diff options
Diffstat (limited to 'core')
-rw-r--r-- | core/filters/biquad.cpp | 163 | ||||
-rw-r--r-- | core/filters/biquad.h | 144 | ||||
-rw-r--r-- | core/filters/nfc.cpp | 383 | ||||
-rw-r--r-- | core/filters/nfc.h | 63 | ||||
-rw-r--r-- | core/filters/splitter.cpp | 113 | ||||
-rw-r--r-- | core/filters/splitter.h | 36 |
6 files changed, 902 insertions, 0 deletions
diff --git a/core/filters/biquad.cpp b/core/filters/biquad.cpp new file mode 100644 index 00000000..fefdc8e1 --- /dev/null +++ b/core/filters/biquad.cpp @@ -0,0 +1,163 @@ + +#include "config.h" + +#include "biquad.h" + +#include <algorithm> +#include <cassert> +#include <cmath> + +#include "opthelpers.h" + + +template<typename Real> +void BiquadFilterR<Real>::setParams(BiquadType type, Real f0norm, Real gain, Real rcpQ) +{ + // Limit gain to -100dB + assert(gain > 0.00001f); + + const Real w0{al::MathDefs<Real>::Tau() * f0norm}; + const Real sin_w0{std::sin(w0)}; + const Real cos_w0{std::cos(w0)}; + const Real alpha{sin_w0/2.0f * rcpQ}; + + Real sqrtgain_alpha_2; + Real a[3]{ 1.0f, 0.0f, 0.0f }; + Real b[3]{ 1.0f, 0.0f, 0.0f }; + + /* Calculate filter coefficients depending on filter type */ + switch(type) + { + case BiquadType::HighShelf: + sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha; + b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2); + b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 ); + b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2); + a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2; + a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 ); + a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2; + break; + case BiquadType::LowShelf: + sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha; + b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2); + b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 ); + b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2); + a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2; + a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 ); + a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2; + break; + case BiquadType::Peaking: + b[0] = 1.0f + alpha * gain; + b[1] = -2.0f * cos_w0; + b[2] = 1.0f - alpha * gain; + a[0] = 1.0f + alpha / gain; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha / gain; + break; + + case BiquadType::LowPass: + b[0] = (1.0f - cos_w0) / 2.0f; + b[1] = 1.0f - cos_w0; + b[2] = (1.0f - cos_w0) / 2.0f; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + case BiquadType::HighPass: + b[0] = (1.0f + cos_w0) / 2.0f; + b[1] = -(1.0f + cos_w0); + b[2] = (1.0f + cos_w0) / 2.0f; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + case BiquadType::BandPass: + b[0] = alpha; + b[1] = 0.0f; + b[2] = -alpha; + a[0] = 1.0f + alpha; + a[1] = -2.0f * cos_w0; + a[2] = 1.0f - alpha; + break; + } + + mA1 = a[1] / a[0]; + mA2 = a[2] / a[0]; + mB0 = b[0] / a[0]; + mB1 = b[1] / a[0]; + mB2 = b[2] / a[0]; +} + +template<typename Real> +void BiquadFilterR<Real>::process(const al::span<const Real> src, Real *dst) +{ + const Real b0{mB0}; + const Real b1{mB1}; + const Real b2{mB2}; + const Real a1{mA1}; + const Real a2{mA2}; + Real z1{mZ1}; + Real z2{mZ2}; + + /* Processing loop is Transposed Direct Form II. This requires less storage + * compared to Direct Form