diff options
Diffstat (limited to 'utils/makehrtf.c')
-rw-r--r-- | utils/makehrtf.c | 5002 |
1 files changed, 2900 insertions, 2102 deletions
diff --git a/utils/makehrtf.c b/utils/makehrtf.c index 57d8a91a..0bd36849 100644 --- a/utils/makehrtf.c +++ b/utils/makehrtf.c @@ -2,7 +2,7 @@ * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * - * Copyright (C) 2011-2014 Christopher Fitzgerald + * Copyright (C) 2011-2017 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -60,19 +60,38 @@ #include "config.h" +#define _UNICODE #include <stdio.h> #include <stdlib.h> #include <stdarg.h> +#include <stddef.h> #include <string.h> +#include <limits.h> #include <ctype.h> #include <math.h> #ifdef HAVE_STRINGS_H #include <strings.h> #endif +#ifdef HAVE_GETOPT +#include <unistd.h> +#else +#include "getopt.h" +#endif -// Rely (if naively) on OpenAL's header for the types used for serialization. -#include "AL/al.h" -#include "AL/alext.h" +#include "win_main_utf8.h" + +/* Define int64_t and uint64_t types */ +#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L +#include <inttypes.h> +#elif defined(_WIN32) && defined(__GNUC__) +#include <stdint.h> +#elif defined(_WIN32) +typedef __int64 int64_t; +typedef unsigned __int64 uint64_t; +#else +/* Fallback if nothing above works */ +#include <inttypes.h> +#endif #ifndef M_PI #define M_PI (3.14159265358979323846) @@ -82,8 +101,9 @@ #define HUGE_VAL (1.0 / 0.0) #endif + // The epsilon used to maintain signal stability. -#define EPSILON (1e-15) +#define EPSILON (1e-9) // Constants for accessing the token reader's ring buffer. #define TR_RING_BITS (16) @@ -109,6 +129,9 @@ #define MIN_POINTS (16) #define MAX_POINTS (8192) +// The limit to the number of 'distances' listed in the data set definition. +#define MAX_FD_COUNT (16) + // The limits to the number of 'azimuths' listed in the data set definition. #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (128) @@ -121,10 +144,10 @@ #define MIN_RADIUS (0.05) #define MAX_RADIUS (0.15) -// The limits for the 'distance' from source to listener in the definition -// file. -#define MIN_DISTANCE (0.5) -#define MAX_DISTANCE (2.5) +// The limits for the 'distance' from source to listener for each field in +// the definition file. +#define MIN_DISTANCE (0.05) +#define MAX_DISTANCE (2.50) // The maximum number of channels that can be addressed for a WAVE file // source listed in the data set definition. @@ -145,16 +168,16 @@ #define MAX_ASCII_BITS (32) // The limits to the FFT window size override on the command line. -#define MIN_FFTSIZE (512) -#define MAX_FFTSIZE (16384) +#define MIN_FFTSIZE (65536) +#define MAX_FFTSIZE (131072) // The limits to the equalization range limit on the command line. #define MIN_LIMIT (2.0) #define MAX_LIMIT (120.0) // The limits to the truncation window size on the command line. -#define MIN_TRUNCSIZE (8) -#define MAX_TRUNCSIZE (128) +#define MIN_TRUNCSIZE (16) +#define MAX_TRUNCSIZE (512) // The limits to the custom head radius on the command line. #define MIN_CUSTOM_RADIUS (0.05) @@ -165,6 +188,7 @@ #define MOD_TRUNCSIZE (8) // The defaults for the command line options. +#define DEFAULT_FFTSIZE (65536) #define DEFAULT_EQUALIZE (1) #define DEFAULT_SURFACE (1) #define DEFAULT_LIMIT (24.0) @@ -191,267 +215,378 @@ #define MAX_HRTD (63.0) // The OpenAL Soft HRTF format marker. It stands for minimum-phase head -// response protocol 01. -#define MHR_FORMAT ("MinPHR01") +// response protocol 02. +#define MHR_FORMAT ("MinPHR02") + +// Sample and channel type enum values. +typedef enum SampleTypeT { + ST_S16 = 0, + ST_S24 = 1 +} SampleTypeT; + +// Certain iterations rely on these integer enum values. +typedef enum ChannelTypeT { + CT_NONE = -1, + CT_MONO = 0, + CT_STEREO = 1 +} ChannelTypeT; // Byte order for the serialization routines. -enum ByteOrderT { - BO_NONE = 0, - BO_LITTLE , - BO_BIG -}; +typedef enum ByteOrderT { + BO_NONE, + BO_LITTLE, + BO_BIG +} ByteOrderT; // Source format for the references listed in the data set definition. -enum SourceFormatT { - SF_NONE = 0, - SF_WAVE , // RIFF/RIFX WAVE file. - SF_BIN_LE , // Little-endian binary file. - SF_BIN_BE , // Big-endian binary file. - SF_ASCII // ASCII text file. -}; +typedef enum SourceFormatT { + SF_NONE, + SF_WAVE, // RIFF/RIFX WAVE file. + SF_BIN_LE, // Little-endian binary file. + SF_BIN_BE, // Big-endian binary file. + SF_ASCII // ASCII text file. +} SourceFormatT; // Element types for the references listed in the data set definition. -enum ElementTypeT { - ET_NONE = 0, - ET_INT , // Integer elements. - ET_FP // Floating-point elements. -}; +typedef enum ElementTypeT { + ET_NONE, + ET_INT, // Integer elements. + ET_FP // Floating-point elements. +} ElementTypeT; // Head model used for calculating the impulse delays. -enum HeadModelT { - HM_NONE = 0, - HM_DATASET , // Measure the onset from the dataset. - HM_SPHERE // Calculate the onset using a spherical head model. -}; - -// Desired output format from the command line. -enum OutputFormatT { - OF_NONE = 0, - OF_MHR // OpenAL Soft MHR data set file. -}; +typedef enum HeadModelT { + HM_NONE, + HM_DATASET, // Measure the onset from the dataset. + HM_SPHERE // Calculate the onset using a spherical head model. +} HeadModelT; // Unsigned integer type. -typedef unsigned int uint; +typedef unsigned int uint; // Serialization types. The trailing digit indicates the number of bits. -typedef ALubyte uint8; - -typedef ALint int32; -typedef ALuint uint32; -typedef ALuint64SOFT uint64; - -typedef enum ByteOrderT ByteOrderT; -typedef enum SourceFormatT SourceFormatT; -typedef enum ElementTypeT ElementTypeT; -typedef enum HeadModelT HeadModelT; -typedef enum OutputFormatT OutputFormatT; - -typedef struct TokenReaderT TokenReaderT; -typedef struct SourceRefT SourceRefT; -typedef struct HrirDataT HrirDataT; -typedef struct ResamplerT ResamplerT; +typedef unsigned char uint8; +typedef int int32; +typedef unsigned int uint32; +typedef uint64_t uint64; // Token reader state for parsing the data set definition. -struct TokenReaderT { - FILE * mFile; - const char * mName; - uint mLine, - mColumn; - char mRing [TR_RING_SIZE]; - size_t mIn, - mOut; -}; +typedef struct TokenReaderT { + FILE *mFile; + const char *mName; + uint mLine; + uint mColumn; + char mRing[TR_RING_SIZE]; + size_t mIn; + size_t mOut; +} TokenReaderT; // Source reference state used when loading sources. -struct SourceRefT { - SourceFormatT mFormat; - ElementTypeT mType; - uint mSize; - int mBits; - uint mChannel, - mSkip, - mOffset; - char mPath [MAX_PATH_LEN + 1]; -}; +typedef struct SourceRefT { + SourceFormatT mFormat; + ElementTypeT mType; + uint mSize; + int mBits; + uint mChannel; + uint mSkip; + uint mOffset; + char mPath[MAX_PATH_LEN+1]; +} SourceRefT; + +// Structured HRIR storage for stereo azimuth pairs, elevations, and fields. +typedef struct HrirAzT { + double mAzimuth; + uint mIndex; + double mDelays[2]; + double *mIrs[2]; +} HrirAzT; + +typedef struct HrirEvT { + double mElevation; + uint mIrCount; + uint mAzCount; + HrirAzT *mAzs; +} HrirEvT; + +typedef struct HrirFdT { + double mDistance; + uint mIrCount; + uint mEvCount; + uint mEvStart; + HrirEvT *mEvs; +} HrirFdT; // The HRIR metrics and data set used when loading, processing, and storing // the resulting HRTF. -struct HrirDataT { - uint mIrRate, - mIrCount, - mIrSize, - mIrPoints, - mFftSize, - mEvCount, - mEvStart, - mAzCount [MAX_EV_COUNT], - mEvOffset [MAX_EV_COUNT]; - double mRadius, - mDistance, - * mHrirs, - * mHrtds, - mMaxHrtd; -}; +typedef struct HrirDataT { + uint mIrRate; + SampleTypeT mSampleType; + ChannelTypeT mChannelType; + uint mIrPoints; + uint mFftSize; + uint mIrSize; + double mRadius; + uint mIrCount; + uint mFdCount; + HrirFdT *mFds; +} HrirDataT; // The resampler metrics and FIR filter. -struct ResamplerT { - uint mP, - mQ, - mM, - mL; - double * mF; -}; - -/* Token reader routines for parsing text files. Whitespace is not - * significant. It can process tokens as identifiers, numbers (integer and - * floating-point), strings, and operators. Strings must be encapsulated by - * double-quotes and cannot span multiple lines. +typedef struct ResamplerT { + uint mP, mQ, mM, mL; + double *mF; +} ResamplerT; + + +/**************************************** + *** Complex number type and routines *** + ****************************************/ + +typedef struct { + double Real, Imag; +} Complex; + +static Complex MakeComplex(double r, double i) +{ + Complex c = { r, i }; + return c; +} + +static Complex c_add(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real + b.Real; + r.Imag = a.Imag + b.Imag; + return r; +} + +static Complex c_sub(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real - b.Real; + r.Imag = a.Imag - b.Imag; + return r; +} + +static Complex c_mul(Complex a, Complex b) +{ + Complex r; + r.Real = a.Real*b.Real - a.Imag*b.Imag; + r.Imag = a.Imag*b.Real + a.Real*b.Imag; + return r; +} + +static Complex c_muls(Complex a, double s) +{ + Complex r; + r.Real = a.Real * s; + r.Imag = a.Imag * s; + return r; +} + +static double c_abs(Complex a) +{ + return sqrt(a.Real*a.Real + a.Imag*a.Imag); +} + +static Complex c_exp(Complex a) +{ + Complex r; + double e = exp(a.Real); + r.Real = e * cos(a.Imag); + r.Imag = e * sin(a.Imag); + return r; +} + +/***************************** + *** Token reader routines *** + *****************************/ + +/* Whitespace is not significant. It can process tokens as identifiers, numbers + * (integer and floating-point), strings, and operators. Strings must be + * encapsulated by double-quotes and cannot span multiple lines. */ // Setup the reader on the given file. The filename can be NULL if no error // output is desired. -static void TrSetup (FILE * fp, const char * filename, TokenReaderT * tr) { - const char * name = NULL; - char ch; - - tr -> mFile = fp; - name = filename; - // If a filename was given, store a pointer to the base name. - if (filename != NULL) { - while ((ch = (* filename)) != '\0') { - if ((ch == '/') || (ch == '\\')) - name = filename + 1; - filename ++; - } - } - tr -> mName = name; - tr -> mLine = 1; - tr -> mColumn = 1; - tr -> mIn = 0; - tr -> mOut = 0; +static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr) +{ + const char *name = NULL; + + if(filename) + { + const char *slash = strrchr(filename, '/'); + if(slash) + { + const char *bslash = strrchr(slash+1, '\\'); + if(bslash) name = bslash+1; + else name = slash+1; + } + else + { + const char *bslash = strrchr(filename, '\\'); + if(bslash) name = bslash+1; + else name = filename; + } + } + + tr->mFile = fp; + tr->mName = name; + tr->mLine = 1; + tr->mColumn = 1; + tr->mIn = 0; + tr->mOut = 0; } // Prime the reader's ring buffer, and return a result indicating that there // is text to process. -static int TrLoad (TokenReaderT * tr) { - size_t toLoad, in, count; - - toLoad = TR_RING_SIZE - (tr -> mIn - tr -> mOut); - if ((toLoad >= TR_LOAD_SIZE) && (! feof (tr -> mFile))) { - // Load TR_LOAD_SIZE (or less if at the end of the file) per read. - toLoad = TR_LOAD_SIZE; - in = tr -> mIn & TR_RING_MASK; - count = TR_RING_SIZE - in; - if (count < toLoad) { - tr -> mIn += fread (& tr -> mRing [in], 1, count, tr -> mFile); - tr -> mIn += fread (& tr -> mRing [0], 1, toLoad - count, tr -> mFile); - } else { - tr -> mIn += fread (& tr -> mRing [in], 1, toLoad, tr -> mFile); - } - if (tr -> mOut >= TR_RING_SIZE) { - tr -> mOut -= TR_RING_SIZE; - tr -> mIn -= TR_RING_SIZE; - } - } - if (tr -> mIn > tr -> mOut) - return (1); - return (0); +static int TrLoad(TokenReaderT *tr) +{ + size_t toLoad, in, count; + + toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); + if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) + { + // Load TR_LOAD_SIZE (or less if at the end of the file) per read. + toLoad = TR_LOAD_SIZE; + in = tr->mIn&TR_RING_MASK; + count = TR_RING_SIZE - in; + if(count < toLoad) + { + tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); + tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); + } + else + tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); + + if(tr->mOut >= TR_RING_SIZE) + { + tr->mOut -= TR_RING_SIZE; + tr->mIn -= TR_RING_SIZE; + } + } + if(tr->mIn > tr->mOut) + return 1; + return 0; } // Error display routine. Only displays when the base name is not NULL. -static void TrErrorVA (const TokenReaderT * tr, uint line, uint column, const char * format, va_list argPtr) { - if (tr -> mName != NULL) { - fprintf (stderr, "Error (%s:%u:%u): ", tr -> mName, line, column); - vfprintf (stderr, format, argPtr); - } +static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) +{ + if(!tr->mName) + return; + fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column); + vfprintf(stderr, format, argPtr); } // Used to display an error at a saved line/column. -static void TrErrorAt (const TokenReaderT * tr, uint line, uint column, const char * format, ...) { - va_list argPtr; +static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) +{ + va_list argPtr; - va_start (argPtr, format); - TrErrorVA (tr, line, column, format, argPtr); - va_end (argPtr); + va_start(argPtr, format); + TrErrorVA(tr, line, column, format, argPtr); + va_end(argPtr); } // Used to display an error at the current line/column. -static void TrError (const TokenReaderT * tr, const char * format, ...) { - va_list argPtr; +static void TrError(const TokenReaderT *tr, const char *format, ...) +{ + va_list argPtr; - va_start (argPtr, format); - TrErrorVA (tr, tr -> mLine, tr -> mColumn, format, argPtr); - va_end (argPtr); + va_start(argPtr, format); + TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); + va_end(argPtr); } // Skips to the next line. -static void TrSkipLine (TokenReaderT * tr) { - char ch; +static void TrSkipLine(TokenReaderT *tr) +{ + char ch; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - tr -> mOut ++; - if (ch == '\n') { - tr -> mLine ++; - tr -> mColumn = 1; - break; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + break; + } + tr->mColumn ++; } - tr -> mColumn ++; - } } // Skips to the next token. -static int TrSkipWhitespace (TokenReaderT * tr) { - char ch; - - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (isspace (ch)) { - tr -> mOut ++; - if (ch == '\n') { - tr -> mLine ++; - tr -> mColumn = 1; - } else { - tr -> mColumn ++; - } - } else if (ch == '#') { - TrSkipLine (tr); - } else { - return (1); - } - } - return (0); +static int TrSkipWhitespace(TokenReaderT *tr) +{ + char ch; + + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(isspace(ch)) + { + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + } + else + tr->mColumn++; + } + else if(ch == '#') + TrSkipLine(tr); + else + return 1; + } + return 0; } // Get the line and/or column of the next token (or the end of input). -static void TrIndication (TokenReaderT * tr, uint * line, uint * column) { - TrSkipWhitespace (tr); - if (line != NULL) - (* line) = tr -> mLine; - if (column != NULL) - (* column) = tr -> mColumn; +static void TrIndication(TokenReaderT *tr, uint *line, uint *column) +{ + TrSkipWhitespace(tr); + if(line) *line = tr->mLine; + if(column) *column = tr->mColumn; +} + +// Checks to see if a token is (likely to be) an identifier. It does not +// display any errors and will not proceed to the next token. +static int TrIsIdent(TokenReaderT *tr) +{ + char ch; + + if(!TrSkipWhitespace(tr)) + return 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + return ch == '_' || isalpha(ch); } + // Checks to see if a token is the given operator. It does not display any // errors and will not proceed to the next token. -static int TrIsOperator (TokenReaderT * tr, const char * op) { - size_t out, len; - char ch; - - if (! TrSkipWhitespace (tr)) - return (0); - out = tr -> mOut; - len = 0; - while ((op [len] != '\0') && (out < tr -> mIn)) { - ch = tr -> mRing [out & TR_RING_MASK]; - if (ch != op [len]) - break; - len ++; - out ++; - } - if (op [len] == '\0') - return (1); - return (0); +static int TrIsOperator(TokenReaderT *tr, const char *op) +{ + size_t out, len; + char ch; + + if(!TrSkipWhitespace(tr)) + return 0; + out = tr->mOut; + len = 0; + while(op[len] != '\0' && out < tr->mIn) + { + ch = tr->mRing[out&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + out++; + } + if(op[len] == '\0') + return 1; + return 0; } /* The TrRead*() routines obtain the value of a matching token type. They @@ -460,322 +595,377 @@ static int TrIsOperator (TokenReaderT * tr, const char * op) { */ // Reads and validates an identifier token. -static int TrReadIdent (TokenReaderT * tr, const uint maxLen, char * ident) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '_') || isalpha (ch)) { - len = 0; - do { - if (len < maxLen) - ident [len] = ch; - len ++; - tr -> mOut ++; - if (! TrLoad (tr)) - break; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - } while ((ch == '_') || isdigit (ch) || isalpha (ch)); - tr -> mColumn += len; - if (len > maxLen) { - TrErrorAt (tr, tr -> mLine, col, "Identifier is too long.