
+
+ const float *TargetGains{(vstate == Playing) ? parms.Gains.Target.data()
+ : SilentTarget.data()};
+ MixSamples({samples, samplesToMix}, mSend[send].Buffer,
+ parms.Gains.Current.data(), TargetGains, Counter, OutPos);
+ }
+
+ ++voiceSamples;
+ }
+
+ mFlags.set(VoiceIsFading);
+
+ /* Don't update positions and buffers if we were stopping. */
+ if(vstate == Stopping) UNLIKELY
+ {
+ mPlayState.store(Stopped, std::memory_order_release);
+ return;
+ }
+
+ /* Update voice positions and buffers as needed. */
+ DataPosFrac += increment*samplesToMix;
+ const uint SrcSamplesDone{DataPosFrac>>MixerFracBits};
+ DataPosInt += SrcSamplesDone;
+ DataPosFrac &= MixerFracMask;
+
+ uint buffers_done{0u};
+ if(BufferListItem && DataPosInt >= 0) LIKELY
+ {
+ if(mFlags.test(VoiceIsStatic))
+ {
+ if(BufferLoopItem)
+ {
+ /* Handle looping static source */
+ const uint LoopStart{BufferListItem->mLoopStart};
+ const uint LoopEnd{BufferListItem->mLoopEnd};
+ uint DataPosUInt{static_cast<uint>(DataPosInt)};
+ if(DataPosUInt >= LoopEnd)
+ {
+ assert(LoopEnd > LoopStart);
+ DataPosUInt = ((DataPosUInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
+ DataPosInt = static_cast<int>(DataPosUInt);
+ }
+ }
+ else
+ {
+ /* Handle non-looping static source */
+ if(static_cast<uint>(DataPosInt) >= BufferListItem->mSampleLen)
+ BufferListItem = nullptr;
+ }
+ }
+ else if(mFlags.test(VoiceIsCallback))
+ {
+ /* Handle callback buffer source */
+ const uint currentBlock{static_cast<uint>(DataPosInt) / mSamplesPerBlock};
+ const uint blocksDone{currentBlock - mCallbackBlockBase};
+ if(blocksDone < mNumCallbackBlocks)
+ {
+ const size_t byteOffset{blocksDone*mBytesPerBlock};
+ const size_t byteEnd{mNumCallbackBlocks*mBytesPerBlock};
+ al::byte *data{BufferListItem->mSamples};
+ std::copy(data+byteOffset, data+byteEnd, data);
+ mNumCallbackBlocks -= blocksDone;
+ mCallbackBlockBase += blocksDone;
+ }
+ else
+ {
+ BufferListItem = nullptr;
+ mNumCallbackBlocks = 0;
+ mCallbackBlockBase += blocksDone;
+ }
+ }
+ else
+ {
+ /* Handle streaming source */
+ do {
+ if(BufferListItem->mSampleLen > static_cast<uint>(DataPosInt))
+ break;
+
+ DataPosInt -= BufferListItem->mSampleLen;
+
+ ++buffers_done;
+ BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
+ if(!BufferListItem) BufferListItem = BufferLoopItem;
+ } while(BufferListItem);
+ }
+ }
+
+ /* Capture the source ID in case it gets reset for stopping. */
+ const uint SourceID{mSourceID.load(std::memory_order_relaxed)};
+
+ /* Update voice info */
+ mPosition.store(DataPosInt, std::memory_order_relaxed);
+ mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
+ mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
+ if(!BufferListItem)
+ {
+ mLoopBuffer.store(nullptr, std::memory_order_relaxed);
+ mSourceID.store(0u, std::memory_order_relaxed);
+ }
+ std::atomic_thread_fence(std::memory_order_release);
+
+ /* Send any events now, after the position/buffer info was updated. */
+ const auto enabledevt = Context->mEnabledEvts.load(std::memory_order_acquire);
+ if(buffers_done > 0 && enabledevt.test(AsyncEvent::BufferCompleted))
+ {
+ RingBuffer *ring{Context->mAsyncEvents.get()};
+ auto evt_vec = ring->getWriteVector();
+ if(evt_vec.first.len > 0)
+ {
+ AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
+ AsyncEvent::BufferCompleted)};
+ evt->u.bufcomp.id = SourceID;
+ evt->u.bufcomp.count = buffers_done;
+ ring->writeAdvance(1);
+ }
+ }
+
+ if(!BufferListItem)
+ {
+ /* If the voice just ended, set it to Stopping so the next render
+ * ensures any residual noise fades to 0 amplitude.
+ */
+ mPlayState.store(Stopping, std::memory_order_release);
+ if(enabledevt.test(AsyncEvent::SourceStateChange))
+ SendSourceStoppedEvent(Context, SourceID);
+ }
+}
+
+void Voice::prepare(DeviceBase *device)
+{
+ /* Even if storing really high order ambisonics, we only mix channels for
+ * orders up to the device order. The rest are simply dropped.