I (only two delay components, instead of a four- + * sample history; the last two inputs and outputs), and works better for + * floating-point which favors summing similarly-sized values while being + * less bothered by overflow. + * + * See: http://www.earlevel.com/main/2003/02/28/biquads/ + */ + auto proc_sample = [b0,b1,b2,a1,a2,&z1,&z2](Real input) noexcept -> Real + { + const Real output{input*b0 + z1}; + z1 = input*b1 - output*a1 + z2; + z2 = input*b2 - output*a2; + return output; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + + mZ1 = z1; + mZ2 = z2; +} + +template<typename Real> +void BiquadFilterR<Real>::dualProcess(BiquadFilterR &other, const al::span<const Real> src, + Real *dst) +{ + const Real b00{mB0}; + const Real b01{mB1}; + const Real b02{mB2}; + const Real a01{mA1}; + const Real a02{mA2}; + const Real b10{other.mB0}; + const Real b11{other.mB1}; + const Real b12{other.mB2}; + const Real a11{other.mA1}; + const Real a12{other.mA2}; + Real z01{mZ1}; + Real z02{mZ2}; + Real z11{other.mZ1}; + Real z12{other.mZ2}; + + auto proc_sample = [b00,b01,b02,a01,a02,b10,b11,b12,a11,a12,&z01,&z02,&z11,&z12](Real input) noexcept -> Real + { + const Real tmpout{input*b00 + z01}; + z01 = input*b01 - tmpout*a01 + z02; + z02 = input*b02 - tmpout*a02; + input = tmpout; + + const Real output{input*b10 + z11}; + z11 = input*b11 - output*a11 + z12; + z12 = input*b12 - output*a12; + return output; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + + mZ1 = z01; + mZ2 = z02; + other.mZ1 = z11; + other.mZ2 = z12; +} + +template class BiquadFilterR<float>; +template class BiquadFilterR<double>; diff --git a/core/filters/biquad.h b/core/filters/biquad.h new file mode 100644 index 00000000..b2e2cfdb --- /dev/null +++ b/core/filters/biquad.h @@ -0,0 +1,144 @@ +#ifndef CORE_FILTERS_BIQUAD_H +#define CORE_FILTERS_BIQUAD_H + +#include <algorithm> +#include <cmath> +#include <cstddef> +#include <utility> + +#include "alspan.h" +#include "math_defs.h" + + +/* Filters implementation is based on the "Cookbook formulae for audio + * EQ biquad filter coefficients" by Robert Bristow-Johnson + * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt + */ +/* Implementation note: For the shelf and peaking filters, the specified gain + * is for the centerpoint of the transition band. This better fits EFX filter + * behavior, which expects the shelf's reference frequency to reach the given + * gain. To set the gain for the shelf or peak itself, use the square root of + * the desired linear gain (or halve the dB gain). + */ + +enum class BiquadType { + /** EFX-style low-pass filter, specifying a gain and reference frequency. */ + HighShelf, + /** EFX-style high-pass filter, specifying a gain and reference frequency. */ + LowShelf, + /** Peaking filter, specifying a gain and reference frequency. */ + Peaking, + + /** Low-pass cut-off filter, specifying a cut-off frequency. */ + LowPass, + /** High-pass cut-off filter, specifying a cut-off frequency. */ + HighPass, + /** Band-pass filter, specifying a center frequency. */ + BandPass, +}; + +template<typename Real> +class BiquadFilterR { + /* Last two delayed components for direct form II. */ + Real mZ1{0.0f}, mZ2{0.0f}; + /* Transfer function coefficients "b" (numerator) */ + Real mB0{1.0f}, mB1{0.0f}, mB2{0.0f}; + /* Transfer