diff options
Diffstat (limited to 'utils/makehrtf.c')
-rw-r--r-- | utils/makehrtf.c | 3455 |
1 files changed, 0 insertions, 3455 deletions
diff --git a/utils/makehrtf.c b/utils/makehrtf.c deleted file mode 100644 index 0bd36849..00000000 --- a/utils/makehrtf.c +++ /dev/null @@ -1,3455 +0,0 @@ -/* - * HRTF utility for producing and demonstrating the process of creating an - * OpenAL Soft compatible HRIR data set. - * - * Copyright (C) 2011-2017 Christopher Fitzgerald - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html - * - * -------------------------------------------------------------------------- - * - * A big thanks goes out to all those whose work done in the field of - * binaural sound synthesis using measured HRTFs makes this utility and the - * OpenAL Soft implementation possible. - * - * The algorithm for diffuse-field equalization was adapted from the work - * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of - * MIT Media Laboratory. It operates as follows: - * - * 1. Take the FFT of each HRIR and only keep the magnitude responses. - * 2. Calculate the diffuse-field power-average of all HRIRs weighted by - * their contribution to the total surface area covered by their - * measurement. - * 3. Take the diffuse-field average and limit its magnitude range. - * 4. Equalize the responses by using the inverse of the diffuse-field - * average. - * 5. Reconstruct the minimum-phase responses. - * 5. Zero the DC component. - * 6. IFFT the result and truncate to the desired-length minimum-phase FIR. - * - * The spherical head algorithm for calculating propagation delay was adapted - * from the paper: - * - * Modeling Interaural Time Difference Assuming a Spherical Head - * Joel David Miller - * Music 150, Musical Acoustics, Stanford University - * December 2, 2001 - * - * The formulae for calculating the Kaiser window metrics are from the - * the textbook: - * - * Discrete-Time Signal Processing - * Alan V. Oppenheim and Ronald W. Schafer - * Prentice-Hall Signal Processing Series - * 1999 - */ - -#include "config.h" - -#define _UNICODE -#include <stdio.h> -#include <stdlib.h> -#include <stdarg.h> -#include <stddef.h> -#include <string.h> -#include <limits.h> -#include <ctype.h> -#include <math.h> -#ifdef HAVE_STRINGS_H -#include <strings.h> -#endif -#ifdef HAVE_GETOPT -#include <unistd.h> -#else -#include "getopt.h" -#endif - -#include "win_main_utf8.h" - -/* Define int64_t and uint64_t types */ -#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L -#include <inttypes.h> -#elif defined(_WIN32) && defined(__GNUC__) -#include <stdint.h> -#elif defined(_WIN32) -typedef __int64 int64_t; -typedef unsigned __int64 uint64_t; -#else -/* Fallback if nothing above works */ -#include <inttypes.h> -#endif - -#ifndef M_PI -#define M_PI (3.14159265358979323846) -#endif - -#ifndef HUGE_VAL -#define HUGE_VAL (1.0 / 0.0) -#endif - - -// The epsilon used to maintain signal stability. -#define EPSILON (1e-9) - -// Constants for accessing the token reader's ring buffer. -#define TR_RING_BITS (16) -#define TR_RING_SIZE (1 << TR_RING_BITS) -#define TR_RING_MASK (TR_RING_SIZE - 1) - -// The token reader's load interval in bytes. -#define TR_LOAD_SIZE (TR_RING_SIZE >> 2) - -// The maximum identifier length used when processing the data set -// definition. -#define MAX_IDENT_LEN (16) - -// The maximum path length used when processing filenames. -#define MAX_PATH_LEN (256) - -// The limits for the sample 'rate' metric in the data set definition and for -// resampling. -#define MIN_RATE (32000) -#define MAX_RATE (96000) - -// The limits for the HRIR 'points' metric in the data set definition. -#define MIN_POINTS (16) -#define MAX_POINTS (8192) - -// The limit to the number of 'distances' listed in the data set definition. -#define MAX_FD_COUNT (16) - -// The limits to the number of 'azimuths' listed in the data set definition. -#define MIN_EV_COUNT (5) -#define MAX_EV_COUNT (128) - -// The limits for each of the 'azimuths' listed in the data set definition. -#define MIN_AZ_COUNT (1) -#define MAX_AZ_COUNT (128) - -// The limits for the listener's head 'radius' in the data set definition. -#define MIN_RADIUS (0.05) -#define MAX_RADIUS (0.15) - -// The limits for the 'distance' from source to listener for each field in -// the definition file. -#define MIN_DISTANCE (0.05) -#define MAX_DISTANCE (2.50) - -// The maximum number of channels that can be addressed for a WAVE file -// source listed in the data set definition. -#define MAX_WAVE_CHANNELS (65535) - -// The limits to the byte size for a binary source listed in the definition -// file. -#define MIN_BIN_SIZE (2) -#define MAX_BIN_SIZE (4) - -// The minimum number of significant bits for binary sources listed in the -// data set definition. The maximum is calculated from the byte size. -#define MIN_BIN_BITS (16) - -// The limits to the number of significant bits for an ASCII source listed in -// the data set definition. -#define MIN_ASCII_BITS (16) -#define MAX_ASCII_BITS (32) - -// The limits to the FFT window size override on the command line. -#define MIN_FFTSIZE (65536) -#define MAX_FFTSIZE (131072) - -// The limits to the equalization range limit on the command line. -#define MIN_LIMIT (2.0) -#define MAX_LIMIT (120.0) - -// The limits to the truncation window size on the command line. -#define MIN_TRUNCSIZE (16) -#define MAX_TRUNCSIZE (512) - -// The limits to the custom head radius on the command line. -#define MIN_CUSTOM_RADIUS (0.05) -#define MAX_CUSTOM_RADIUS (0.15) - -// The truncation window size must be a multiple of the below value to allow -// for vectorized convolution. -#define MOD_TRUNCSIZE (8) - -// The defaults for the command line options. -#define DEFAULT_FFTSIZE (65536) -#define DEFAULT_EQUALIZE (1) -#define DEFAULT_SURFACE (1) -#define DEFAULT_LIMIT (24.0) -#define DEFAULT_TRUNCSIZE (32) -#define DEFAULT_HEAD_MODEL (HM_DATASET) -#define DEFAULT_CUSTOM_RADIUS (0.0) - -// The four-character-codes for RIFF/RIFX WAVE file chunks. -#define FOURCC_RIFF (0x46464952) // 'RIFF' -#define FOURCC_RIFX (0x58464952) // 'RIFX' -#define FOURCC_WAVE (0x45564157) // 'WAVE' -#define FOURCC_FMT (0x20746D66) // 'fmt ' -#define FOURCC_DATA (0x61746164) // 'data' -#define FOURCC_LIST (0x5453494C) // 'LIST' -#define FOURCC_WAVL (0x6C766177) // 'wavl' -#define FOURCC_SLNT (0x746E6C73) // 'slnt' - -// The supported wave formats. -#define WAVE_FORMAT_PCM (0x0001) -#define WAVE_FORMAT_IEEE_FLOAT (0x0003) -#define WAVE_FORMAT_EXTENSIBLE (0xFFFE) - -// The maximum propagation delay value supported by OpenAL Soft. -#define MAX_HRTD (63.0) - -// The OpenAL Soft HRTF format marker. It stands for minimum-phase head -// response protocol 02. -#define MHR_FORMAT ("MinPHR02") - -// Sample and channel type enum values. -typedef enum SampleTypeT { - ST_S16 = 0, - ST_S24 = 1 -} SampleTypeT; - -// Certain iterations rely on these integer enum values. -typedef enum ChannelTypeT { - CT_NONE = -1, - CT_MONO = 0, - CT_STEREO = 1 -} ChannelTypeT; - -// Byte order for the serialization routines. -typedef enum ByteOrderT { - BO_NONE, - BO_LITTLE, - BO_BIG -} ByteOrderT; - -// Source format for the