\n"); - return (0); - } - ident [len] = '\0'; - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected an identifier.\n"); - return (0); +static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '_' || isalpha(ch)) + { + len = 0; + do { + if(len < maxLen) + ident[len] = ch; + len++; + tr->mOut++; + if(!TrLoad(tr)) + break; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + } while(ch == '_' || isdigit(ch) || isalpha(ch)); + + tr->mColumn += len; + if(len < maxLen) + { + ident[len] = '\0'; + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); + return 0; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); + return 0; } // Reads and validates (including bounds) an integer token. -static int TrReadInt (TokenReaderT * tr, const int loBound, const int hiBound, int * value) { - uint col, digis, len; - char ch, temp [64 + 1]; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '+') || (ch == '-')) { - temp [len] = ch; - len ++; - tr -> mOut ++; - } - digis = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - tr -> mColumn += len; - if ((digis > 0) && (ch != '.') && (! isalpha (ch))) { - if (len > 64) { - TrErrorAt (tr, tr -> mLine, col, "Integer is too long."); - return (0); - } - temp [len] = '\0'; - (* value) = strtol (temp, NULL, 10); - if (((* value) < loBound) || ((* value) > hiBound)) { - TrErrorAt (tr, tr -> mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); - return (0); - } - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected an integer.\n"); - return (0); +static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Integer is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtol(temp, NULL, 10); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); + return 0; } // Reads and validates (including bounds) a float token. -static int TrReadFloat (TokenReaderT * tr, const double loBound, const double hiBound, double * value) { - uint col, digis, len; - char ch, temp [64 + 1]; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '+') || (ch == '-')) { - temp [len] = ch; - len ++; - tr -> mOut ++; - } - digis = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - if (ch == '.') { - if (len < 64) - temp [len] = ch; - len ++; - tr -> mOut ++; - } - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - if (digis > 0) { - if ((ch == 'E') || (ch == 'e')) { - if (len < 64) - temp [len] = ch; - len ++; - digis = 0; - tr -> mOut ++; - if ((ch == '+') || (ch == '-')) { - if (len < 64) - temp [len] = ch; - len ++; - tr -> mOut ++; - } - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - } - tr -> mColumn += len; - if ((digis > 0) && (ch != '.') && (! isalpha (ch))) { - if (len > 64) { - TrErrorAt (tr, tr -> mLine, col, "Float is too long."); - return (0); - } - temp [len] = '\0'; - (* value) = strtod (temp, NULL); - if (((* value) < loBound) || ((* value) > hiBound)) { - TrErrorAt (tr, tr -> mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); - return (0); - } - return (1); - } - } else { - tr -> mColumn += len; - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected a float.\n"); - return (0); +static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(ch == '.') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(digis > 0) + { + if(ch == 'E' || ch == 'e') + { + if(len < 64) + temp[len] = ch; + len++; + digis = 0; + tr->mOut++; + if(ch == '+' || ch == '-') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Float is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtod(temp, NULL); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + else + tr->mColumn += len; + } + TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); + return 0; } // Reads and validates a string token. -static int TrReadString (TokenReaderT * tr, const uint maxLen, char * text) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (ch == '\"') { - tr -> mOut ++; - len = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - tr -> mOut ++; - if (ch == '\"') - break; - if (ch == '\n') { - TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of line.\n"); - return (0); - } - if (len < maxLen) - text [len] = ch; - len ++; - } - if (ch != '\"') { - tr -> mColumn += 1 + len; - TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of input.\n"); - return (0); - } - tr -> mColumn += 2 + len; - if (len > maxLen) { - TrErrorAt (tr, tr -> mLine, col, "String is too long.\n"); - return (0); - } - text [len] = '\0'; - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected a string.\n"); - return (0); +static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '\"') + { + tr->mOut++; + len = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\"') + break; + if(ch == '\n') + { + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n"); + return 0; + } + if(len < maxLen) + text[len] = ch; + len++; + } + if(ch != '\"') + { + tr->mColumn += 1 + len; + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); + return 0; + } + tr->mColumn += 2 + len; + if(len > maxLen) + { + TrErrorAt(tr, tr->mLine, col, "String is too long.\n"); + return 0; + } + text[len] = '\0'; + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); + return 0; } // Reads and validates the given operator. -static int TrReadOperator (TokenReaderT * tr, const char * op) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - while ((op [len] != '\0') && TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (ch != op [len]) - break; - len ++; - tr -> mOut ++; - } - tr -> mColumn += len; - if (op [len] == '\0') - return (1); - } - TrErrorAt (tr, tr -> mLine, col, "Expected '%s' operator.\n", op); - return (0); +static int TrReadOperator(TokenReaderT *tr, const char *op) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + while(op[len] != '\0' && TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + tr->mOut++; + } + tr->mColumn += len; + if(op[len] == '\0') + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); + return 0; } /* Performs a string substitution. Any case-insensitive occurrences of the * pattern string are replaced with the replacement string. The result is * truncated if necessary. */ -static int StrSubst (const char * in, const char * pat, const char * rep, const size_t maxLen, char * out) { - size_t inLen, patLen, repLen; - size_t si, di; - int truncated; - - inLen = strlen (in); - patLen = strlen (pat); - repLen = strlen (rep); - si = 0; - di = 0; - truncated = 0; - while ((si < inLen) && (di < maxLen)) { - if (patLen <= (inLen - si)) { - if (strncasecmp (& in [si], pat, patLen) == 0) { - if (repLen > (maxLen - di)) { - repLen = maxLen - di; - truncated = 1; - } - strncpy (& out [di], rep, repLen); - si += patLen; - di += repLen; - } - } - out [di] = in [si]; - si ++; - di ++; - } - if (si < inLen) - truncated = 1; - out [di] = '\0'; - return (! truncated); +static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out) +{ + size_t inLen, patLen, repLen; + size_t si, di; + int truncated; + + inLen = strlen(in); + patLen = strlen(pat); + repLen = strlen(rep); + si = 0; + di = 0; + truncated = 0; + while(si < inLen && di < maxLen) + { + if(patLen <= inLen-si) + { + if(strncasecmp(&in[si], pat, patLen) == 0) + { + if(repLen > maxLen-di) + { + repLen = maxLen - di; + truncated = 1; + } + strncpy(&out[di], rep, repLen); + si += patLen; + di += repLen; + } + } + out[di] = in[si]; + si++; + di++; + } + if(si < inLen) + truncated = 1; + out[di] = '\0'; + return !truncated; } + +/********************* + *** Math routines *** + *********************/ + // Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013). #if defined(_MSC_VER) && _MSC_VER < 1800 -static double round (double val) { - if (val < 0.0) - return (ceil (val - 0.5)); - return (floor (val + 0.5)); +static double round(double val) +{ + if(val < 0.0) + return ceil(val-0.5); + return floor(val+0.5); } -static double fmin (double a, double b) { - return ((a < b) ? a : b); +static double fmin(double a, double b) +{ + return (a<b) ? a : b; } -static double fmax (double a, double b) { - return ((a > b) ? a : b); +static double fmax(double a, double b) +{ + return (a>b) ? a : b; } #endif // Simple clamp routine. -static double Clamp (const double val, const double lower, const double upper) { - return (fmin (fmax (val, lower), upper)); +static double Clamp(const double val, const double lower, const double upper) +{ + return fmin(fmax(val, lower), upper); } // Performs linear interpolation. -static double Lerp (const double a, const double b, const double f) { - return (a + (f * (b - a))); +static double Lerp(const double a, const double b, const double f) +{ + return a + f * (b - a); +} + +static inline uint dither_rng(uint *seed) +{ + *seed = *seed * 96314165 + 907633515; + return *seed; } -// Performs a high-passed triangular probability density function dither from -// a double to an integer. It assumes the input sample is already scaled. -static int HpTpdfDither (const double in, int * hpHist) { - const double PRNG_SCALE = 1.0 / (RAND_MAX + 1.0); - int prn; - double out; +// Performs a triangular probability density function dither. The input samples +// should be normalized (-1 to +1). +static void TpdfDither(double *restrict out, const double *restrict in, const double scale, + const int count, const int step, uint *seed) +{ + static const double PRNG_SCALE = 1.0 / UINT_MAX; + uint prn0, prn1; + int i; - prn = rand (); - out = round (in + (PRNG_SCALE * (prn - (* hpHist)))); - (* hpHist) = prn; - return ((int) out); + for(i = 0;i < count;i++) + { + prn0 = dither_rng(seed); + prn1 = dither_rng(seed); + out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE)); + } } // Allocates an array of doubles. -static double *CreateArray(size_t n) +static double *CreateDoubles(size_t n) { double *a; - if(n == 0) n = 1; - a = calloc(n, sizeof(double)); + a = calloc(n?n:1, sizeof(*a)); if(a == NULL) { fprintf(stderr, "Error: Out of memory.\n"); @@ -784,168 +974,117 @@ static double *CreateArray(size_t n) return a; } -// Frees an array of doubles. -static void DestroyArray(double *a) -{ free(a); } - -// Complex number routines. All outputs must be non-NULL. - -// Magnitude/absolute value. -static double ComplexAbs (const double r, const double i) { - return (sqrt ((r * r) + (i * i))); -} - -// Multiply. -static void ComplexMul (const double aR, const double aI, const double bR, const double bI, double * outR, double * outI) { - (* outR) = (aR * bR) - (aI * bI); - (* outI) = (aI * bR) + (aR * bI); -} - -// Base-e exponent. -static void ComplexExp (const double inR, const double inI, double * outR, double * outI) { - double e; +// Allocates an array of complex numbers. +static Complex *CreateComplexes(size_t n) +{ + Complex *a; - e = exp (inR); - (* outR) = e * cos (inI); - (* outI) = e * sin (inI); + a = calloc(n?n:1, sizeof(*a)); + if(a == NULL) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + return a; } -/* Fast Fourier transform routines. The number of points must be a power of - * two. In-place operation is possible only if both the real and imaginary - * parts are in-place together. +/* Fast Fourier transform routines. The number of points must be a power of + * two. */ // Performs bit-reversal ordering. -static void FftArrange (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - uint rk, k, m; - double tempR, tempI; - - if ((inR == outR) && (inI == outI)) { - // Handle in-place arrangement. - rk = 0; - for (k = 0; k < n; k ++) { - if (rk > k) { - tempR = inR [rk]; - tempI = inI [rk]; - outR [rk] = inR [k]; - outI [rk] = inI [k]; - outR [k] = tempR; - outI [k] = tempI; - } - m = n; - while (rk & (m >>= 1)) - rk &= ~m; - rk |= m; - } - } else { - // Handle copy arrangement. - rk = 0; - for (k = 0; k < n; k ++) { - outR [rk] = inR [k]; - outI [rk] = inI [k]; - m = n; - while (rk & (m >>= 1)) - rk &= ~m; - rk |= m; - } - } +static void FftArrange(const uint n, Complex *inout) +{ + uint rk, k, m; + + // Handle in-place arrangement. + rk = 0; + for(k = 0;k < n;k++) + { + if(rk > k) + { + Complex temp = inout[rk]; + inout[rk] = inout[k]; + inout[k] = temp; + } + + m = n; + while(rk&(m >>= 1)) + rk &= ~m; + rk |= m; + } } // Performs the summation. -static void FftSummation (const uint n, const double s, double * re, double * im) { - double pi; - uint m, m2; - double vR, vI, wR, wI; - uint i, k, mk; - double tR, tI; - - pi = s * M_PI; - for (m = 1, m2 = 2; m < n; m <<= 1, m2 <<= 1) { - // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) - vR = sin (0.5 * pi / m); - vR = -2.0 * vR * vR; - vI = -sin (pi / m); - // w = Complex (1.0, 0.0) - wR = 1.0; - wI = 0.0; - for (i = 0; i < m; i ++) { - for (k = i; k < n; k += m2) { - mk = k + m; - // t = ComplexMul (w, out [km2]) - tR = (wR * re [mk]) - (wI * im [mk]); - tI = (wR * im [mk]) + (wI * re [mk]); - // out [mk] = ComplexSub (out [k], t) - re [mk] = re [k] - tR; - im [mk] = im [k] - tI; - // out [k] = ComplexAdd (out [k], t) - re [k] += tR; - im [k] += tI; - } - // t = ComplexMul (v, w) - tR = (vR * wR) - (vI * wI); - tI = (vR * wI) + (vI * wR); - // w = ComplexAdd (w, t) - wR += tR; - wI += tI; - } - } +static void FftSummation(const int n, const double s, Complex *cplx) +{ + double pi; + int m, m2; + int i, k, mk; + + pi = s * M_PI; + for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1) + { + // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) + double sm = sin(0.5 * pi / m); + Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m)); + Complex w = MakeComplex(1.0, 0.0); + for(i = 0;i < m;i++) + { + for(k = i;k < n;k += m2) + { + Complex t; + mk = k + m; + t = c_mul(w, cplx[mk]); + cplx[mk] = c_sub(cplx[k], t); + cplx[k] = c_add(cplx[k], t); + } + w = c_add(w, c_mul(v, w)); + } + } } // Performs a forward FFT. -static void FftForward (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - FftArrange (n, inR, inI, outR, outI); - FftSummation (n, 1.0, outR, outI); +static void FftForward(const uint n, Complex *inout) +{ + FftArrange(n, inout); + FftSummation(n, 1.0, inout); } // Performs an inverse FFT. -static void FftInverse (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - double f; - uint i; - - FftArrange (n, inR, inI, outR, outI); - FftSummation (n, -1.0, outR, outI); - f = 1.0 / n; - for (i = 0; i < n; i ++) { - outR [i] *= f; - outI [i] *= f; - } -} - -/* Calculate the complex helical sequence (or discrete-time analytical - * signal) of the given input using the Hilbert transform. Given the - * negative natural logarithm of a signal's magnitude response, the imaginary - * components can be used as the angles for minimum-phase reconstruction. +static void FftInverse(const uint n, Complex *inout) +{ + double f; + uint i; + + FftArrange(n, inout); + FftSummation(n, -1.0, inout); + f = 1.0 / n; + for(i = 0;i < n;i++) + inout[i] = c_muls(inout[i], f); +} + +/* Calculate the complex helical sequence (or discrete-time analytical signal) + * of the given input using the Hilbert transform. Given the natural logarithm + * of a signal's magnitude response, the imaginary components can be used as + * the angles for minimum-phase reconstruction. */ -static void Hilbert (const uint n, const double * in, double * outR, double * outI) { - uint i; - - if (in == outR) { - // Handle in-place operation. - for (i = 0; i < n; i ++) - outI [i] = 0.0; - } else { - // Handle copy operation. - for (i = 0; i < n; i ++) { - outR [i] = in [i]; - outI [i] = 0.0; - } - } - FftForward (n, outR, outI, outR, outI); - /* Currently the Fourier routines operate only on point counts that are - * powers of two. If that changes and n is odd, the following conditional - * should be: i < (n + 1) / 2. - */ - for (i = 1; i < (n / 2); i ++) { - outR [i] *= 2.0; - outI [i] *= 2.0; - } - // If n is odd, the following increment should be skipped. - i ++; - for (; i < n; i ++) { - outR [i] = 0.0; - outI [i] = 0.0; - } - FftInverse (n, outR, outI, outR, outI); +static void Hilbert(const uint n, Complex *inout) +{ + uint i; + + // Handle in-place operation. + for(i = 0;i < n;i++) + inout[i].Imag = 0.0; + + FftInverse(n, inout); + for(i = 1;i < (n+1)/2;i++) + inout[i] = c_muls(inout[i], 2.0); + /* Increment i if n is even. */ + i += (n&1)^1; + for(;i < n;i++) + inout[i] = MakeComplex(0.0, 0.0); + FftForward(n, inout); } /* Calculate the magnitude response of the given input. This is used in @@ -953,41 +1092,41 @@ static void Hilbert (const uint n, const double * in, double * outR, double * ou * minimum phase reconstruction. The mirrored half of the response is also * discarded. */ -static void MagnitudeResponse (const uint n, const double * inR, const double * inI, double * out) { - const uint m = 1 + (n / 2); - uint i; - - for (i = 0; i < m; i ++) - out [i] = fmax (ComplexAbs (inR [i], inI [i]), EPSILON); +static void MagnitudeResponse(const uint n, const Complex *in, double *out) +{ + const uint m = 1 + (n / 2); + uint i; + for(i = 0;i < m;i++) + out[i] = fmax(c_abs(in[i]), EPSILON); } /* Apply a range limit (in dB) to the given magnitude response. This is used * to adjust the effects of the diffuse-field average on the equalization * process. */ -static void LimitMagnitudeResponse (const uint n, const double limit, const double * in, double * out) { - const uint m = 1 + (n / 2); - double halfLim; - uint i, lower, upper; - double ave; - - halfLim = limit / 2.0; - // Convert the response to dB. - for (i = 0; i < m; i ++) - out [i] = 20.0 * log10 (in [i]); - // Use six octaves to calculate the average magnitude of the signal. - lower = ((uint) ceil (n / pow (2.0, 8.0))) - 1; - upper = ((uint) floor (n / pow (2.0, 2.0))) - 1; - ave = 0.0; - for (i = lower; i <= upper; i ++) - ave += out [i]; - ave /= upper - lower + 1; - // Keep the response within range of the average magnitude. - for (i = 0; i < m; i ++) - out [i] = Clamp (out [i], ave - halfLim, ave + halfLim); - // Convert the response back to linear magnitude. - for (i = 0; i < m; i ++) - out [i] = pow (10.0, out [i] / 20.0); +static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out) +{ + double halfLim; + uint i, lower, upper; + double ave; + + halfLim = limit / 2.0; + // Convert the response to dB. + for(i = 0;i < m;i++) + out[i] = 20.0 * log10(in[i]); + // Use six octaves to calculate the average magnitude of the signal. + lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1; + upper = ((uint)floor(n / pow(2.0, 2.0))) - 1; + ave = 0.0; + for(i = lower;i <= upper;i++) + ave += out[i]; + ave /= upper - lower + 1; + // Keep the response within range of the average magnitude. + for(i = 0;i < m;i++) + out[i] = Clamp(out[i], ave - halfLim, ave + halfLim); + // Convert the response back to linear magnitude. + for(i = 0;i < m;i++) + out[i] = pow(10.0, out[i] / 20.0); } /* Reconstructs the minimum-phase component for the given magnitude response @@ -995,41 +1134,49 @@ static void LimitMagnitudeResponse (const uint n, const double limit, const doub * residuals (which were discarded). The mirrored half of the response is * reconstructed. */ -static void MinimumPhase (const uint n, const double * in, double * outR, double * outI) { - const uint m = 1 + (n / 2); - double * mags = NULL; - uint i; - double aR, aI; - - mags = CreateArray (n); - for (i = 0; i < m; i ++) { - mags [i] = fmax (in [i], EPSILON); - outR [i] = -log (mags [i]); - } - for (; i < n; i ++) { - mags [i] = mags [n - i]; - outR [i] = outR [n - i]; - } - Hilbert (n, outR, outR, outI); - // Remove any DC offset the filter has. - outR [0] = 0.0; - outI [0] = 0.0; - for (i = 1; i < n; i ++) { - ComplexExp (0.0, outI [i], & aR, & aI); - ComplexMul (mags [i], 0.0, aR, aI, & outR [i], & outI [i]); - } - DestroyArray (mags); +static void MinimumPhase(const uint n, const double *in, Complex *out) +{ + const uint m = 1 + (n / 2); + double *mags; + uint i; + + mags = CreateDoubles(n); + for(i = 0;i < m;i++) + { + mags[i] = fmax(EPSILON, in[i]); + out[i] = MakeComplex(log(mags[i]), 0.0); + } + for(;i < n;i++) + { + mags[i] = mags[n - i]; + out[i] = out[n - i]; + } + Hilbert(n, out); + // Remove any DC offset the filter has. + mags[0] = EPSILON; + for(i = 0;i < n;i++) + { + Complex a = c_exp(MakeComplex(0.0, out[i].Imag)); + out[i] = c_mul(MakeComplex(mags[i], 0.0), a); + } + free(mags); } + +/*************************** + *** Resampler functions *** + ***************************/ + /* This is the normalized cardinal sine (sinc) function. * * sinc(x) = { 1, x = 0 * { sin(pi x) / (pi x), otherwise. */ -static double Sinc (const double x) { - if (fabs (x) < EPSILON) - return (1.0); - return (sin (M_PI * x) / (M_PI * x)); +static double Sinc(const double x) +{ + if(fabs(x) < EPSILON) + return 1.0; + return sin(M_PI * x) / (M_PI * x); } /* The zero-order modified Bessel function of the first kind, used for the @@ -1038,25 +1185,27 @@ static double Sinc (const double x) { * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) * = sum_{k=0}^inf ((x / 2)^k / k!)^2 */ -static double BesselI_0 (const double x) { - double term, sum, x2, y, last_sum; - int k; - - // Start at k=1 since k=0 is trivial. - term = 1.0; - sum = 1.0; - x2 = x / 2.0; - k = 1; - // Let the integration converge until the term of the sum is no longer - // significant. - do { - y = x2 / k; - k ++; - last_sum = sum; - term *= y * y; - sum += term; - } while (sum != last_sum); - return (sum); +static double BesselI_0(const double x) +{ + double term, sum, x2, y, last_sum; + int k; + + // Start at k=1 since k=0 is trivial. + term = 1.0; + sum = 1.0; + x2 = x/2.0; + k = 1; + + // Let the integration converge until the term of the sum is no longer + // significant. + do { + y = x2 / k; + k++; + last_sum = sum; + term *= y * y; + sum += term; + } while(sum != last_sum); + return sum; } /* Calculate a Kaiser window from the given beta value and a normalized k @@ -1073,28 +1222,23 @@ static double BesselI_0 (const double x) { * * k = 2 i / M - 1, where 0 <= i <= M. */ -static double Kaiser (const double b, const double k) { - double k2; - - k2 = Clamp (k, -1.0, 1.0); - if ((k < -1.0) || (k > 1.0)) - return (0.0); - k2 *= k2; - return (BesselI_0 (b * sqrt (1.0 - k2)) / BesselI_0 (b)); +static double Kaiser(const double b, const double k) +{ + if(!(k >= -1.0 && k <= 1.0)) + return 0.0; + return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b); } // Calculates the greatest common divisor of a and b. -static uint Gcd (const uint a, const uint b) { - uint x, y, z; - - x = a; - y = b; - while (y > 0) { - z = y; - y = x % y; - x = z; - } - return (x); +static uint Gcd(uint x, uint y) +{ + while(y > 0) + { + uint z = y; + y = x % y; + x = z; + } + return x; } /* Calculates the size (order) of the Kaiser window. Rejection is in dB and @@ -1104,24 +1248,23 @@ static uint Gcd (const uint a, const uint b) { * { ceil(5.79 / 2 pi f_t), r <= 21. * */ -static uint CalcKaiserOrder (const double rejection, const double transition) { - double w_t; - - w_t = 2.0 * M_PI * transition; - if (rejection > 21.0) - return ((uint) ceil ((rejection - 7.95) / (2.285 * w_t))); - return ((uint) ceil (5.79 / w_t)); +static uint CalcKaiserOrder(const double rejection, const double transition) +{ + double w_t = 2.0 * M_PI * transition; + if(rejection > 21.0) + return (uint)ceil((rejection - 7.95) / (2.285 * w_t)); + return (uint)ceil(5.79 / w_t); } // Calculates the beta value of the Kaiser window. Rejection is in dB. -static double CalcKaiserBeta (const double rejection) { - if (rejection > 50.0) - return (0.1102 * (rejection - 8.7)); - else if (rejection >= 21.0) - return ((0.5842 * pow (rejection - 21.0, 0.4)) + - (0.07886 * (rejection - 21.0))); - else - return (0.0); +static double CalcKaiserBeta(const double rejection) +{ + if(rejection > 50.0) + return 0.1102 * (rejection - 8.7); + if(rejection >= 21.0) + return (0.5842 * pow(rejection - 21.0, 0.4)) + + (0.07886 * (rejection - 21.0)); + return 0.0; } /* Calculates a point on the Kaiser-windowed sinc filter for the given half- @@ -1136,8 +1279,9 @@ static double CalcKaiserBeta (const double rejection) { * p -- gain compensation factor when sampling * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) */ -static double SincFilter (const int l, const double b, const double gain, const double cutoff, const int i) { - return (Kaiser (b, ((double) (i - l)) / l) * 2.0 * gain * cutoff * Sinc (2.0 * cutoff * (i - l))); +static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i) +{ + return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l)); } /* This is a polyphase sinc-filtered resampler. @@ -1168,176 +1312,157 @@ static double SincFilter (const int l, const double b, const double gain, const // Calculate the resampling metrics and build the Kaiser-windowed sinc filter // that's used to cut frequencies above the destination nyquist. -static void ResamplerSetup (ResamplerT * rs, const uint srcRate, const uint dstRate) { - uint gcd, l; - double cutoff, width, beta; - int i; - - gcd = Gcd (srcRate, dstRate); - rs -> mP = dstRate / gcd; - rs -> mQ = srcRate / gcd; - /* The cutoff is adjusted by half the transition width, so the transition - * ends before the nyquist (0.5). Both are scaled by the downsampling - * factor. - */ - if (rs -> mP > rs -> mQ) { - cutoff = 0.45 / rs -> mP; - width = 0.1 / rs -> mP; - } else { - cutoff = 0.45 / rs -> mQ; - width = 0.1 / rs -> mQ; - } - // A rejection of -180 dB is used for the stop band. - l = CalcKaiserOrder (180.0, width) / 2; - beta = CalcKaiserBeta (180.0); - rs -> mM = (2 * l) + 1; - rs -> mL = l; - rs -> mF = CreateArray (rs -> mM); - for (i = 0; i < ((int) rs -> mM); i ++) - rs -> mF [i] = SincFilter ((int) l, beta, rs -> mP, cutoff, i); +static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate) +{ + double cutoff, width, beta; + uint gcd, l; + int i; + + gcd = Gcd(srcRate, dstRate); + rs->mP = dstRate / gcd; + rs->mQ = srcRate / gcd; + /* The cutoff is adjusted by half the transition width, so the transition + * ends before the nyquist (0.5). Both are scaled by the downsampling + * factor. + */ + if(rs->mP > rs->mQ) + { + cutoff = 0.475 / rs->mP; + width = 0.05 / rs->mP; + } + else + { + cutoff = 0.475 / rs->mQ; + width = 0.05 / rs->mQ; + } + // A rejection of -180 dB is used for the stop band. Round up when + // calculating the left offset to avoid increasing the transition width. + l = (CalcKaiserOrder(180.0, width)+1) / 2; + beta = CalcKaiserBeta(180.0); + rs->mM = l*2 + 1; + rs->mL = l; + rs->mF = CreateDoubles(rs->mM); + for(i = 0;i < ((int)rs->mM);i++) + rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i); } // Clean up after the resampler. -static void ResamplerClear (ResamplerT * rs) { - DestroyArray (rs -> mF); - rs -> mF = NULL; +static void ResamplerClear(ResamplerT *rs) +{ + free(rs->mF); + rs->mF = NULL; } // Perform the upsample-filter-downsample resampling operation using a // polyphase filter implementation. -static void ResamplerRun (ResamplerT * rs, const uint inN, const double * in, const uint outN, double * out) { - const uint p = rs -> mP, q = rs -> mQ, m = rs -> mM, l = rs -> mL; - const double * f = rs -> mF; - double * work = NULL; - uint i; - double r; - uint j_f, j_s; - - if (outN == 0) - return; - - // Handle in-place operation. - if (in == out) - work = CreateArray (outN); - else - work = out; - // Resample the input. - for (i = 0; i < outN; i ++) { - r = 0.0; - // Input starts at l to compensate for the filter delay. This will - // drop any build-up from the first half of the filter. - j_f = (l + (q * i)) % p; - j_s = (l + (q * i)) / p; - while (j_f < m) { - // Only take input when 0 <= j_s < inN. This single unsigned - // comparison catches both cases. - if (j_s < inN) - r += f [j_f] * in [j_s]; - j_f += p; - j_s --; - } - work [i] = r; - } - // Clean up after in-place operation. - if (in == out) { - for (i = 0; i < outN; i ++) - out [i] = work [i]; - DestroyArray (work); - } +static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out) +{ + const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL; + const double *f = rs->mF; + uint j_f, j_s; + double *work; + uint i; + + if(outN == 0) + return; + + // Handle in-place operation. + if(in == out) + work = CreateDoubles(outN); + else + work = out; + // Resample the input. + for(i = 0;i < outN;i++) + { + double r = 0.0; + // Input starts at l to compensate for the filter delay. This will + // drop any build-up from the first half of the filter. + j_f = (l + (q * i)) % p; + j_s = (l + (q * i)) / p; + while(j_f < m) + { + // Only take input when 0 <= j_s < inN. This single unsigned + // comparison catches both cases. + if(j_s < inN) + r += f[j_f] * in[j_s]; + j_f += p; + j_s--; + } + work[i] = r; + } + // Clean up after in-place operation. + if(work != out) + { + for(i = 0;i < outN;i++) + out[i] = work[i]; + free(work); + } } +/************************* + *** File source input *** + *************************/ + // Read a binary value of the specified byte order and byte size from a file, // storing it as a 32-bit unsigned integer. -static int ReadBin4 (FILE * fp, const char * filename, const ByteOrderT order, const uint bytes, uint32 * out) { - uint8 in [4]; - uint32 accum; - uint i; - - if (fread (in, 1, bytes, fp) != bytes) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - accum = 0; - switch (order) { - case BO_LITTLE : - for (i = 0; i < bytes; i ++) - accum = (accum << 8) | in [bytes - i - 1]; - break; - case BO_BIG : - for (i = 0; i < bytes; i ++) - accum = (accum << 8) | in [i]; - break; - default : - break; - } - (* out) = accum; - return (1); +static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out) +{ + uint8 in[4]; + uint32 accum; + uint i; + + if(fread(in, 1, bytes, fp) != bytes) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[bytes - i - 1]; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; } // Read a binary value of the specified byte order from a file, storing it as // a 64-bit unsigned integer. -static int ReadBin8 (FILE * fp, const char * filename, const ByteOrderT order, uint64 * out) { - uint8 in [8]; - uint64 accum; - uint i; - - if (fread (in, 1, 8, fp) != 8) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - accum = 0ULL; - switch (order) { - case BO_LITTLE : - for (i = 0; i < 8; i ++) - accum = (accum << 8) | in [8 - i - 1]; - break; - case BO_BIG : - for (i = 0; i < 8; i ++) - accum = (accum << 8) | in [i]; - break; - default : - break; - } - (* out) = accum; - return (1); -} - -// Write an ASCII string to a file. -static int WriteAscii (const char * out, FILE * fp, const char * filename) { - size_t len; - - len = strlen (out); - if (fwrite (out, 1, len, fp) != len) { - fclose (fp); - fprintf (stderr, "Error: Bad write to file '%s'.