+ */
+ uint num_channels{(mFmtChannels == FmtUHJ2 || mFmtChannels == FmtSuperStereo) ? 3 :
+ ChannelsFromFmt(mFmtChannels, minu(mAmbiOrder, device->mAmbiOrder))};
+ if(num_channels > device->mSampleData.size()) UNLIKELY
+ {
+ ERR("Unexpected channel count: %u (limit: %zu, %d:%d)\n", num_channels,
+ device->mSampleData.size(), mFmtChannels, mAmbiOrder);
+ num_channels = static_cast<uint>(device->mSampleData.size());
+ }
+ if(mChans.capacity() > 2 && num_channels < mChans.capacity())
+ {
+ decltype(mChans){}.swap(mChans);
+ decltype(mPrevSamples){}.swap(mPrevSamples);
+ }
+ mChans.reserve(maxu(2, num_channels));
+ mChans.resize(num_channels);
+ mPrevSamples.reserve(maxu(2, num_channels));
+ mPrevSamples.resize(num_channels);
+
+ mDecoder = nullptr;
+ mDecoderPadding = 0;
+ if(mFmtChannels == FmtSuperStereo)
+ {
+ switch(UhjDecodeQuality)
+ {
+ case UhjQualityType::IIR:
+ mDecoder = std::make_unique<UhjStereoDecoderIIR>();
+ mDecoderPadding = UhjStereoDecoderIIR::sInputPadding;
+ break;
+ case UhjQualityType::FIR256:
+ mDecoder = std::make_unique<UhjStereoDecoder<UhjLength256>>();
+ mDecoderPadding = UhjStereoDecoder<UhjLength256>::sInputPadding;
+ break;
+ case UhjQualityType::FIR512:
+ mDecoder = std::make_unique<UhjStereoDecoder<UhjLength512>>();
+ mDecoderPadding = UhjStereoDecoder<UhjLength512>::sInputPadding;
+ break;
+ }
+ }
+ else if(IsUHJ(mFmtChannels))
+ {
+ switch(UhjDecodeQuality)
+ {
+ case UhjQualityType::IIR:
+ mDecoder = std::make_unique<UhjDecoderIIR>();
+ mDecoderPadding = UhjDecoderIIR::sInputPadding;
+ break;
+ case UhjQualityType::FIR256:
+ mDecoder = std::make_unique<UhjDecoder<UhjLength256>>();
+ mDecoderPadding = UhjDecoder<UhjLength256>::sInputPadding;
+ break;
+ case UhjQualityType::FIR512:
+ mDecoder = std::make_unique<UhjDecoder<UhjLength512>>();
+ mDecoderPadding = UhjDecoder<UhjLength512>::sInputPadding;
+ break;
+ }
+ }
+
+ /* Clear the stepping value explicitly so the mixer knows not to mix this
+ * until the update gets applied.
+ */
+ mStep = 0;
+
+ /* Make sure the sample history is cleared. */
+ std::fill(mPrevSamples.begin(), mPrevSamples.end(), HistoryLine{});
+
+ if(mFmtChannels == FmtUHJ2 && !device->mUhjEncoder)
+ {
+ /* 2-channel UHJ needs different shelf filters. However, we can't just
+ * use different shelf filters after mixing it, given any old speaker
+ * setup the user has. To make this work, we apply the expected shelf
+ * filters for decoding UHJ2 to quad (only needs LF scaling), and act
+ * as if those 4 quad channels are encoded right back into B-Format.
+ *
+ * This isn't perfect, but without an entirely separate and limited
+ * UHJ2 path, it's better than nothing.
+ *
+ * Note this isn't needed with UHJ output (UHJ2->B-Format->UHJ2 is
+ * identity, so don't mess with it).
+ */
+ const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
+ for(auto &chandata : mChans)
+ {
+ chandata.mAmbiHFScale = 1.0f;
+ chandata.mAmbiLFScale = 1.0f;
+ chandata.mAmbiSplitter = splitter;
+ chandata.mDryParams = DirectParams{};
+ chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
+ std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
+ }
+ mChans[0].mAmbiLFScale = DecoderBase::sWLFScale;
+ mChans[1].mAmbiLFScale = DecoderBase::sXYLFScale;
+ mChans[2].mAmbiLFScale = DecoderBase::sXYLFScale;
+ mFlags.set(VoiceIsAmbisonic);
+ }
+ /* Don't need to set the VoiceIsAmbisonic flag if the device is not higher
+ * order than the voice. No HF scaling is necessary to mix it.
+ */
+ else if(mAmbiOrder && device->mAmbiOrder > mAmbiOrder)
+ {
+ const uint8_t *OrderFromChan{Is2DAmbisonic(mFmtChannels) ?
+ AmbiIndex::OrderFrom2DChannel().data() : AmbiIndex::OrderFromChannel().data()};
+ const auto scales = AmbiScale::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder,
+ device->m2DMixing);
+
+ const BandSplitter splitter{device->mXOverFreq / static_cast<float>(device->Frequency)};
+ for(auto &chandata : mChans)
+ {
+ chandata.mAmbiHFScale = scales[*(OrderFromChan++)];
+ chandata.mAmbiLFScale = 1.0f;
+ chandata.mAmbiSplitter = splitter;
+ chandata.mDryParams = DirectParams{};
+ chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
+ std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
+ }
+ mFlags.set(VoiceIsAmbisonic);
+ }
+ else
+ {
+ for(auto &chandata : mChans)
+ {
+ chandata.mDryParams = DirectParams{};
+ chandata.mDryParams.NFCtrlFilter = device->mNFCtrlFilter;
+ std::fill_n(chandata.mWetParams.begin(), device->NumAuxSends, SendParams{});
+ }
+ mFlags.reset(VoiceIsAmbisonic);
+ }
+}