references listed in the data set definition. -typedef enum SourceFormatT { - SF_NONE, - SF_WAVE, // RIFF/RIFX WAVE file. - SF_BIN_LE, // Little-endian binary file. - SF_BIN_BE, // Big-endian binary file. - SF_ASCII // ASCII text file. -} SourceFormatT; - -// Element types for the references listed in the data set definition. -typedef enum ElementTypeT { - ET_NONE, - ET_INT, // Integer elements. - ET_FP // Floating-point elements. -} ElementTypeT; - -// Head model used for calculating the impulse delays. -typedef enum HeadModelT { - HM_NONE, - HM_DATASET, // Measure the onset from the dataset. - HM_SPHERE // Calculate the onset using a spherical head model. -} HeadModelT; - -// Unsigned integer type. -typedef unsigned int uint; - -// Serialization types. The trailing digit indicates the number of bits. -typedef unsigned char uint8; -typedef int int32; -typedef unsigned int uint32; -typedef uint64_t uint64; - -// Token reader state for parsing the data set definition. -typedef struct TokenReaderT { - FILE *mFile; - const char *mName; - uint mLine; - uint mColumn; - char mRing[TR_RING_SIZE]; - size_t mIn; - size_t mOut; -} TokenReaderT; - -// Source reference state used when loading sources. -typedef struct SourceRefT { - SourceFormatT mFormat; - ElementTypeT mType; - uint mSize; - int mBits; - uint mChannel; - uint mSkip; - uint mOffset; - char mPath[MAX_PATH_LEN+1]; -} SourceRefT; - -// Structured HRIR storage for stereo azimuth pairs, elevations, and fields. -typedef struct HrirAzT { - double mAzimuth; - uint mIndex; - double mDelays[2]; - double *mIrs[2]; -} HrirAzT; - -typedef struct HrirEvT { - double mElevation; - uint mIrCount; - uint mAzCount; - HrirAzT *mAzs; -} HrirEvT; - -typedef struct HrirFdT { - double mDistance; - uint mIrCount; - uint mEvCount; - uint mEvStart; - HrirEvT *mEvs; -} HrirFdT; - -// The HRIR metrics and data set used when loading, processing, and storing -// the resulting HRTF. -typedef struct HrirDataT { - uint mIrRate; - SampleTypeT mSampleType; - ChannelTypeT mChannelType; - uint mIrPoints; - uint mFftSize; - uint mIrSize; - double mRadius; - uint mIrCount; - uint mFdCount; - HrirFdT *mFds; -} HrirDataT; - -// The resampler metrics and FIR filter. -typedef struct ResamplerT { - uint mP, mQ, mM, mL; - double *mF; -} ResamplerT; - - -/**************************************** - *** Complex number type and routines *** - ****************************************/ - -typedef struct { - double Real, Imag; -} Complex; - -static Complex MakeComplex(double r, double i) -{ - Complex c = { r, i }; - return c; -} - -static Complex c_add(Complex a, Complex b) -{ - Complex r; - r.Real = a.Real + b.Real; - r.Imag = a.Imag + b.Imag; - return r; -} - -static Complex c_sub(Complex a, Complex b) -{ - Complex r; - r.Real = a.Real - b.Real; - r.Imag = a.Imag - b.Imag; - return r; -} - -static Complex c_mul(Complex a, Complex b) -{ - Complex r; - r.Real = a.Real*b.Real - a.Imag*b.Imag; - r.Imag = a.Imag*b.Real + a.Real*b.Imag; - return r; -} - -static Complex c_muls(Complex a, double s) -{ - Complex r; - r.Real = a.Real * s; - r.Imag = a.Imag * s; - return r; -} - -static double c_abs(Complex a) -{ - return sqrt(a.Real*a.Real + a.Imag*a.Imag); -} - -static Complex c_exp(Complex a) -{ - Complex r; - double e = exp(a.Real); - r.Real = e * cos(a.Imag); - r.Imag = e * sin(a.Imag); - return r; -} - -/***************************** - *** Token reader routines *** - *****************************/ - -/* Whitespace is not significant. It can process tokens as identifiers, numbers - * (integer and