function coefficients "a" (denominator; a0 is pre-applied). */ + Real mA1{0.0f}, mA2{0.0f}; + + void setParams(BiquadType type, Real f0norm, Real gain, Real rcpQ); + + /** + * Calculates the rcpQ (i.e. 1/Q) coefficient for shelving filters, using + * the reference gain and shelf slope parameter. + * \param gain 0 < gain + * \param slope 0 < slope <= 1 + */ + static Real rcpQFromSlope(Real gain, Real slope) + { return std::sqrt((gain + 1.0f/gain)*(1.0f/slope - 1.0f) + 2.0f); } + + /** + * Calculates the rcpQ (i.e. 1/Q) coefficient for filters, using the + * normalized reference frequency and bandwidth. + * \param f0norm 0 < f0norm < 0.5. + * \param bandwidth 0 < bandwidth + */ + static Real rcpQFromBandwidth(Real f0norm, Real bandwidth) + { + const Real w0{al::MathDefs<Real>::Tau() * f0norm}; + return 2.0f*std::sinh(std::log(Real{2.0f})/2.0f*bandwidth*w0/std::sin(w0)); + } + +public: + void clear() noexcept { mZ1 = mZ2 = 0.0f; } + + /** + * Sets the filter state for the specified filter type and its parameters. + * + * \param type The type of filter to apply. + * \param f0norm The normalized reference frequency (ref / sample_rate). + * This is the center point for the Shelf, Peaking, and BandPass filter + * types, or the cutoff frequency for the LowPass and HighPass filter + * types. + * \param gain The gain for the reference frequency response. Only used by + * the Shelf and Peaking filter types. + * \param slope Slope steepness of the transition band. + */ + void setParamsFromSlope(BiquadType type, Real f0norm, Real gain, Real slope) + { + gain = std::max<Real>(gain, 0.001f); /* Limit -60dB */ + setParams(type, f0norm, gain, rcpQFromSlope(gain, slope)); + } + + /** + * Sets the filter state for the specified filter type and its parameters. + * + * \param type The type of filter to apply. + * \param f0norm The normalized reference frequency (ref / sample_rate). + * This is the center point for the Shelf, Peaking, and BandPass filter + * types, or the cutoff frequency for the LowPass and HighPass filter + * types. + * \param gain The gain for the reference frequency response. Only used by + * the Shelf and Peaking filter types. + * \param bandwidth Normalized bandwidth of the transition band. + */ + void setParamsFromBandwidth(BiquadType type, Real f0norm, Real gain, Real bandwidth) + { setParams(type, f0norm, gain, rcpQFromBandwidth(f0norm, bandwidth)); } + + void copyParamsFrom(const BiquadFilterR &other) + { + mB0 = other.mB0; + mB1 = other.mB1; + mB2 = other.mB2; + mA1 = other.mA1; + mA2 = other.mA2; + } + + void process(const al::span<const Real> src, Real *dst); + /** Processes this filter and the other at the same time. */ + void dualProcess(BiquadFilterR &other, const al::span<const Real> src, Real *dst); + + /* Rather hacky. It's just here to support "manual" processing. */ + std::pair<Real,Real> getComponents() const noexcept { return {mZ1, mZ2}; } + void setComponents(Real z1, Real z2) noexcept { mZ1 = z1; mZ2 = z2; } + Real processOne(const Real in, Real &z1, Real &z2) const noexcept + { + const Real out{in*mB0 + z1}; + z1 = in*mB1 - out*mA1 + z2; + z2 = in*mB2 - out*mA2; + return out; + } +}; + +template<typename Real> +struct DualBiquadR { + BiquadFilterR<Real> &f0, &f1; + + void process(const al::span<const