\n", filename); - return (0); - } - return (1); -} +static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out) +{ + uint8 in [8]; + uint64 accum; + uint i; -// Write a binary value of the given byte order and byte size to a file, -// loading it from a 32-bit unsigned integer. -static int WriteBin4 (const ByteOrderT order, const uint bytes, const uint32 in, FILE * fp, const char * filename) { - uint8 out [4]; - uint i; - - switch (order) { - case BO_LITTLE : - for (i = 0; i < bytes; i ++) - out [i] = (in >> (i * 8)) & 0x000000FF; - break; - case BO_BIG : - for (i = 0; i < bytes; i ++) - out [bytes - i - 1] = (in >> (i * 8)) & 0x000000FF; - break; - default : - break; - } - if (fwrite (out, 1, bytes, fp) != bytes) { - fprintf (stderr, "Error: Bad write to file '%s'.\n", filename); - return (0); - } - return (1); + if(fread(in, 1, 8, fp) != 8) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0ULL; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[8 - i - 1]; + break; + case BO_BIG: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; } /* Read a binary value of the specified type, byte order, and byte size from @@ -1346,39 +1471,45 @@ static int WriteBin4 (const ByteOrderT order, const uint bytes, const uint32 in, * whether they are padded toward the MSB (negative) or LSB (positive). * Floating-point types are not normalized. */ -static int ReadBinAsDouble (FILE * fp, const char * filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double * out) { - union { - uint32 ui; - int32 i; - float f; - } v4; - union { - uint64 ui; - double f; - } v8; - - (* out) = 0.0; - if (bytes > 4) { - if (! ReadBin8 (fp, filename, order, & v8 . ui)) - return (0); - if (type == ET_FP) - (* out) = v8 . f; - } else { - if (! ReadBin4 (fp, filename, order, bytes, & v4 . ui)) - return (0); - if (type == ET_FP) { - (* out) = (double) v4 . f; - } else { - if (bits > 0) - v4 . ui >>= (8 * bytes) - ((uint) bits); +static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) +{ + union { + uint32 ui; + int32 i; + float f; + } v4; + union { + uint64 ui; + double f; + } v8; + + *out = 0.0; + if(bytes > 4) + { + if(!ReadBin8(fp, filename, order, &v8.ui)) + return 0; + if(type == ET_FP) + *out = v8.f; + } + else + { + if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) + return 0; + if(type == ET_FP) + *out = v4.f; else - v4 . ui &= (0xFFFFFFFF >> (32 + bits)); - if (v4 . ui & ((uint) (1 << (abs (bits) - 1)))) - v4 . ui |= (0xFFFFFFFF << abs (bits)); - (* out) = v4 . i / ((double) (1 << (abs (bits) - 1))); - } - } - return (1); + { + if(bits > 0) + v4.ui >>= (8*bytes) - ((uint)bits); + else + v4.ui &= (0xFFFFFFFF >> (32+bits)); + + if(v4.ui&(uint)(1<<(abs(bits)-1))) + v4.ui |= (0xFFFFFFFF << abs (bits)); + *out = v4.i / (double)(1<<(abs(bits)-1)); + } + } + return 1; } /* Read an ascii value of the specified type from a file, converting it to a @@ -1386,391 +1517,585 @@ static int ReadBinAsDouble (FILE * fp, const char * filename, const ByteOrderT o * result. The sign of the bits should always be positive. This also skips * up to one separator character before the element itself. */ -static int ReadAsciiAsDouble (TokenReaderT * tr, const char * filename, const ElementTypeT type, const uint bits, double * out) { - int v; - - if (TrIsOperator (tr, ",")) - TrReadOperator (tr, ","); - else if (TrIsOperator (tr, ":")) - TrReadOperator (tr, ":"); - else if (TrIsOperator (tr, ";")) - TrReadOperator (tr, ";"); - else if (TrIsOperator (tr, "|")) - TrReadOperator (tr, "|"); - if (type == ET_FP) { - if (! TrReadFloat (tr, -HUGE_VAL, HUGE_VAL, out)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - } else { - if (! TrReadInt (tr, -(1 << (bits - 1)), (1 << (bits - 1)) - 1, & v)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - (* out) = v / ((double) ((1 << (bits - 1)) - 1)); - } - return (1); +static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) +{ + if(TrIsOperator(tr, ",")) + TrReadOperator(tr, ","); + else if(TrIsOperator(tr, ":")) + TrReadOperator(tr, ":"); + else if(TrIsOperator(tr, ";")) + TrReadOperator(tr, ";"); + else if(TrIsOperator(tr, "|")) + TrReadOperator(tr, "|"); + + if(type == ET_FP) + { + if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + } + else + { + int v; + if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); + return 0; + } + *out = v / (double)((1<<(bits-1))-1); + } + return 1; } // Read the RIFF/RIFX WAVE format chunk from a file, validating it against // the source parameters and data set metrics. -static int ReadWaveFormat (FILE * fp, const ByteOrderT order, const uint hrirRate, SourceRefT * src) { - uint32 fourCC, chunkSize; - uint32 format, channels, rate, dummy, block, size, bits; - - chunkSize = 0; - do { - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - } while (fourCC != FOURCC_FMT); - if ((! ReadBin4 (fp, src -> mPath, order, 2, & format)) || - (! ReadBin4 (fp, src -> mPath, order, 2, & channels)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & rate)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & dummy)) || - (! ReadBin4 (fp, src -> mPath, order, 2, & block))) - return (0); - block /= channels; - if (chunkSize > 14) { - if (! ReadBin4 (fp, src -> mPath, order, 2, & size)) - return (0); - size /= 8; - if (block > size) +static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) +{ + uint32 fourCC, chunkSize; + uint32 format, channels, rate, dummy, block, size, bits; + + chunkSize = 0; + do { + if(chunkSize > 0) + fseek (fp, (long) chunkSize, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + } while(fourCC != FOURCC_FMT); + if(!ReadBin4(fp, src->mPath, order, 2, &format) || + !ReadBin4(fp, src->mPath, order, 2, &channels) || + !ReadBin4(fp, src->mPath, order, 4, &rate) || + !ReadBin4(fp, src->mPath, order, 4, &dummy) || + !ReadBin4(fp, src->mPath, order, 2, &block)) + return 0; + block /= channels; + if(chunkSize > 14) + { + if(!ReadBin4(fp, src->mPath, order, 2, &size)) + return 0; + size /= 8; + if(block > size) + size = block; + } + else size = block; - } else { - size = block; - } - if (format == WAVE_FORMAT_EXTENSIBLE) { - fseek (fp, 2, SEEK_CUR); - if (! ReadBin4 (fp, src -> mPath, order, 2, & bits)) - return (0); - if (bits == 0) + if(format == WAVE_FORMAT_EXTENSIBLE) + { + fseek(fp, 2, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &bits)) + return 0; + if(bits == 0) + bits = 8 * size; + fseek(fp, 4, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &format)) + return 0; + fseek(fp, (long)(chunkSize - 26), SEEK_CUR); + } + else + { bits = 8 * size; - fseek (fp, 4, SEEK_CUR); - if (! ReadBin4 (fp, src -> mPath, order, 2, & format)) - return (0); - fseek (fp, (long) (chunkSize - 26), SEEK_CUR); - } else { - bits = 8 * size; - if (chunkSize > 14) - fseek (fp, (long) (chunkSize - 16), SEEK_CUR); - else - fseek (fp, (long) (chunkSize - 14), SEEK_CUR); - } - if ((format != WAVE_FORMAT_PCM) && (format != WAVE_FORMAT_IEEE_FLOAT)) { - fprintf (stderr, "Error: Unsupported WAVE format in file '%s'.\n", src -> mPath); - return (0); - } - if (src -> mChannel >= channels) { - fprintf (stderr, "Error: Missing source channel in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (rate != hrirRate) { - fprintf (stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (format == WAVE_FORMAT_PCM) { - if ((size < 2) || (size > 4)) { - fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if ((bits < 16) || (bits > (8 * size))) { - fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src -> mPath); - return (0); - } - src -> mType = ET_INT; - } else { - if ((size != 4) && (size != 8)) { - fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath); - return (0); - } - src -> mType = ET_FP; - } - src -> mSize = size; - src -> mBits = (int) bits; - src -> mSkip = channels; - return (1); + if(chunkSize > 14) + fseek(fp, (long)(chunkSize - 16), SEEK_CUR); + else + fseek(fp, (long)(chunkSize - 14), SEEK_CUR); + } + if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) + { + fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath); + return 0; + } + if(src->mChannel >= channels) + { + fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(rate != hrirRate) + { + fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(format == WAVE_FORMAT_PCM) + { + if(size < 2 || size > 4) + { + fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(bits < 16 || bits > (8*size)) + { + fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_INT; + } + else + { + if(size != 4 && size != 8) + { + fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_FP; + } + src->mSize = size; + src->mBits = (int)bits; + src->mSkip = channels; + return 1; } // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. -static int ReadWaveData (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - int pre, post, skip; - uint i; - - pre = (int) (src -> mSize * src -> mChannel); - post = (int) (src -> mSize * (src -> mSkip - src -> mChannel - 1)); - skip = 0; - for (i = 0; i < n; i ++) { - skip += pre; - if (skip > 0) - fseek (fp, skip, SEEK_CUR); - if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i])) - return (0); - skip = post; - } - if (skip > 0) - fseek (fp, skip, SEEK_CUR); - return (1); +static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + int pre, post, skip; + uint i; + + pre = (int)(src->mSize * src->mChannel); + post = (int)(src->mSize * (src->mSkip - src->mChannel - 1)); + skip = 0; + for(i = 0;i < n;i++) + { + skip += pre; + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + skip = post; + } + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + return 1; } // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to // doubles. -static int ReadWaveList (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - uint32 fourCC, chunkSize, listSize, count; - uint block, skip, offset, i; - double lastSample; - - for (;;) { - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - if (fourCC == FOURCC_DATA) { - block = src -> mSize * src -> mSkip; - count = chunkSize / block; - if (count < (src -> mOffset + n)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath); - return (0); - } - fseek (fp, (long) (src -> mOffset * block), SEEK_CUR); - if (! ReadWaveData (fp, src, order, n, & hrir [0])) - return (0); - return (1); - } else if (fourCC == FOURCC_LIST) { - if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) - return (0); - chunkSize -= 4; - if (fourCC == FOURCC_WAVL) - break; - } - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - } - listSize = chunkSize; - block = src -> mSize * src -> mSkip; - skip = src -> mOffset; - offset = 0; - lastSample = 0.0; - while ((offset < n) && (listSize > 8)) { - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - listSize -= 8 + chunkSize; - if (fourCC == FOURCC_DATA) { - count = chunkSize / block; - if (count > skip) { - fseek (fp, (long) (skip * block), SEEK_CUR); - chunkSize -= skip * block; - count -= skip; - skip = 0; - if (count > (n - offset)) - count = n - offset; - if (! ReadWaveData (fp, src, order, count, & hrir [offset])) - return (0); - chunkSize -= count * block; - offset += count; - lastSample = hrir [offset - 1]; - } else { - skip -= count; - count = 0; - } - } else if (fourCC == FOURCC_SLNT) { - if (! ReadBin4 (fp, src -> mPath, order, 4, & count)) - return (0); - chunkSize -= 4; - if (count > skip) { - count -= skip; - skip = 0; - if (count > (n - offset)) - count = n - offset; - for (i = 0; i < count; i ++) - hrir [offset + i] = lastSample; - offset += count; - } else { - skip -= count; - count = 0; - } - } - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - } - if (offset < n) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath); - return (0); - } - return (1); +static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint32 fourCC, chunkSize, listSize, count; + uint block, skip, offset, i; + double lastSample; + + for(;;) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + + if(fourCC == FOURCC_DATA) + { + block = src->mSize * src->mSkip; + count = chunkSize / block; + if(count < (src->mOffset + n)) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); + return 0; + } + fseek(fp, (long)(src->mOffset * block), SEEK_CUR); + if(!ReadWaveData(fp, src, order, n, &hrir[0])) + return 0; + return 1; + } + else if(fourCC == FOURCC_LIST) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + chunkSize -= 4; + if(fourCC == FOURCC_WAVL) + break; + } + if(chunkSize > 0) + fseek(fp, (long)chunkSize, SEEK_CUR); + } + listSize = chunkSize; + block = src->mSize * src->mSkip; + skip = src->mOffset; + offset = 0; + lastSample = 0.0; + while(offset < n && listSize > 8) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + listSize -= 8 + chunkSize; + if(fourCC == FOURCC_DATA) + { + count = chunkSize / block; + if(count > skip) + { + fseek(fp, (long)(skip * block), SEEK_CUR); + chunkSize -= skip * block; + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + if(!ReadWaveData(fp, src, order, count, &hrir[offset])) + return 0; + chunkSize -= count * block; + offset += count; + lastSample = hrir [offset - 1]; + } + else + { + skip -= count; + count = 0; + } + } + else if(fourCC == FOURCC_SLNT) + { + if(!ReadBin4(fp, src->mPath, order, 4, &count)) + return 0; + chunkSize -= 4; + if(count > skip) + { + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + for(i = 0; i < count; i ++) + hrir[offset + i] = lastSample; + offset += count; + } + else + { + skip -= count; + count = 0; + } + } + if(chunkSize > 0) + fseek(fp, (long)chunkSize, SEEK_CUR); + } + if(offset < n) + { + fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); + return 0; + } + return 1; } // Load a source HRIR from a RIFF/RIFX WAVE file. -static int LoadWaveSource (FILE * fp, SourceRefT * src, const uint hrirRate, const uint n, double * hrir) { - uint32 fourCC, dummy; - ByteOrderT order; - - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & dummy))) - return (0); - if (fourCC == FOURCC_RIFF) { - order = BO_LITTLE; - } else if (fourCC == FOURCC_RIFX) { - order = BO_BIG; - } else { - fprintf (stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src -> mPath); - return (0); - } - if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) - return (0); - if (fourCC != FOURCC_WAVE) { - fprintf (stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (! ReadWaveFormat (fp, order, hrirRate, src)) - return (0); - if (! ReadWaveList (fp, src, order, n, hrir)) - return (0); - return (1); +static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + uint32 fourCC, dummy; + ByteOrderT order; + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) + return 0; + if(fourCC == FOURCC_RIFF) + order = BO_LITTLE; + else if(fourCC == FOURCC_RIFX) + order = BO_BIG; + else + { + fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); + return 0; + } + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + if(fourCC != FOURCC_WAVE) + { + fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); + return 0; + } + if(!ReadWaveFormat(fp, order, hrirRate, src)) + return 0; + if(!ReadWaveList(fp, src, order, n, hrir)) + return 0; + return 1; } // Load a source HRIR from a binary file. -static int LoadBinarySource (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - uint i; +static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint i; - fseek (fp, (long) src -> mOffset, SEEK_SET); - for (i = 0; i < n; i ++) { - if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i])) - return (0); - if (src -> mSkip > 0) - fseek (fp, (long) src -> mSkip, SEEK_CUR); - } - return (1); + fseek(fp, (long)src->mOffset, SEEK_SET); + for(i = 0;i < n;i++) + { + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + if(src->mSkip > 0) + fseek(fp, (long)src->mSkip, SEEK_CUR); + } + return 1; } // Load a source HRIR from an ASCII text file containing a list of elements // separated by whitespace or common list operators (',', ';', ':', '|'). -static int LoadAsciiSource (FILE * fp, const SourceRefT * src, const uint n, double * hrir) { - TokenReaderT tr; - uint i, j; - double dummy; - - TrSetup (fp, NULL, & tr); - for (i = 0; i < src -> mOffset; i ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy)) - return (0); - } - for (i = 0; i < n; i ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & hrir [i])) - return (0); - for (j = 0; j < src -> mSkip; j ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy)) - return (0); - } - } - return (1); +static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) +{ + TokenReaderT tr; + uint i, j; + double dummy; + + TrSetup(fp, NULL, &tr); + for(i = 0;i < src->mOffset;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) + return 0; + } + for(i = 0;i < n;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i])) + return 0; + for(j = 0;j < src->mSkip;j++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) + return 0; + } + } + return 1; } // Load a source HRIR from a supported file type. -static int LoadSource (SourceRefT * src, const uint hrirRate, const uint n, double * hrir) { - FILE * fp = NULL; - int result; - - if (src -> mFormat == SF_ASCII) - fp = fopen (src -> mPath, "r"); - else - fp = fopen (src -> mPath, "rb"); - if (fp == NULL) { - fprintf (stderr, "Error: Could not open source file '%s'.