Real> src, Real *dst) + { f0.dualProcess(f1, src, dst); } +}; + +using BiquadFilter = BiquadFilterR<float>; +using DualBiquad = DualBiquadR<float>; + +#endif /* CORE_FILTERS_BIQUAD_H */ diff --git a/core/filters/nfc.cpp b/core/filters/nfc.cpp new file mode 100644 index 00000000..9a28517c --- /dev/null +++ b/core/filters/nfc.cpp @@ -0,0 +1,383 @@ + +#include "config.h" + +#include "nfc.h" + +#include <algorithm> + +#include "opthelpers.h" + + +/* Near-field control filters are the basis for handling the near-field effect. + * The near-field effect is a bass-boost present in the directional components + * of a recorded signal, created as a result of the wavefront curvature (itself + * a function of sound distance). Proper reproduction dictates this be + * compensated for using a bass-cut given the playback speaker distance, to + * avoid excessive bass in the playback. + * + * For real-time rendered audio, emulating the near-field effect based on the + * sound source's distance, and subsequently compensating for it at output + * based on the speaker distances, can create a more realistic perception of + * sound distance beyond a simple 1/r attenuation. + * + * These filters do just that. Each one applies a low-shelf filter, created as + * the combination of a bass-boost for a given sound source distance (near- + * field emulation) along with a bass-cut for a given control/speaker distance + * (near-field compensation). + * + * Note that it is necessary to apply a cut along with the boost, since the + * boost alone is unstable in higher-order ambisonics as it causes an infinite + * DC gain (even first-order ambisonics requires there to be no DC offset for + * the boost to work). Consequently, ambisonics requires a control parameter to + * be used to avoid an unstable boost-only filter. NFC-HOA defines this control + * as a reference delay, calculated with: + * + * reference_delay = control_distance / speed_of_sound + * + * This means w0 (for input) or w1 (for output) should be set to: + * + * wN = 1 / (reference_delay * sample_rate) + * + * when dealing with NFC-HOA content. For FOA input content, which does not + * specify a reference_delay variable, w0 should be set to 0 to apply only + * near-field compensation for output. It's important that w1 be a finite, + * positive, non-0 value or else the bass-boost will become unstable again. + * Also, w0 should not be too large compared to w1, to avoid excessively loud + * low frequencies. + */ + +namespace { + +constexpr float B[5][4] = { + { 0.0f }, + { 1.0f }, + { 3.0f, 3.0f }, + { 3.6778f, 6.4595f, 2.3222f }, + { 4.2076f, 11.4877f, 5.7924f, 9.1401f } +}; + +NfcFilter1 NfcFilterCreate1(const float w0, const float w1) noexcept +{ + NfcFilter1 nfc{}; + float b_00, g_0; + float r; + + nfc.base_gain = 1.0f; + nfc.gain = 1.0f; + + /* Calculate bass-boost coefficients. */ + r = 0.5f * w0; + b_00 = B[1][0] * r; + g_0 = 1.0f + b_00; + + nfc.gain *= g_0; + nfc.b1 = 2.0f * b_00 / g_0; + + /* Calculate bass-cut coefficients. */ + r = 0.5f * w1; + b_00 = B[1][0] * r; + g_0 = 1.0f + b_00; + + nfc.base_gain /= g_0; + nfc.gain /= g_0; + nfc.a1 = 2.0f * b_00 / g_0; + + return nfc; +} + +void NfcFilterAdjust1(NfcFilter1 *nfc, const float w0) noexcept +{ + const float r{0.5f * w0}; + const float b_00{B[1][0] * r}; + const float g_0{1.0f + b_00}; + + nfc->gain = nfc->base_gain * g_0; + nfc->b1 = 2.0f * b_00 / g_0; +} + + +NfcFilter2 NfcFilterCreate2(const float w0, const float w1) noexcept +{ + NfcFilter2 nfc{}; + float b_10, b_11, g_1; + float r; + + nfc.base_gain = 1.0f; + nfc.gain = 1.0f; + + /* Calculate bass-boost coefficients. */ + r = 0.5f * w0; + b_10 = B[2][0] * r; + b_11 = B[2][1] * r * r; + g_1 = 1.0f + b_10 + b_11; + + nfc.gain *= g_1; + nfc.b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.b2 = 4.0f * b_11 / g_1; + + /* Calculate bass-cut coefficients. */ + r = 0.5f * w1; + b_10 = B[2][0] * r; + b_11 = B[2][1] * r * r; + g_1 = 1.0f + b_10 + b_11; + + nfc.base_gain /= g_1; + nfc.gain /= g_1; + nfc.a1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.a2 = 4.0f * b_11 / g_1; + + return nfc; +} + +void NfcFilterAdjust2(NfcFilter2 *nfc, const float w0) noexcept +{ + const float r{0.5f * w0}; + const float b_10{B[2][0] * r}; + const float b_11{B[2][1] * r * r}; + const float g_1{1.0f + b_10 + b_11}; + + nfc->gain = nfc->base_gain * g_1; + nfc->b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc->b2 = 4.0f * b_11 / g_1; +} + + +NfcFilter3 NfcFilterCreate3(const float w0, const float w1) noexcept +{ + NfcFilter3 nfc{}; + float b_10, b_11, g_1; + float b_00, g_0; + float r; + + nfc.base_gain = 1.0f; + nfc.gain = 1.0f; + + /* Calculate bass-boost coefficients. */ + r = 0.5f * w0; + b_10 = B[3][0] * r; + b_11 = B[3][1] * r * r; + b_00 = B[3][2] * r; + g_1 = 1.0f + b_10 + b_11; + g_0 = 1.0f + b_00; + + nfc.gain *= g_1 * g_0; + nfc.b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.b2 = 4.0f * b_11 / g_1; + nfc.b3 = 2.0f * b_00 / g_0; + + /* Calculate bass-cut coefficients. */ + r = 0.5f * w1; + b_10 = B[3][0] * r; + b_11 = B[3][1] * r * r; + b_00 = B[3][2] * r; + g_1 = 1.0f + b_10 + b_11; + g_0 = 1.0f + b_00; + + nfc.base_gain /= g_1 * g_0; + nfc.gain /= g_1 * g_0; + nfc.a1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.a2 = 4.0f * b_11 / g_1; + nfc.a3 = 2.0f * b_00 / g_0; + + return nfc; +} + +void NfcFilterAdjust3(NfcFilter3 *nfc, const float w0) noexcept +{ + const float r{0.5f * w0}; + const float b_10{B[3][0] * r}; + const float b_11{B[3][1] * r * r}; + const float b_00{B[3][2] * r}; + const float g_1{1.0f + b_10 + b_11}; + const float g_0{1.0f + b_00}; + + nfc->gain = nfc->base_gain * g_1 * g_0; + nfc->b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc->b2 = 4.0f * b_11 / g_1; + nfc->b3 = 2.0f * b_00 / g_0; +} + + +NfcFilter4 NfcFilterCreate4(const float w0, const float w1) noexcept +{ + NfcFilter4 nfc{}; + float b_10, b_11, g_1; + float b_00, b_01, g_0; + float r; + + nfc.base_gain = 1.0f; + nfc.gain = 1.0f; + + /* Calculate bass-boost coefficients. */ + r = 0.5f * w0; + b_10 = B[4][0] * r; + b_11 = B[4][1] * r * r; + b_00 = B[4][2] * r; + b_01 = B[4][3] * r * r; + g_1 = 1.0f + b_10 + b_11; + g_0 = 1.0f + b_00 + b_01; + + nfc.gain *= g_1 * g_0; + nfc.b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.b2 = 4.0f * b_11 / g_1; + nfc.b3 = (2.0f*b_00 + 4.0f*b_01) / g_0; + nfc.b4 = 4.0f * b_01 / g_0; + + /* Calculate bass-cut coefficients. */ + r = 0.5f * w1; + b_10 = B[4][0] * r; + b_11 = B[4][1] * r * r; + b_00 = B[4][2] * r; + b_01 = B[4][3] * r * r; + g_1 = 1.0f + b_10 + b_11; + g_0 = 1.0f + b_00 + b_01; + + nfc.base_gain /= g_1 * g_0; + nfc.gain /= g_1 * g_0; + nfc.a1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc.a2 = 4.0f * b_11 / g_1; + nfc.a3 = (2.0f*b_00 + 4.0f*b_01) / g_0; + nfc.a4 = 4.0f * b_01 / g_0; + + return nfc; +} + +void NfcFilterAdjust4(NfcFilter4 *nfc, const float w0) noexcept +{ + const float r{0.5f * w0}; + const float b_10{B[4][0] * r}; + const float b_11{B[4][1] * r * r}; + const float b_00{B[4][2] * r}; + const float b_01{B[4][3] * r * r}; + const float g_1{1.0f + b_10 + b_11}; + const float g_0{1.0f + b_00 + b_01}; + + nfc->gain = nfc->base_gain * g_1 * g_0; + nfc->b1 = (2.0f*b_10 + 4.0f*b_11) / g_1; + nfc->b2 = 4.0f * b_11 / g_1; + nfc->b3 = (2.0f*b_00 + 4.0f*b_01) / g_0; + nfc->b4 = 4.0f * b_01 / g_0; +} + +} // namespace + +void NfcFilter::init(const float w1) noexcept +{ + first = NfcFilterCreate1(0.0f, w1); + second = NfcFilterCreate2(0.0f, w1); + third = NfcFilterCreate3(0.0f, w1); + fourth = NfcFilterCreate4(0.0f, w1); +} + +void NfcFilter::adjust(const float w0) noexcept +{ + NfcFilterAdjust1(&first, w0); + NfcFilterAdjust2(&second, w0); + NfcFilterAdjust3(&third, w0); + NfcFilterAdjust4(&fourth, w0); +} + + +void NfcFilter::process1(const al::span<const float> src, float *RESTRICT dst) +{ + const float gain{first.gain}; + const float b1{first.b1}; + const float a1{first.a1}; + float z1{first.z[0]}; + auto proc_sample = [gain,b1,a1,&z1](const float in) noexcept -> float + { + const float y{in*gain - a1*z1}; + const float out{y + b1*z1}; + z1 += y; + return out; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + first.z[0] = z1; +} + +void NfcFilter::process2(const al::span<const float> src, float *RESTRICT dst) +{ + const float gain{second.gain}; + const float b1{second.b1}; + const float b2{second.b2}; + const float a1{second.a1}; + const float a2{second.a2}; + float z1{second.z[0]}; + float z2{second.z[1]}; + auto proc_sample = [gain,b1,b2,a1,a2,&z1,&z2](const float in) noexcept -> float + { + const float y{in*gain - a1*z1 - a2*z2}; + const float out{y + b1*z1 + b2*z2}; + z2 += z1; + z1 += y; + return out; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + second.z[0] = z1; + second.z[1] = z2; +} + +void NfcFilter::process3(const al::span<const float> src, float *RESTRICT dst) +{ + const float gain{third.gain}; + const float b1{third.b1}; + const float b2{third.b2}; + const float b3{third.b3}; + const float a1{third.a1}; + const float a2{third.a2}; + const float a3{third.a3}; + float z1{third.z[0]}; + float z2{third.z[1]}; + float z3{third.z[2]}; + auto proc_sample = [gain,b1,b2,b3,a1,a2,a3,&z1,&z2,&z3](const float in) noexcept -> float + { + float y{in*gain - a1*z1 - a2*z2}; + float out{y + b1*z1 + b2*z2}; + z2 += z1; + z1 += y; + + y = out - a3*z3; + out = y + b3*z3; + z3 += y; + return out; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + third.z[0] = z1; + third.z[1] = z2; + third.z[2] = z3; +} + +void NfcFilter::process4(const al::span<const float> src, float *RESTRICT dst) +{ + const float gain{fourth.gain}; + const float b1{fourth.b1}; + const float b2{fourth.b2}; + const float b3{fourth.b3}; + const float b4{fourth.b4}; + const float a1{fourth.a1}; + const float a2{fourth.a2}; + const float a3{fourth.a3}; + const float a4{fourth.a4}; + float z1{fourth.z[0]}; + float