\n", src -> mPath); - return (0); - } - if (src -> mFormat == SF_WAVE) - result = LoadWaveSource (fp, src, hrirRate, n, hrir); - else if (src -> mFormat == SF_BIN_LE) - result = LoadBinarySource (fp, src, BO_LITTLE, n, hrir); - else if (src -> mFormat == SF_BIN_BE) - result = LoadBinarySource (fp, src, BO_BIG, n, hrir); - else - result = LoadAsciiSource (fp, src, n, hrir); - fclose (fp); - return (result); +static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + int result; + FILE *fp; + + if(src->mFormat == SF_ASCII) + fp = fopen(src->mPath, "r"); + else + fp = fopen(src->mPath, "rb"); + if(fp == NULL) + { + fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath); + return 0; + } + if(src->mFormat == SF_WAVE) + result = LoadWaveSource(fp, src, hrirRate, n, hrir); + else if(src->mFormat == SF_BIN_LE) + result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); + else if(src->mFormat == SF_BIN_BE) + result = LoadBinarySource(fp, src, BO_BIG, n, hrir); + else + result = LoadAsciiSource(fp, src, n, hrir); + fclose(fp); + return result; +} + + +/*************************** + *** File storage output *** + ***************************/ + +// Write an ASCII string to a file. +static int WriteAscii(const char *out, FILE *fp, const char *filename) +{ + size_t len; + + len = strlen(out); + if(fwrite(out, 1, len, fp) != len) + { + fclose(fp); + fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Write a binary value of the given byte order and byte size to a file, +// loading it from a 32-bit unsigned integer. +static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename) +{ + uint8 out[4]; + uint i; + + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + out[i] = (in>>(i*8)) & 0x000000FF; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF; + break; + default: + break; + } + if(fwrite(out, 1, bytes, fp) != bytes) + { + fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Store the OpenAL Soft HRTF data set. +static int StoreMhr(const HrirDataT *hData, const char *filename) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + FILE *fp; + uint fi, ei, ai, i; + uint dither_seed = 22222; + + if((fp=fopen(filename, "wb")) == NULL) + { + fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename); + return 0; + } + if(!WriteAscii(MHR_FORMAT, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename)) + return 0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename)) + return 0; + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename)) + return 0; + } + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + const double scale = (hData->mSampleType == ST_S16) ? 32767.0 : + ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0); + const int bps = (hData->mSampleType == ST_S16) ? 2 : + ((hData->mSampleType == ST_S24) ? 3 : 0); + + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + double out[2 * MAX_TRUNCSIZE]; + + TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed); + if(hData->mChannelType == CT_STEREO) + TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed); + for(i = 0;i < (channels * n);i++) + { + int v = (int)Clamp(out[i], -scale-1.0, scale); + if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename)) + return 0; + } + } + } + } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD); + + if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) + return 0; + if(hData->mChannelType == CT_STEREO) + { + v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD); + + if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) + return 0; + } + } + } + } + fclose(fp); + return 1; } + +/*********************** + *** HRTF processing *** + ***********************/ + // Calculate the onset time of an HRIR and average it with any existing -// timing for its elevation and azimuth. -static void AverageHrirOnset (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) { - double mag; - uint n, i, j; - - mag = 0.0; - n = hData -> mIrPoints; - for (i = 0; i < n; i ++) - mag = fmax (fabs (hrir [i]), mag); - mag *= 0.15; - for (i = 0; i < n; i ++) { - if (fabs (hrir [i]) >= mag) - break; - } - j = hData -> mEvOffset [ei] + ai; - hData -> mHrtds [j] = Lerp (hData -> mHrtds [j], ((double) i) / hData -> mIrRate, f); +// timing for its field, elevation, azimuth, and ear. +static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset) +{ + double mag = 0.0; + uint i; + + for(i = 0;i < n;i++) + mag = fmax(fabs(hrir[i]), mag); + mag *= 0.15; + for(i = 0;i < n;i++) + { + if(fabs(hrir[i]) >= mag) + break; + } + return Lerp(onset, (double)i / rate, f); } // Calculate the magnitude response of an HRIR and average it with any -// existing responses for its elevation and azimuth. -static void AverageHrirMagnitude (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) { - double * re = NULL, * im = NULL; - uint n, m, i, j; - - n = hData -> mFftSize; - re = CreateArray (n); - im = CreateArray (n); - for (i = 0; i < hData -> mIrPoints; i ++) { - re [i] = hrir [i]; - im [i] = 0.0; - } - for (; i < n; i ++) { - re [i] = 0.0; - im [i] = 0.0; - } - FftForward (n, re, im, re, im); - MagnitudeResponse (n, re, im, re); - m = 1 + (n / 2); - j = (hData -> mEvOffset [ei] + ai) * hData -> mIrSize; - for (i = 0; i < m; i ++) - hData -> mHrirs [j + i] = Lerp (hData -> mHrirs [j + i], re [i], f); - DestroyArray (im); - DestroyArray (re); +// existing responses for its field, elevation, azimuth, and ear. +static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag) +{ + uint m = 1 + (n / 2), i; + Complex *h = CreateComplexes(n); + double *r = CreateDoubles(n); + + for(i = 0;i < points;i++) + h[i] = MakeComplex(hrir[i], 0.0); + for(;i < n;i++) + h[i] = MakeComplex(0.0, 0.0); + FftForward(n, h); + MagnitudeResponse(n, h, r); + for(i = 0;i < m;i++) + mag[i] = Lerp(mag[i], r[i], f); + free(r); + free(h); } /* Calculate the contribution of each HRIR to the diffuse-field average based * on the area of its surface patch. All patches are centered at the HRIR * coordinates on the unit sphere and are measured by solid angle. */ -static void CalculateDfWeights (const HrirDataT * hData, double * weights) { - uint ei; - double evs, sum, ev, up_ev, down_ev, solidAngle; - - evs = 90.0 / (hData -> mEvCount - 1); - sum = 0.0; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) { - // For each elevation, calculate the upper and lower limits of the - // patch band. - ev = -90.0 + (ei * 2.0 * evs); - if (ei < (hData -> mEvCount - 1)) - up_ev = (ev + evs) * M_PI / 180.0; - else - up_ev = M_PI / 2.0; - if (ei > 0) - down_ev = (ev - evs) * M_PI / 180.0; - else - down_ev = -M_PI / 2.0; - // Calculate the area of the patch band. - solidAngle = 2.0 * M_PI * (sin (up_ev) - sin (down_ev)); - // Each weight is the area of one patch. - weights [ei] = solidAngle / hData -> mAzCount [ei]; - // Sum the total surface area covered by the HRIRs. - sum += solidAngle; - } - // Normalize the weights given the total surface coverage. - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - weights [ei] /= sum; +static void CalculateDfWeights(const HrirDataT *hData, double *weights) +{ + double sum, evs, ev, upperEv, lowerEv, solidAngle; + uint fi, ei; + + sum = 0.0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1); + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + // For each elevation, calculate the upper and lower limits of + // the patch band. + ev = hData->mFds[fi].mEvs[ei].mElevation; + lowerEv = fmax(-M_PI / 2.0, ev - evs); + upperEv = fmin(M_PI / 2.0, ev + evs); + // Calculate the area of the patch band. + solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv)); + // Each weight is the area of one patch. + weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount; + // Sum the total surface area covered by the HRIRs of all fields. + sum += solidAngle; + } + } + /* TODO: It may be interesting to experiment with how a volume-based + weighting performs compared to the existing distance-indepenent + surface patches. + */ + for(fi = 0;fi < hData->mFdCount;fi++) + { + // Normalize the weights given the total surface coverage for all + // fields. + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] /= sum; + } } /* Calculate the diffuse-field average from the given magnitude responses of @@ -1778,880 +2103,1353 @@ static void CalculateDfWeights (const HrirDataT * hData, double * weights) { * surface area covered by each HRIR. The final average can then be limited * by the specified magnitude range (in positive dB; 0.0 to skip). */ -static void CalculateDiffuseFieldAverage (const HrirDataT * hData, const int weighted, const double limit, double * dfa) { - double * weights = NULL; - uint ei, ai, count, step, start, end, m, j, i; - double weight; - - weights = CreateArray (hData -> mEvCount); - if (weighted) { - // Use coverage weighting to calculate the average. - CalculateDfWeights (hData, weights); - } else { - // If coverage weighting is not used, the weights still need to be - // averaged by the number of HRIRs. - count = 0; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - count += hData -> mAzCount [ei]; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - weights [ei] = 1.0 / count; - } - ei = hData -> mEvStart; - ai = 0; - step = hData -> mIrSize; - start = hData -> mEvOffset [ei] * step; - end = hData -> mIrCount * step; - m = 1 + (hData -> mFftSize / 2); - for (i = 0; i < m; i ++) - dfa [i] = 0.0; - for (j = start; j < end; j += step) { - // Get the weight for this HRIR's contribution. - weight = weights [ei]; - // Add this HRIR's weighted power average to the total. - for (i = 0; i < m; i ++) - dfa [i] += weight * hData -> mHrirs [j + i] * hData -> mHrirs [j + i]; - // Determine the next weight to use. - ai ++; - if (ai >= hData -> mAzCount [ei]) { - ei ++; - ai = 0; - } - } - // Finish the average calculation and keep it from being too small. - for (i = 0; i < m; i ++) - dfa [i] = fmax (sqrt (dfa [i]), EPSILON); - // Apply a limit to the magnitude range of the diffuse-field average if - // desired. - if (limit > 0.0) - LimitMagnitudeResponse (hData -> mFftSize, limit, dfa, dfa); - DestroyArray (weights); +static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa) +{ + double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT); + uint count, ti, fi, ei, i, ai; + + if(weighted) + { + // Use coverage weighting to calculate the average. + CalculateDfWeights(hData, weights); + } + else + { + double weight; + + // If coverage weighting is not used, the weights still need to be + // averaged by the number of existing HRIRs. + count = hData->mIrCount; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + count -= hData->mFds[fi].mEvs[ei].mAzCount; + } + weight = 1.0 / count; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] = weight; + } + } + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = 0.0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + // Get the weight for this HRIR's contribution. + double weight = weights[(fi * MAX_EV_COUNT) + ei]; + + // Add this HRIR's weighted power average to the total. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i]; + } + } + } + // Finish the average calculation and keep it from being too small. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON); + // Apply a limit to the magnitude range of the diffuse-field average + // if desired. + if(limit > 0.0) + LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]); + } + free(weights); } // Perform diffuse-field equalization on the magnitude responses of the HRIR // set using the given average response. -static void DiffuseFieldEqualize (const double * dfa, const HrirDataT * hData) { - uint step, start, end, m, j, i; +static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData) +{ + uint ti, fi, ei, ai, i; - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - m = 1 + (hData -> mFftSize / 2); - for (j = start; j < end; j += step) { - for (i = 0; i < m; i ++) - hData -> mHrirs [j + i] /= dfa [i]; - } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + azd->mIrs[ti][i] /= dfa[(ti * m) + i]; + } + } + } + } } // Perform minimum-phase reconstruction using the magnitude responses of the // HRIR set. -static void ReconstructHrirs (const HrirDataT * hData) { - double * re = NULL, * im = NULL; - uint step, start, end, n, j, i; - - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - n = hData -> mFftSize; - re = CreateArray (n); - im = CreateArray (n); - for (j = start; j < end; j += step) { - MinimumPhase (n, & hData -> mHrirs [j], re, im); - FftInverse (n, re, im, re, im); - for (i = 0; i < hData -> mIrPoints; i ++) - hData -> mHrirs [j + i] = re [i]; - } - DestroyArray (im); - DestroyArray (re); +static void ReconstructHrirs(const HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mFftSize; + uint ti, fi, ei, ai, i; + Complex *h = CreateComplexes(n); + uint total, count, pcdone, lastpc; + + total = hData->mIrCount; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + total -= hData->mFds[fi].mEvs[ei].mAzCount; + } + total *= channels; + count = pcdone = lastpc = 0; + printf("%3d%% done.", pcdone); + fflush(stdout); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + MinimumPhase(n, azd->mIrs[ti], h); + FftInverse(n, h); + for(i = 0;i < hData->mIrPoints;i++) + azd->mIrs[ti][i] = h[i].Real; + pcdone = ++count * 100 / total; + if(pcdone != lastpc) + { + lastpc = pcdone; + printf("\r%3d%% done.", pcdone); + fflush(stdout); + } + } + } + } + } + printf("\n"); + free(h); } // Resamples the HRIRs for use at the given sampling rate. -static void ResampleHrirs (const uint rate, HrirDataT * hData) { - ResamplerT rs; - uint n, step, start, end, j; - - ResamplerSetup (& rs, hData -> mIrRate, rate); - n = hData -> mIrPoints; - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - for (j = start; j < end; j += step) - ResamplerRun (& rs, n, & hData -> mHrirs [j], n, & hData -> mHrirs [j]); - ResamplerClear (& rs); - hData -> mIrRate = rate; -} - -/* Given an elevation index and an azimuth, calculate the indices of the two - * HRIRs that bound the coordinate along with a factor for calculating the - * continous HRIR using interpolation. +static void ResampleHrirs(const uint rate, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ei, ai; + ResamplerT rs; + + ResamplerSetup(&rs, hData->mIrRate, rate); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]); + } + } + } + hData->mIrRate = rate; + ResamplerClear(&rs); +} + +/* Given field and elevation indices and an azimuth, calculate the indices of + * the two HRIRs that bound