z2{fourth.z[1]}; + float z3{fourth.z[2]}; + float z4{fourth.z[3]}; + auto proc_sample = [gain,b1,b2,b3,b4,a1,a2,a3,a4,&z1,&z2,&z3,&z4](const float in) noexcept -> float + { + float y{in*gain - a1*z1 - a2*z2}; + float out{y + b1*z1 + b2*z2}; + z2 += z1; + z1 += y; + + y = out - a3*z3 - a4*z4; + out = y + b3*z3 + b4*z4; + z4 += z3; + z3 += y; + return out; + }; + std::transform(src.cbegin(), src.cend(), dst, proc_sample); + fourth.z[0] = z1; + fourth.z[1] = z2; + fourth.z[2] = z3; + fourth.z[3] = z4; +} diff --git a/core/filters/nfc.h b/core/filters/nfc.h new file mode 100644 index 00000000..33f67a5f --- /dev/null +++ b/core/filters/nfc.h @@ -0,0 +1,63 @@ +#ifndef CORE_FILTERS_NFC_H +#define CORE_FILTERS_NFC_H + +#include <cstddef> + +#include "alspan.h" + + +struct NfcFilter1 { + float base_gain, gain; + float b1, a1; + float z[1]; +}; +struct NfcFilter2 { + float base_gain, gain; + float b1, b2, a1, a2; + float z[2]; +}; +struct NfcFilter3 { + float base_gain, gain; + float b1, b2, b3, a1, a2, a3; + float z[3]; +}; +struct NfcFilter4 { + float base_gain, gain; + float b1, b2, b3, b4, a1, a2, a3, a4; + float z[4]; +}; + +class NfcFilter { + NfcFilter1 first; + NfcFilter2 second; + NfcFilter3 third; + NfcFilter4 fourth; + +public: + /* NOTE: + * w0 = speed_of_sound / (source_distance * sample_rate); + * w1 = speed_of_sound / (control_distance * sample_rate); + * + * Generally speaking, the control distance should be approximately the + * average speaker distance, or based on the reference delay if outputing + * NFC-HOA. It must not be negative, 0, or infinite. The source distance + * should not be too small relative to the control distance. + */ + + void init(const float w1) noexcept; + void adjust(const float w0) noexcept; + + /* Near-field control filter for first-order ambisonic channels (1-3). */ + void process1(const al::span<const float> src, float *RESTRICT dst); + + /* Near-field control filter for second-order ambisonic channels (4-8). */ + void process2(const al::span<const float> src, float *RESTRICT dst); + + /* Near-field control filter for third-order ambisonic channels (9-15). */ + void process3(const al::span<const float> src, float *RESTRICT dst); + + /* Near-field control filter for fourth-order ambisonic channels (16-24). */ + void process4(const al::span<const float> src, float *RESTRICT dst); +}; + +#endif /* CORE_FILTERS_NFC_H */ diff --git a/core/filters/splitter.cpp b/core/filters/splitter.cpp new file mode 100644 index 00000000..5cc670b7 --- /dev/null +++ b/core/filters/splitter.cpp @@ -0,0 +1,113 @@ + +#include "config.h" + +#include "splitter.h" + +#include <algorithm> +#include <cmath> +#include <limits> + +#include "math_defs.h" +#include "opthelpers.h" + + +template<typename Real> +void BandSplitterR<Real>::init(Real f0norm) +{ + const Real w{f0norm * al::MathDefs<Real>::Tau()}; + const Real cw{std::cos(w)}; + if(cw > std::numeric_limits<float>::epsilon()) + mCoeff = (std::sin(w) - 1.0f) / cw; + else + mCoeff = cw * -0.5f; + + mLpZ1 = 0.0f; + mLpZ2 = 0.0f; + mApZ1 = 0.0f; +} + +template<typename Real> +void BandSplitterR<Real>::process(const al::span<const Real> input, Real *hpout, Real *lpout) +{ + const Real ap_coeff{mCoeff}; + const Real lp_coeff{mCoeff*0.5f + 0.5f}; + Real lp_z1{mLpZ1}; + Real lp_z2{mLpZ2}; + Real