the coordinate along with a factor for + * calculating the continuous HRIR using interpolation. */ -static void CalcAzIndices (const HrirDataT * hData, const uint ei, const double az, uint * j0, uint * j1, double * jf) { - double af; - uint ai; - - af = ((2.0 * M_PI) + az) * hData -> mAzCount [ei] / (2.0 * M_PI); - ai = ((uint) af) % hData -> mAzCount [ei]; - af -= floor (af); - (* j0) = hData -> mEvOffset [ei] + ai; - (* j1) = hData -> mEvOffset [ei] + ((ai + 1) % hData -> mAzCount [ei]); - (* jf) = af; -} - -// Synthesize any missing onset timings at the bottom elevations. This just -// blends between slightly exaggerated known onsets. Not an accurate model. -static void SynthesizeOnsets (HrirDataT * hData) { - uint oi, e, a, j0, j1; - double t, of, jf; - - oi = hData -> mEvStart; - t = 0.0; - for (a = 0; a < hData -> mAzCount [oi]; a ++) - t += hData -> mHrtds [hData -> mEvOffset [oi] + a]; - hData -> mHrtds [0] = 1.32e-4 + (t / hData -> mAzCount [oi]); - for (e = 1; e < hData -> mEvStart; e ++) { - of = ((double) e) / hData -> mEvStart; - for (a = 0; a < hData -> mAzCount [e]; a ++) { - CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf); - hData -> mHrtds [hData -> mEvOffset [e] + a] = Lerp (hData -> mHrtds [0], Lerp (hData -> mHrtds [j0], hData -> mHrtds [j1], jf), of); - } - } -} - -/* Attempt to synthesize any missing HRIRs at the bottom elevations. Right - * now this just blends the lowest elevation HRIRs together and applies some - * attenuation and high frequency damping. It is a simple, if inaccurate - * model. +static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af) +{ + double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI); + uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount; + + f -= floor(f); + *a0 = i; + *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount; + *af = f; +} + +// Synthesize any missing onset timings at the bottom elevations of each +// field. This just blends between slightly exaggerated known onsets (not +// an accurate model). +static void SynthesizeOnsets(HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint ti, fi, oi, ai, ei, a0, a1; + double t, of, af; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + if(hData->mFds[fi].mEvStart <= 0) + continue; + oi = hData->mFds[fi].mEvStart; + + for(ti = 0;ti < channels;ti++) + { + t = 0.0; + for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) + t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti]; + hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount); + for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) + { + of = (double)ei / hData->mFds[fi].mEvStart; + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp( + hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti], + Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti], + hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af), + of + ); + } + } + } + } +} + +/* Attempt to synthesize any missing HRIRs at the bottom elevations of each + * field. Right now this just blends the lowest elevation HRIRs together and + * applies some attenuation and high frequency damping. It is a simple, if + * inaccurate model. */ -static void SynthesizeHrirs (HrirDataT * hData) { - uint oi, a, e, step, n, i, j; - double of, b; - uint j0, j1; - double jf; - double lp [4], s0, s1; - - if (hData -> mEvStart <= 0) - return; - step = hData -> mIrSize; - oi = hData -> mEvStart; - n = hData -> mIrPoints; - for (i = 0; i < n; i ++) - hData -> mHrirs [i] = 0.0; - for (a = 0; a < hData -> mAzCount [oi]; a ++) { - j = (hData -> mEvOffset [oi] + a) * step; - for (i = 0; i < n; i ++) - hData -> mHrirs [i] += hData -> mHrirs [j + i] / hData -> mAzCount [oi]; - } - for (e = 1; e < hData -> mEvStart; e ++) { - of = ((double) e) / hData -> mEvStart; - b = (1.0 - of) * (3.5e-6 * hData -> mIrRate); - for (a = 0; a < hData -> mAzCount [e]; a ++) { - j = (hData -> mEvOffset [e] + a) * step; - CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf); - j0 *= step; - j1 *= step; - lp [0] = 0.0; - lp [1] = 0.0; - lp [2] = 0.0; - lp [3] = 0.0; - for (i = 0; i < n; i ++) { - s0 = hData -> mHrirs [i]; - s1 = Lerp (hData -> mHrirs [j0 + i], hData -> mHrirs [j1 + i], jf); - s0 = Lerp (s0, s1, of); - lp [0] = Lerp (s0, lp [0], b); - lp [1] = Lerp (lp [0], lp [1], b); - lp [2] = Lerp (lp [1], lp [2], b); - lp [3] = Lerp (lp [2], lp [3], b); - hData -> mHrirs [j + i] = lp [3]; - } - } - } - b = 3.5e-6 * hData -> mIrRate; - lp [0] = 0.0; - lp [1] = 0.0; - lp [2] = 0.0; - lp [3] = 0.0; - for (i = 0; i < n; i ++) { - s0 = hData -> mHrirs [i]; - lp [0] = Lerp (s0, lp [0], b); - lp [1] = Lerp (lp [0], lp [1], b); - lp [2] = Lerp (lp [1], lp [2], b); - lp [3] = Lerp (lp [2], lp [3], b); - hData -> mHrirs [i] = lp [3]; - } - hData -> mEvStart = 0; +static void SynthesizeHrirs(HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ai, ei, i; + double lp[4], s0, s1; + double of, b; + uint a0, a1; + double af; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + const uint oi = hData->mFds[fi].mEvStart; + if(oi <= 0) continue; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0; + for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) + { + for(i = 0;i < n;i++) + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] / + hData->mFds[fi].mEvs[oi].mAzCount; + } + for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) + { + of = (double)ei / hData->mFds[fi].mEvStart; + b = (1.0 - of) * (3.5e-6 * hData->mIrRate); + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); + lp[0] = 0.0; + lp[1] = 0.0; + lp[2] = 0.0; + lp[3] = 0.0; + for(i = 0;i < n;i++) + { + s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; + s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i], + hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af); + s0 = Lerp(s0, s1, of); + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3]; + } + } + } + b = 3.5e-6 * hData->mIrRate; + lp[0] = 0.0; + lp[1] = 0.0; + lp[2] = 0.0; + lp[3] = 0.0; + for(i = 0;i < n;i++) + { + s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3]; + } + } + hData->mFds[fi].mEvStart = 0; + } } // The following routines assume a full set of HRIRs for all elevations. // Normalize the HRIR set and slightly attenuate the result. -static void NormalizeHrirs (const HrirDataT * hData) { - uint step, end, n, j, i; - double maxLevel; - - step = hData -> mIrSize; - end = hData -> mIrCount * step; - n = hData -> mIrPoints; - maxLevel = 0.0; - for (j = 0; j < end; j += step) { - for (i = 0; i < n; i ++) - maxLevel = fmax (fabs (hData -> mHrirs [j + i]), maxLevel); - } - maxLevel = 1.01 * maxLevel; - for (j = 0; j < end; j += step) { - for (i = 0; i < n; i ++) - hData -> mHrirs [j + i] /= maxLevel; - } +static void NormalizeHrirs(const HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ei, ai, i; + double maxLevel = 0.0; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel); + } + } + } + } + maxLevel = 1.01 * maxLevel; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < n;i++) + azd->mIrs[ti][i] /= maxLevel; + } + } + } + } } // Calculate the left-ear time delay using a spherical head model. -static double CalcLTD (const double ev, const double az, const double rad, const double dist) { - double azp, dlp, l, al; +static double CalcLTD(const double ev, const double az, const double rad, const double dist) +{ + double azp, dlp, l, al; - azp = asin (cos (ev) * sin (az)); - dlp = sqrt ((dist * dist) + (rad * rad) + (2.0 * dist * rad * sin (azp))); - l = sqrt ((dist * dist) - (rad * rad)); - al = (0.5 * M_PI) + azp; - if (dlp > l) - dlp = l + (rad * (al - acos (rad / dist))); - return (dlp / 343.3); + azp = asin(cos(ev) * sin(az)); + dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp))); + l = sqrt((dist*dist) - (rad*rad)); + al = (0.5 * M_PI) + azp; + if(dlp > l) + dlp = l + (rad * (al - acos(rad / dist))); + return dlp / 343.3; } // Calculate the effective head-related time delays for each minimum-phase // HRIR. -static void CalculateHrtds (const HeadModelT model, const double radius, HrirDataT * hData) { - double minHrtd, maxHrtd; - uint e, a, j; - double t; - - minHrtd = 1000.0; - maxHrtd = -1000.0; - for (e = 0; e < hData -> mEvCount; e ++) { - for (a = 0; a < hData -> mAzCount [e]; a ++) { - j = hData -> mEvOffset [e] + a; - if (model == HM_DATASET) { - t = hData -> mHrtds [j] * radius / hData -> mRadius; - } else { - t = CalcLTD ((-90.0 + (e * 180.0 / (hData -> mEvCount - 1))) * M_PI / 180.0, - (a * 360.0 / hData -> mAzCount [e]) * M_PI / 180.0, - radius, hData -> mDistance); - } - hData -> mHrtds [j] = t; - maxHrtd = fmax (t, maxHrtd); - minHrtd = fmin (t, minHrtd); - } - } - maxHrtd -= minHrtd; - for (j = 0; j < hData -> mIrCount; j ++) - hData -> mHrtds [j] -= minHrtd; - hData -> mMaxHrtd = maxHrtd; +static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + double minHrtd = INFINITY, maxHrtd = -INFINITY; + uint ti, fi, ei, ai; + double t; + + if(model == HM_DATASET) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + t = azd->mDelays[ti] * radius / hData->mRadius; + azd->mDelays[ti] = t; + maxHrtd = fmax(t, maxHrtd); + minHrtd = fmin(t, minHrtd); + } + } + } + } + } + else + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + HrirEvT *evd = &hData->mFds[fi].mEvs[ei]; + + for(ai = 0;ai < evd->mAzCount;ai++) + { + HrirAzT *azd = &evd->mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance); + azd->mDelays[ti] = t; + maxHrtd = fmax(t, maxHrtd); + minHrtd = fmin(t, minHrtd); + } + } + } + } + } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ti = 0;ti < channels;ti++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd; + } + } + } } -// Store the OpenAL Soft HRTF data set. -static int StoreMhr (const HrirDataT * hData, const char * filename) { - FILE * fp = NULL; - uint e, step, end, n, j, i; - int hpHist, v; - - if ((fp = fopen (filename, "wb")) == NULL) { - fprintf (stderr, "Error: Could not open MHR file '%s'.\n", filename); - return (0); - } - if (! WriteAscii (MHR_FORMAT, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 4, (uint32) hData -> mIrRate, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mIrPoints, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mEvCount, fp, filename)) - return (0); - for (e = 0; e < hData -> mEvCount; e ++) { - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mAzCount [e], fp, filename)) - return (0); - } - step = hData -> mIrSize; - end = hData -> mIrCount * step; - n = hData -> mIrPoints; - srand (0x31DF840C); - for (j = 0; j < end; j += step) { - hpHist = 0; - for (i = 0; i < n; i ++) { - v = HpTpdfDither (32767.0 * hData -> mHrirs [j + i], & hpHist); - if (! WriteBin4 (BO_LITTLE, 2, (uint32) v, fp, filename)) - return (0); - } - } - for (j = 0; j < hData -> mIrCount; j ++) { - v = (int) fmin (round (hData -> mIrRate * hData -> mHrtds [j]), MAX_HRTD); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) v, fp, filename)) - return (0); - } - fclose (fp); - return (1); +// Clear the initial HRIR data state. +static void ResetHrirData(HrirDataT *hData) +{ + hData->mIrRate = 0; + hData->mSampleType = ST_S24; + hData->mChannelType = CT_NONE; + hData->mIrPoints = 0; + hData->mFftSize = 0; + hData->mIrSize = 0; + hData->mRadius = 0.0; + hData->mIrCount = 0; + hData->mFdCount = 0; + hData->mFds = NULL; +} + +// Allocate and configure dynamic HRIR structures. +static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData) +{ + uint evTotal = 0, azTotal = 0, fi, ei, ai; + + for(fi = 0;fi < fdCount;fi++) + { + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + azTotal += azCounts[(fi * MAX_EV_COUNT) + ei]; + } + if(!fdCount || !evTotal || !azTotal) + return 0; + + hData->mFds = calloc(fdCount, sizeof(*hData->mFds)); + if(hData->mFds == NULL) + return 0; + hData->mFds[0].mEvs = calloc(evTotal, sizeof(*hData->mFds[0].mEvs)); + if(hData->mFds[0].mEvs == NULL) + return 0; + hData->mFds[0].mEvs[0].mAzs = calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs)); + if(hData->mFds[0].mEvs[0].mAzs == NULL) + return 0; + hData->mIrCount = azTotal; + hData->mFdCount = fdCount; + evTotal = 0; + azTotal = 0; + for(fi = 0;fi < fdCount;fi++) + { + hData->mFds[fi].mDistance = distances[fi]; + hData->mFds[fi].mEvCount = evCounts[fi]; + hData->mFds[fi].mEvStart = 0; + hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal]; + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + { + uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei]; + + hData->mFds[fi].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1); + hData->mFds[fi].mEvs[ei].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mAzCount = azCount; + hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal]; + for(ai = 0;ai < azCount;ai++) + { + hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL; + } + azTotal += azCount; + } + } + return 1; +} + +// Clean up HRIR data. +static void FreeHrirData(HrirDataT *hData) +{ + if(hData->mFds != NULL) + { + if(hData->mFds[0].mEvs != NULL) + { + if(hData->mFds[0].mEvs[0].mAzs) + { + free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]); + free(hData->mFds[0].mEvs[0].mAzs); + } + free(hData->mFds[0].mEvs); + } + free(hData->mFds); + hData->mFds = NULL; + } +} + +// Match the channel type from a given identifier. +static ChannelTypeT MatchChannelType(const char *ident) +{ + if(strcasecmp(ident, "mono") == 0) + return CT_MONO; + if(strcasecmp(ident, "stereo") == 0) + return CT_STEREO; + return CT_NONE; } // Process the data set definition to read and validate the data set metrics. -static int ProcessMetrics (TokenReaderT * tr, const uint fftSize, const uint truncSize, HrirDataT * hData) { - char ident [MAX_IDENT_LEN + 1]; - uint line, col; - int intVal; - uint points; - double fpVal; - int hasRate = 0, hasPoints = 0, hasAzimuths = 0; - int hasRadius = 0, hasDistance = 0; - - while (! (hasRate && hasPoints && hasAzimuths && hasRadius && hasDistance)) { - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - if (strcasecmp (ident, "rate") == 0) { - if (hasRate) { - TrErrorAt (tr, line, col, "Redefinition of 'rate'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadInt (tr, MIN_RATE, MAX_RATE, & intVal)) - return (0); - hData -> mIrRate = (uint) intVal; - hasRate = 1; - } else if (strcasecmp (ident, "points") == 0) { - if (hasPoints) { - TrErrorAt (tr, line, col, "Redefinition of 'points'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, MIN_POINTS, MAX_POINTS, & intVal)) - return (0); - points = (uint) intVal; - if ((fftSize > 0) && (points > fftSize)) { - TrErrorAt (tr, line, col, "Value exceeds the overridden FFT size.\n"); - return (0); - } - if (points < truncSize) { - TrErrorAt (tr, line, col, "Value is below the truncation size.\n"); - return (0); - } - hData -> mIrPoints = points; - hData -> mFftSize = fftSize; - if (fftSize <= 0) { - points = 1; - while (points < (4 * hData -> mIrPoints)) - points <<= 1; - hData -> mFftSize = points; - hData -> mIrSize = 1 + (points / 2); - } else { - hData -> mFftSize = fftSize; - hData -> mIrSize = 1 + (fftSize / 2); - if (points > hData -> mIrSize) - hData -> mIrSize = points; - } - hasPoints = 1; - } else if (strcasecmp (ident, "azimuths") == 0) { - if (hasAzimuths) { - TrErrorAt (tr, line, col, "Redefinition of 'azimuths'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - hData -> mIrCount = 0; - hData -> mEvCount = 0; - hData -> mEvOffset [0] = 0; - for (;;) { - if (! TrReadInt (tr, MIN_AZ_COUNT, MAX_AZ_COUNT, & intVal)) - return (0); - hData -> mAzCount [hData -> mEvCount] = (uint) intVal; - hData -> mIrCount += (uint) intVal; - hData -> mEvCount ++; - if (! TrIsOperator (tr, ",")) - break; - if (hData -> mEvCount >= MAX_EV_COUNT) { - TrError (tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); - return (0); - } - hData -> mEvOffset [hData -> mEvCount] = hData -> mEvOffset [hData -> mEvCount - 1] + ((uint) intVal); - TrReadOperator (tr, ","); - } - if (hData -> mEvCount < MIN_EV_COUNT) { - TrErrorAt (tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); - return (0); - } - hasAzimuths = 1; - } else if (strcasecmp (ident, "radius") == 0) { - if (hasRadius) { - TrErrorAt (tr, line, col, "Redefinition of 'radius'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadFloat (tr, MIN_RADIUS, MAX_RADIUS, & fpVal)) - return (0); - hData -> mRadius = fpVal; - hasRadius = 1; - } else if (strcasecmp (ident, "distance") == 0) { - if (hasDistance) { - TrErrorAt (tr, line, col, "Redefinition of 'distance'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadFloat (tr, MIN_DISTANCE, MAX_DISTANCE, & fpVal)) - return (0); - hData -> mDistance = fpVal; - hasDistance = 1; - } else { - TrErrorAt (tr, line, col, "Expected a metric name.\n"); - return (0); - } - TrSkipWhitespace (tr); - } - return (1); -} - -// Parse an index pair from the data set definition. -static int ReadIndexPair (TokenReaderT * tr, const HrirDataT * hData, uint * ei, uint * ai) { - int intVal; - - if (! TrReadInt (tr, 0, (int) hData -> mEvCount, & intVal)) - return (0); - (* ei) = (uint) intVal; - if (! TrReadOperator (tr, ",")) - return (0); - if (! TrReadInt (tr, 0, (int) hData -> mAzCount [(* ei)], & intVal)) - return (0); - (* ai) = (uint) intVal; - return (1); +static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData) +{ + int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; + int hasDistance = 0, hasAzimuths = 0; + char ident[MAX_IDENT_LEN+1]; + uint line, col; + double fpVal; + uint points; + int intVal; + double distances[MAX_FD_COUNT]; + uint fdCount = 0; + uint evCounts[MAX_FD_COUNT]; + uint *azCounts = calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts)); + + if(azCounts == NULL) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + TrIndication(tr, &line, &col); + while(TrIsIdent(tr)) + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + goto error; + if(strcasecmp(ident, "rate") == 0) + { + if(hasRate) + { + TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) + goto error; + hData->mIrRate = (uint)intVal; + hasRate = 1; + } + else if(strcasecmp(ident, "type") == 0) + { + char type[MAX_IDENT_LEN+1]; + + if(hasType) + { + TrErrorAt(tr, line, col, "Redefinition of 'type'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) + goto error; + hData->mChannelType = MatchChannelType(type); + if(hData->mChannelType == CT_NONE) + { + TrErrorAt(tr, line, col, "Expected a channel type.\n"); + goto error; + } + hasType = 1; + } + else if(strcasecmp(ident, "points") == 0) + { + if(hasPoints) + { + TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) + goto error; + points = (uint)intVal; + if(fftSize > 0 && points > fftSize) + { + TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); + goto error; + } + if(points < truncSize) + { + TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); + goto error; + } + hData->mIrPoints = points; + if(fftSize <= 0) + { + hData->mFftSize = DEFAULT_FFTSIZE; + hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2); + } + else + { + hData->mFftSize = fftSize; + hData->mIrSize = 1 + (fftSize / 2); + if(points > hData->mIrSize) + hData->mIrSize = points; + } + hasPoints = 1; + } + else if(strcasecmp(ident, "radius") == 0) + { + if(hasRadius) + { + TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) + goto error; + hData->mRadius = fpVal; + hasRadius = 1; + } + else if(strcasecmp(ident, "distance") == 0) + { + uint count = 0; + + if(hasDistance) + { + TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + for(;;) + { + if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) + goto error; + if(count > 0 && fpVal <= distances[count - 1]) + { + TrError(tr, "Distances are not ascending.\n"); + goto error; + } + distances[count++] = fpVal; + if(!TrIsOperator(tr, ",")) + break; + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT); + goto error; + } + TrReadOperator(tr, ","); + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + goto error; + } + fdCount = count; + hasDistance = 1; + } + else if(strcasecmp(ident, "azimuths") == 0) + { + uint count = 0; + + if(hasAzimuths) + { + TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + evCounts[0] = 0; + for(;;) + { + if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) + goto error; + azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal; + if(TrIsOperator(tr, ",")) + { + if(evCounts[count] >= MAX_EV_COUNT) + { + TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); + goto error; + } + TrReadOperator(tr, ","); + } + else + { + if(evCounts[count] < MIN_EV_COUNT) + { + TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); + goto error; + } + if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1) + { + TrError(tr, "Poles are not singular for field %d.\n", count - 1); + goto error; + } + count++; + if(TrIsOperator(tr, ";")) + { + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT); + goto error; + } + evCounts[count] = 0; + TrReadOperator(tr, ";"); + } + else + { + break; + } + } + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + goto error; + } + fdCount = count; + hasAzimuths = 1; + } + else + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + goto error; + } + TrSkipWhitespace(tr); + } + if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + goto error; + } + if(distances[0] < hData->mRadius) + { + TrError(tr, "Distance cannot start below head radius.\n"); + goto error; + } + if(hData->mChannelType == CT_NONE) + hData->mChannelType = CT_MONO; + if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData)) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + free(azCounts); + return 1; + +error: + free(azCounts); + return 0; +} + +// Parse an index triplet from the data set definition. +static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai) +{ + int intVal; + + if(hData->mFdCount > 1) + { + if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal)) + return 0; + *fi = (uint)intVal; + if(!TrReadOperator(tr, ",")) + return 0; + } + else + { + *fi = 0; + } + if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal)) + return 0; + *ei = (uint)intVal; + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal)) + return 0; + *ai = (uint)intVal; + return 1; } // Match the source format from a given identifier. -static SourceFormatT MatchSourceFormat (const char * ident) { - if (strcasecmp (ident, "wave") == 0) - return (SF_WAVE); - else if (strcasecmp (ident, "bin_le") == 0) - return (SF_BIN_LE); - else if (strcasecmp (ident, "bin_be") == 0) - return (SF_BIN_BE); - else if (strcasecmp (ident, "ascii") == 0) - return (SF_ASCII); - return (SF_NONE); +static SourceFormatT MatchSourceFormat(const char *ident) +{ + if(strcasecmp(ident, "wave") == 0) + return SF_WAVE; + if(strcasecmp(ident, "bin_le") == 0) + return SF_BIN_LE; + if(strcasecmp(ident, "bin_be") == 0) + return SF_BIN_BE; + if(strcasecmp(ident, "ascii") == 0) + return SF_ASCII; + return SF_NONE; } // Match the source element type from a given identifier. -static ElementTypeT MatchElementType (const char * ident) { - if (strcasecmp (ident, "int") == 0) - return (ET_INT); - else if (strcasecmp (ident, "fp") == 0) - return (ET_FP); - return (ET_NONE); +static ElementTypeT MatchElementType(const char *ident) +{ + if(strcasecmp(ident, "int") == 0) + return ET_INT; + if(strcasecmp(ident, "fp") == 0) + return ET_FP; + return ET_NONE; } // Parse and validate a source reference from the data set definition. -static int ReadSourceRef (TokenReaderT * tr, SourceRefT * src) { - uint line, col; - char ident [MAX_IDENT_LEN + 1]; - int intVal; - - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - src -> mFormat = MatchSourceFormat (ident); - if (src -> mFormat == SF_NONE) { - TrErrorAt (tr, line, col, "Expected a source format.\n"); - return (0); - } - if (! TrReadOperator (tr, "(")) - return (0); - if (src -> mFormat == SF_WAVE) { - if (! TrReadInt (tr, 0, MAX_WAVE_CHANNELS, & intVal)) - return (0); - src -> mType = ET_NONE; - src -> mSize = 0; - src -> mBits = 0; - src -> mChannel = (uint) intVal; - src -> mSkip = 0; - } else { - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - src -> mType = MatchElementType (ident); - if (src -> mType == ET_NONE) { - TrErrorAt (tr, line, col, "Expected a source element type.\n"); - return (0); - } - if ((src -> mFormat == SF_BIN_LE) || (src -> mFormat == SF_BIN_BE)) { - if (! TrReadOperator (tr, ",")) - return (0); - if (src -> mType == ET_INT) { - if (! TrReadInt (tr, MIN_BIN_SIZE, MAX_BIN_SIZE, & intVal)) - return (0); - src -> mSize = (uint) intVal; - if (TrIsOperator (tr, ",")) { - TrReadOperator (tr, ","); - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal)) - return (0); - if ((abs (intVal) < MIN_BIN_BITS) || (((uint) abs (intVal)) > (8 * src -> mSize))) { - TrErrorAt (tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8 * src -> mSize); - return (0); - } - src -> mBits = intVal; - } else { - src -> mBits = (int) (8 * src -> mSize); - } - } else { - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal)) - return (0); - if ((intVal != 4) && (intVal != 8)) { - TrErrorAt (tr, line, col, "Expected a value of 4 or 8.\n"); - return (0); - } - src -> mSize = (uint) intVal; - src -> mBits = 0; - } - } else if ((src -> mFormat == SF_ASCII) && (src -> mType == ET_INT)) { - if (! TrReadOperator (tr, ",")) - return (0); - if (! TrReadInt (tr, MIN_ASCII_BITS, MAX_ASCII_BITS, & intVal)) - return (0); - src -> mSize = 0; - src -> mBits = intVal; - } else { - src -> mSize = 0; - src -> mBits = 0; - } - if (TrIsOperator (tr, ";")) { - TrReadOperator (tr, ";"); - if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal)) - return (0); - src -> mSkip = (uint) intVal; - } else { - src -> mSkip = 0; - } - } - if (! TrReadOperator (tr, ")")) - return (0); - if (TrIsOperator (tr, "@")) { - TrReadOperator (tr, "@"); - if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal)) - return (0); - src -> mOffset = (uint) intVal; - } else { - src -> mOffset = 0; - } - if (! TrReadOperator (tr, ":")) - return (0); - if (! TrReadString (tr, MAX_PATH_LEN, src -> mPath)) - return (0); - return (1); +static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) +{ + char ident[MAX_IDENT_LEN+1]; + uint line, col; + int intVal; + + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mFormat = MatchSourceFormat(ident); + if(src->mFormat == SF_NONE) + { + TrErrorAt(tr, line, col, "Expected a source format.\n"); + return 0; + } + if(!TrReadOperator(tr, "(")) + return 0; + if(src->mFormat == SF_WAVE) + { + if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) + return 0; + src->mType = ET_NONE; + src->mSize = 0; + src->mBits = 0; + src->mChannel = (uint)intVal; + src->mSkip = 0; + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mType = MatchElementType(ident); + if(src->mType == ET_NONE) + { + TrErrorAt(tr, line, col, "Expected a source element type.\n"); + return 0; + } + if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(src->mType == ET_INT) + { + if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) + return 0; + src->mSize = (uint)intVal; + if(!TrIsOperator(tr, ",")) + src->mBits = (int)(8*src->mSize); + else + { + TrReadOperator(tr, ","); + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize)) + { + TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); + return 0; + } + src->mBits = intVal; + } + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(intVal != 4 && intVal != 8) + { + TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); + return 0; + } + src->mSize = (uint)intVal; + src->mBits = 0; + } + } + else if(src->mFormat == SF_ASCII && src->mType == ET_INT) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) + return 0; + src->mSize = 0; + src->mBits = intVal; + } + else + { + src->mSize = 0; + src->mBits = 0; + } + + if(!TrIsOperator(tr, ";")) + src->mSkip = 0; + else + { + TrReadOperator(tr, ";"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mSkip = (uint)intVal; + } + } + if(!TrReadOperator(tr, ")")) + return 0; + if(TrIsOperator(tr, "@")) + { + TrReadOperator(tr, "@"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mOffset = (uint)intVal; + } + else + src->mOffset = 0; + if(!TrReadOperator(tr, ":")) + return 0; + if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) + return 0; + return 1; +} + +// Match the target ear (index) from a given identifier. +static int MatchTargetEar(const char *ident) +{ + if(strcasecmp(ident, "left") == 0) + return 0; + if(strcasecmp(ident, "right") == 0) + return 1; + return -1; } // Process the list of sources in the data set definition. -static int ProcessSources (const HeadModelT model, TokenReaderT * tr, HrirDataT * hData) { - uint * setCount = NULL, * setFlag = NULL; - double * hrir = NULL; - uint line, col, ei, ai; - SourceRefT src; - double factor; - - setCount = (uint *) calloc (hData -> mEvCount, sizeof (uint)); - setFlag = (uint *) calloc (hData -> mIrCount, sizeof (uint)); - hrir = CreateArray (hData -> mIrPoints); - while (TrIsOperator (tr, "[")) { - TrIndication (tr, & line, & col); - TrReadOperator (tr, "["); - if (ReadIndexPair (tr, hData, & ei, & ai)) { - if (TrReadOperator (tr, "]")) { - if (! setFlag [hData -> mEvOffset [ei] + ai]) { - if (TrReadOperator (tr, "=")) { - factor = 1.0; - for (;;) { - if (ReadSourceRef (tr, & src)) { - if (LoadSource (& src, hData -> mIrRate, hData -> mIrPoints, hrir)) { - if (model == HM_DATASET) - AverageHrirOnset (hrir, 1.0 / factor, ei, ai, hData); - AverageHrirMagnitude (hrir, 1.0 / factor, ei, ai, hData); - factor += 1.0; - if (! TrIsOperator (tr, "+")) - break; - TrReadOperator (tr, "+"); - continue; - } - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); +static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize); + double *hrir = CreateDoubles(hData->mIrPoints); + uint line, col, fi, ei, ai, ti; + int count; + + printf("Loading sources..."); + fflush(stdout); + count = 0; + while(TrIsOperator(tr, "[")) + { + double factor[2] = { 1.0, 1.0 }; + + TrIndication(tr, &line, &col); + TrReadOperator(tr, "["); + if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) + goto error; + if(!TrReadOperator(tr, "]")) + goto error; + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != NULL) + { + TrErrorAt(tr, line, col, "Redefinition of source.\n"); + goto error; + } + if(!TrReadOperator(tr, "=")) + goto error; + + for(;;) + { + SourceRefT src; + uint ti = 0; + + if(!ReadSourceRef(tr, &src)) + goto error; + + // TODO: Would be nice to display 'x of y files', but that would + // require preparing the source refs first to get a total count + // before loading them. + ++count; + printf("\rLoading sources... %d file%s", count, (count==1)?"":"s"); + fflush(stdout); + + if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir)) + goto error; + + if(hData->mChannelType == CT_STEREO) + { + char ident[MAX_IDENT_LEN+1]; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + goto error; + ti = MatchTargetEar(ident); + if((int)ti < 0) + { + TrErrorAt(tr, line, col, "Expected a target ear.\n"); + goto error; } - setFlag [hData -> mEvOffset [ei] + ai] = 1; - setCount [ei] ++; - continue; - } - } else { - TrErrorAt (tr, line, col, "Redefinition of source.\n"); - } - } - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); - } - ei = 0; - while ((ei < hData -> mEvCount) && (setCount [ei] < 1)) - ei ++; - if (ei < hData -> mEvCount) { - hData -> mEvStart = ei; - while ((ei < hData -> mEvCount) && (setCount [ei] == hData -> mAzCount [ei])) - ei ++; - if (ei >= hData -> mEvCount) { - if (! TrLoad (tr)) { - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (1); - } else { - TrError (tr, "Errant data at end of source list.\n"); - } - } else { - TrError (tr, "Missing sources for elevation index %d.\n", ei); - } - } else { - TrError (tr, "Missing source references.