ap_z1{mApZ1}; + auto proc_sample = [ap_coeff,lp_coeff,&lp_z1,&lp_z2,&ap_z1,&lpout](const Real in) noexcept -> Real + { + /* Low-pass sample processing. */ + Real d{(in - lp_z1) * lp_coeff}; + Real lp_y{lp_z1 + d}; + lp_z1 = lp_y + d; + + d = (lp_y - lp_z2) * lp_coeff; + lp_y = lp_z2 + d; + lp_z2 = lp_y + d; + + *(lpout++) = lp_y; + + /* All-pass sample processing. */ + Real ap_y{in*ap_coeff + ap_z1}; + ap_z1 = in - ap_y*ap_coeff; + + /* High-pass generated from removing low-passed output. */ + return ap_y - lp_y; + }; + std::transform(input.cbegin(), input.cend(), hpout, proc_sample); + mLpZ1 = lp_z1; + mLpZ2 = lp_z2; + mApZ1 = ap_z1; +} + +template<typename Real> +void BandSplitterR<Real>::processHfScale(const al::span<Real> samples, const Real hfscale) +{ + const Real ap_coeff{mCoeff}; + const Real lp_coeff{mCoeff*0.5f + 0.5f}; + Real lp_z1{mLpZ1}; + Real lp_z2{mLpZ2}; + Real ap_z1{mApZ1}; + auto proc_sample = [hfscale,ap_coeff,lp_coeff,&lp_z1,&lp_z2,&ap_z1](const Real in) noexcept -> Real + { + /* Low-pass sample processing. */ + Real d{(in - lp_z1) * lp_coeff}; + Real lp_y{lp_z1 + d}; + lp_z1 = lp_y + d; + + d = (lp_y - lp_z2) * lp_coeff; + lp_y = lp_z2 + d; + lp_z2 = lp_y + d; + + /* All-pass sample processing. */ + Real ap_y{in*ap_coeff + ap_z1}; + ap_z1 = in - ap_y*ap_coeff; + + /* High-pass generated by removing the low-passed signal, which is then + * scaled and added back to the low-passed signal. + */ + return (ap_y-lp_y)*hfscale + lp_y; + }; + std::transform(samples.begin(), samples.end(), samples.begin(), proc_sample); + mLpZ1 = lp_z1; + mLpZ2 = lp_z2; + mApZ1 = ap_z1; +} + +template<typename Real> +void BandSplitterR<Real>::applyAllpass(const al::span<Real> samples) const +{ + const Real coeff{mCoeff}; + Real z1{0.0f}; + auto proc_sample = [coeff,&z1](const Real in) noexcept -> Real + { + const Real out{in*coeff + z1}; + z1 = in - out*coeff; + return out; + }; + std::transform(samples.begin(), samples.end(), samples.begin(), proc_sample); +} + + +template class BandSplitterR<float>; +template class BandSplitterR<double>; diff --git a/core/filters/splitter.h b/core/filters/splitter.h new file mode 100644 index 00000000..ba548c10 --- /dev/null +++ b/core/filters/splitter.h @@ -0,0 +1,36 @@ +#ifndef CORE_FILTERS_SPLITTER_H +#define CORE_FILTERS_SPLITTER_H + +#include <cstddef> + +#include "alspan.h" + + +/* Band splitter. Splits a signal into two phase-matching frequency bands. */ +template<typename Real> +class BandSplitterR { + Real mCoeff{0.0f}; + Real mLpZ1{0.0f}; + Real mLpZ2{0.0f}; + Real mApZ1{0.0f}; + +public: + BandSplitterR() = default; + BandSplitterR(const BandSplitterR&) = default; + BandSplitterR(Real f0norm) { init(f0norm); } + + void init(Real f0norm); + void clear() noexcept { mLpZ1 = mLpZ2 = mApZ1 = 0.0f; } + void process(const al::span<const Real> input, Real *hpout, Real *lpout); + + void processHfScale(const al::span<Real> samples, const Real hfscale); + + /* The all-pass portion of the band splitter. Applies the same phase shift + * without splitting the signal. Note that each use of this method is + * indepedent, it does not track history between calls. + */ + void applyAllpass(const al::span<Real> samples) const; +}; +using BandSplitter = BandSplitterR<float>; + +#endif /* CORE_FILTERS_SPLITTER_H */ |