\n"); - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); + } + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + if(model == HM_DATASET) + azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]); + AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]); + factor[ti] += 1.0; + if(!TrIsOperator(tr, "+")) + break; + TrReadOperator(tr, "+"); + } + if(hData->mChannelType == CT_STEREO) + { + if(azd->mIrs[0] == NULL) + { + TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n"); + goto error; + } + else if(azd->mIrs[1] == NULL) + { + TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n"); + goto error; + } + } + } + printf("\n"); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != NULL) + break; + } + if(ai < hData->mFds[fi].mEvs[ei].mAzCount) + break; + } + if(ei >= hData->mFds[fi].mEvCount) + { + TrError(tr, "Missing source references [ %d, *, * ].\n", fi); + goto error; + } + hData->mFds[fi].mEvStart = ei; + for(;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] == NULL) + { + TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); + goto error; + } + } + } + } + for(ti = 0;ti < channels;ti++) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + } + } + } + } + if(!TrLoad(tr)) + { + free(hrir); + return 1; + } + TrError(tr, "Errant data at end of source list.\n"); + +error: + free(hrir); + return 0; } /* Parse the data set definition and process the source data, storing the * resulting data set as desired. If the input name is NULL it will read * from standard input. */ -static int ProcessDefinition (const char * inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const OutputFormatT outFormat, const char * outName) { - FILE * fp = NULL; - TokenReaderT tr; - HrirDataT hData; - double * dfa = NULL; - char rateStr [8 + 1], expName [MAX_PATH_LEN]; - - hData . mIrRate = 0; - hData . mIrPoints = 0; - hData . mFftSize = 0; - hData . mIrSize = 0; - hData . mIrCount = 0; - hData . mEvCount = 0; - hData . mRadius = 0; - hData . mDistance = 0; - fprintf (stdout, "Reading HRIR definition...\n"); - if (inName != NULL) { - fp = fopen (inName, "r"); - if (fp == NULL) { - fprintf (stderr, "Error: Could not open definition file '%s'\n", inName); - return (0); - } - TrSetup (fp, inName, & tr); - } else { - fp = stdin; - TrSetup (fp, "<stdin>", & tr); - } - if (! ProcessMetrics (& tr, fftSize, truncSize, & hData)) { - if (inName != NULL) - fclose (fp); - return (0); - } - hData . mHrirs = CreateArray (hData . mIrCount * hData . mIrSize); - hData . mHrtds = CreateArray (hData . mIrCount); - if (! ProcessSources (model, & tr, & hData)) { - DestroyArray (hData . mHrtds); - DestroyArray (hData . mHrirs); - if (inName != NULL) - fclose (fp); - return (0); - } - if (inName != NULL) - fclose (fp); - if (equalize) { - dfa = CreateArray (1 + (hData . mFftSize / 2)); - fprintf (stdout, "Calculating diffuse-field average...\n"); - CalculateDiffuseFieldAverage (& hData, surface, limit, dfa); - fprintf (stdout, "Performing diffuse-field equalization...\n"); - DiffuseFieldEqualize (dfa, & hData); - DestroyArray (dfa); - } - fprintf (stdout, "Performing minimum phase reconstruction...\n"); - ReconstructHrirs (& hData); - if ((outRate != 0) && (outRate != hData . mIrRate)) { - fprintf (stdout, "Resampling HRIRs...\n"); - ResampleHrirs (outRate, & hData); - } - fprintf (stdout, "Truncating minimum-phase HRIRs...\n"); - hData . mIrPoints = truncSize; - fprintf (stdout, "Synthesizing missing elevations...\n"); - if (model == HM_DATASET) - SynthesizeOnsets (& hData); - SynthesizeHrirs (& hData); - fprintf (stdout, "Normalizing final HRIRs...\n"); - NormalizeHrirs (& hData); - fprintf (stdout, "Calculating impulse delays...\n"); - CalculateHrtds (model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData . mRadius, & hData); - snprintf (rateStr, 8, "%u", hData . mIrRate); - StrSubst (outName, "%r", rateStr, MAX_PATH_LEN, expName); - switch (outFormat) { - case OF_MHR : - fprintf (stdout, "Creating MHR data set file...\n"); - if (! StoreMhr (& hData, expName)) - return (0); - break; - default : - break; - } - DestroyArray (hData . mHrtds); - DestroyArray (hData . mHrirs); - return (1); +static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName) +{ + char rateStr[8+1], expName[MAX_PATH_LEN]; + TokenReaderT tr; + HrirDataT hData; + FILE *fp; + int ret; + + ResetHrirData(&hData); + fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin"); + if(inName != NULL) + { + fp = fopen(inName, "r"); + if(fp == NULL) + { + fprintf(stderr, "Error: Could not open definition file '%s'\n", inName); + return 0; + } + TrSetup(fp, inName, &tr); + } + else + { + fp = stdin; + TrSetup(fp, "<stdin>", &tr); + } + if(!ProcessMetrics(&tr, fftSize, truncSize, &hData)) + { + if(inName != NULL) + fclose(fp); + return 0; + } + if(!ProcessSources(model, &tr, &hData)) + { + FreeHrirData(&hData); + if(inName != NULL) + fclose(fp); + return 0; + } + if(fp != stdin) + fclose(fp); + if(equalize) + { + uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1; + uint m = 1 + hData.mFftSize / 2; + double *dfa = CreateDoubles(c * m); + + fprintf(stdout, "Calculating diffuse-field average...\n"); + CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa); + fprintf(stdout, "Performing diffuse-field equalization...\n"); + DiffuseFieldEqualize(c, m, dfa, &hData); + free(dfa); + } + fprintf(stdout, "Performing minimum phase reconstruction...\n"); + ReconstructHrirs(&hData); + if(outRate != 0 && outRate != hData.mIrRate) + { + fprintf(stdout, "Resampling HRIRs...\n"); + ResampleHrirs(outRate, &hData); + } + fprintf(stdout, "Truncating minimum-phase HRIRs...\n"); + hData.mIrPoints = truncSize; + fprintf(stdout, "Synthesizing missing elevations...\n"); + if(model == HM_DATASET) + SynthesizeOnsets(&hData); + SynthesizeHrirs(&hData); + fprintf(stdout, "Normalizing final HRIRs...\n"); + NormalizeHrirs(&hData); + fprintf(stdout, "Calculating impulse delays...\n"); + CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData); + snprintf(rateStr, 8, "%u", hData.mIrRate); + StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName); + fprintf(stdout, "Creating MHR data set %s...\n", expName); + ret = StoreMhr(&hData, expName); + + FreeHrirData(&hData); + return ret; +} + +static void PrintHelp(const char *argv0, FILE *ofile) +{ + fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0); + fprintf(ofile, "Options:\n"); + fprintf(ofile, " -m Ignored for compatibility.\n"); + fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n"); + fprintf(ofile, " resample the HRIRs accordingly.\n"); + fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE); + fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off")); + fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off")); + fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n"); + fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT); + fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n"); + fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE); + fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n"); + fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere")); + fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n"); + fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n"); + fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n"); + fprintf(ofile, " the data set sample rate.\n"); } // Standard command line dispatch. -int main (const int argc, const char * argv []) { - const char * inName = NULL, * outName = NULL; - OutputFormatT outFormat; - int argi; - uint outRate, fftSize; - int equalize, surface; - double limit; - uint truncSize; - HeadModelT model; - double radius; - char * end = NULL; - - if (argc < 2) { - fprintf (stderr, "Error: No command specified. See '%s -h' for help.\n", argv [0]); - return (-1); - } - if ((strcmp (argv [1], "--help") == 0) || (strcmp (argv [1], "-h") == 0)) { - fprintf (stdout, "HRTF Processing and Composition Utility\n\n"); - fprintf (stdout, "Usage: %s <command> [<option>...]\n\n", argv [0]); - fprintf (stdout, "Commands:\n"); - fprintf (stdout, " -m, --make-mhr Makes an OpenAL Soft compatible HRTF data set.\n"); - fprintf (stdout, " Defaults output to: ./oalsoft_hrtf_%%r.mhr\n"); - fprintf (stdout, " -h, --help Displays this help information.\n\n"); - fprintf (stdout, "Options:\n"); - fprintf (stdout, " -r=<rate> Change the data set sample rate to the specified value and\n"); - fprintf (stdout, " resample the HRIRs accordingly.\n"); - fprintf (stdout, " -f=<points> Override the FFT window size (defaults to the first power-\n"); - fprintf (stdout, " of-two that fits four times the number of HRIR points).\n"); - fprintf (stdout, " -e={on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off")); - fprintf (stdout, " -s={on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off")); - fprintf (stdout, " -l={<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n"); - fprintf (stdout, " average (default: %.2f).\n", DEFAULT_LIMIT); - fprintf (stdout, " -w=<points> Specify the size of the truncation window that's applied\n"); - fprintf (stdout, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE); - fprintf (stdout, " -d={dataset| Specify the model used for calculating the head-delay timing\n"); - fprintf (stdout, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere")); - fprintf (stdout, " -c=<size> Use a customized head radius measured ear-to-ear in meters.\n"); - fprintf (stdout, " -i=<filename> Specify an HRIR definition file to use (defaults to stdin).\n"); - fprintf (stdout, " -o=<filename> Specify an output file. Overrides command-selected default.\n"); - fprintf (stdout, " Use of '%%r' will be substituted with the data set sample rate.\n"); - return (0); - } - if ((strcmp (argv [1], "--make-mhr") == 0) || (strcmp (argv [1], "-m") == 0)) { - if (argc > 3) - outName = argv [3]; - else - outName = "./oalsoft_hrtf_%r.mhr"; - outFormat = OF_MHR; - } else { - fprintf (stderr, "Error: Invalid command '%s'.\n", argv [1]); - return (-1); - } - argi = 2; - outRate = 0; - fftSize = 0; - equalize = DEFAULT_EQUALIZE; - surface = DEFAULT_SURFACE; - limit = DEFAULT_LIMIT; - truncSize = DEFAULT_TRUNCSIZE; - model = DEFAULT_HEAD_MODEL; - radius = DEFAULT_CUSTOM_RADIUS; - while (argi < argc) { - if (strncmp (argv [argi], "-r=", 3) == 0) { - outRate = strtoul (& argv [argi] [3], & end, 10); - if ((end [0] != '\0') || (outRate < MIN_RATE) || (outRate > MAX_RATE)) { - fprintf (stderr, "Error: Expected a value from %u to %u for '-r'.\n", MIN_RATE, MAX_RATE); - return (-1); - } - } else if (strncmp (argv [argi], "-f=", 3) == 0) { - fftSize = strtoul (& argv [argi] [3], & end, 10); - if ((end [0] != '\0') || (fftSize & (fftSize - 1)) || (fftSize < MIN_FFTSIZE) || (fftSize > MAX_FFTSIZE)) { - fprintf (stderr, "Error: Expected a power-of-two value from %u to %u for '-f'.\n", MIN_FFTSIZE, MAX_FFTSIZE); - return (-1); - } - } else if (strncmp (argv [argi], "-e=", 3) == 0) { - if (strcmp (& argv [argi] [3], "on") == 0) { - equalize = 1; - } else if (strcmp (& argv [argi] [3], "off") == 0) { - equalize = 0; - } else { - fprintf (stderr, "Error: Expected 'on' or 'off' for '-e'.\n"); - return (-1); - } - } else if (strncmp (argv [argi], "-s=", 3) == 0) { - if (strcmp (& argv [argi] [3], "on") == 0) { - surface = 1; - } else if (strcmp (& argv [argi] [3], "off") == 0) { - surface = 0; - } else { - fprintf (stderr, "Error: Expected 'on' or 'off' for '-s'.\n"); - return (-1); - } - } else if (strncmp (argv [argi], "-l=", 3) == 0) { - if (strcmp (& argv [argi] [3], "none") == 0) { - limit = 0.0; - } else { - limit = strtod (& argv [argi] [3], & end); - if ((end [0] != '\0') || (limit < MIN_LIMIT) || (limit > MAX_LIMIT)) { - fprintf (stderr, "Error: Expected 'none' or a value from %.2f to %.2f for '-l'.\n", MIN_LIMIT, MAX_LIMIT); - return (-1); - } - } - } else if (strncmp (argv [argi], "-w=", 3) == 0) { - truncSize = strtoul (& argv [argi] [3], & end, 10); - if ((end [0] != '\0') || (truncSize < MIN_TRUNCSIZE) || (truncSize > MAX_TRUNCSIZE) || (truncSize % MOD_TRUNCSIZE)) { - fprintf (stderr, "Error: Expected a value from %u to %u in multiples of %u for '-w'.\n", MIN_TRUNCSIZE, MAX_TRUNCSIZE, MOD_TRUNCSIZE); - return (-1); - } - } else if (strncmp (argv [argi], "-d=", 3) == 0) { - if (strcmp (& argv [argi] [3], "dataset") == 0) { - model = HM_DATASET; - } else if (strcmp (& argv [argi] [3], "sphere") == 0) { - model = HM_SPHERE; - } else { - fprintf (stderr, "Error: Expected 'dataset' or 'sphere' for '-d'.\n"); - return (-1); - } - } else if (strncmp (argv [argi], "-c=", 3) == 0) { - radius = strtod (& argv [argi] [3], & end); - if ((end [0] != '\0') || (radius < MIN_CUSTOM_RADIUS) || (radius > MAX_CUSTOM_RADIUS)) { - fprintf (stderr, "Error: Expected a value from %.2f to %.2f for '-c'.\n", MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS); - return (-1); - } - } else if (strncmp (argv [argi], "-i=", 3) == 0) { - inName = & argv [argi] [3]; - } else if (strncmp (argv [argi], "-o=", 3) == 0) { - outName = & argv [argi] [3]; - } else { - fprintf (stderr, "Error: Invalid option '%s'.\n", argv [argi]); - return (-1); - } - argi ++; - } - if (! ProcessDefinition (inName, outRate, fftSize, equalize, surface, limit, truncSize, model, radius, outFormat, outName)) - return (-1); - fprintf (stdout, "Operation completed.\n"); - return (0); -} +int main(int argc, char *argv[]) +{ + const char *inName = NULL, *outName = NULL; + uint outRate, fftSize; + int equalize, surface; + char *end = NULL; + HeadModelT model; + uint truncSize; + double radius; + double limit; + int opt; + + GET_UNICODE_ARGS(&argc, &argv); + + if(argc < 2) + { + fprintf(stdout, "HRTF Processing and Composition Utility\n\n"); + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + } + + outName = "./oalsoft_hrtf_%r.mhr"; + outRate = 0; + fftSize = 0; + equalize = DEFAULT_EQUALIZE; + surface = DEFAULT_SURFACE; + limit = DEFAULT_LIMIT; + truncSize = DEFAULT_TRUNCSIZE; + model = DEFAULT_HEAD_MODEL; + radius = DEFAULT_CUSTOM_RADIUS; + + while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1) + { + switch(opt) + { + case 'm': + fprintf(stderr, "Ignoring unused command '-m'.\n"); + break; + + case 'r': + outRate = strtoul(optarg, &end, 10); + if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE); + exit(EXIT_FAILURE); + } + break; + + case 'f': + fftSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'e': + if(strcmp(optarg, "on") == 0) + equalize = 1; + else if(strcmp(optarg, "off") == 0) + equalize = 0; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + case 's': + if(strcmp(optarg, "on") == 0) + surface = 1; + else if(strcmp(optarg, "off") == 0) + surface = 0; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'l': + if(strcmp(optarg, "none") == 0) + limit = 0.0; + else + { + limit = strtod(optarg, &end); + if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT); + exit(EXIT_FAILURE); + } + } + break; + + case 'w': + truncSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE)) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'd': + if(strcmp(optarg, "dataset") == 0) + model = HM_DATASET; + else if(strcmp(optarg, "sphere") == 0) + model = HM_SPHERE; + else + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'c': + radius = strtod(optarg, &end); + if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS) + { + fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS); + exit(EXIT_FAILURE); + } + break; + case 'i': + inName = optarg; + break; + case 'o': + outName = optarg; + break; + case 'h': + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + + default: /* '?' */ + PrintHelp(argv[0], stderr); + exit(EXIT_FAILURE); + } + } + + if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit, + truncSize, model, radius, outName)) + return -1; + fprintf(stdout, "Operation completed.\n"); + + return EXIT_SUCCESS; +} |