floating-point), strings, and operators. Strings must be - * encapsulated by double-quotes and cannot span multiple lines. - */ - -// Setup the reader on the given file. The filename can be NULL if no error -// output is desired. -static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr) -{ - const char *name = NULL; - - if(filename) - { - const char *slash = strrchr(filename, '/'); - if(slash) - { - const char *bslash = strrchr(slash+1, '\\'); - if(bslash) name = bslash+1; - else name = slash+1; - } - else - { - const char *bslash = strrchr(filename, '\\'); - if(bslash) name = bslash+1; - else name = filename; - } - } - - tr->mFile = fp; - tr->mName = name; - tr->mLine = 1; - tr->mColumn = 1; - tr->mIn = 0; - tr->mOut = 0; -} - -// Prime the reader's ring buffer, and return a result indicating that there -// is text to process. -static int TrLoad(TokenReaderT *tr) -{ - size_t toLoad, in, count; - - toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); - if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) - { - // Load TR_LOAD_SIZE (or less if at the end of the file) per read. - toLoad = TR_LOAD_SIZE; - in = tr->mIn&TR_RING_MASK; - count = TR_RING_SIZE - in; - if(count < toLoad) - { - tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); - tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); - } - else - tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); - - if(tr->mOut >= TR_RING_SIZE) - { - tr->mOut -= TR_RING_SIZE; - tr->mIn -= TR_RING_SIZE; - } - } - if(tr->mIn > tr->mOut) - return 1; - return 0; -} - -// Error display routine. Only displays when the base name is not NULL. -static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) -{ - if(!tr->mName) - return; - fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column); - vfprintf(stderr, format, argPtr); -} - -// Used to display an error at a saved line/column. -static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) -{ - va_list argPtr; - - va_start(argPtr, format); - TrErrorVA(tr, line, column, format, argPtr); - va_end(argPtr); -} - -// Used to display an error at the current line/column. -static void TrError(const TokenReaderT *tr, const char *format, ...) -{ - va_list argPtr; - - va_start(argPtr, format); - TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); - va_end(argPtr); -} - -// Skips to the next line. -static void TrSkipLine(TokenReaderT *tr) -{ - char ch; - - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - tr->mOut++; - if(ch == '\n') - { - tr->mLine++; - tr->mColumn = 1; - break; - } - tr->mColumn ++; - } -} - -// Skips to the next token. -static int TrSkipWhitespace(TokenReaderT *tr) -{ - char ch; - - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(isspace(ch)) - { - tr->mOut++; - if(ch == '\n') - { - tr->mLine++; - tr->mColumn = 1; - } - else - tr->mColumn++; - } - else if(ch == '#') - TrSkipLine(tr); - else - return 1; - } - return 0; -} - -// Get the line and/or column of the next token (or the end of input). -static void TrIndication(TokenReaderT *tr, uint *line, uint *column) -{ - TrSkipWhitespace(tr); - if(line) *line = tr->mLine; - if(column) *column = tr->mColumn; -} - -// Checks to see if a token is (likely to be) an identifier. It does not -// display any errors and will not proceed to the next token. -static int TrIsIdent(TokenReaderT *tr) -{ - char ch; - - if(!TrSkipWhitespace(tr)) - return 0; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - return ch == '_' || isalpha(ch); -} - - -// Checks to see if a token is the given operator. It does not display any -// errors and will not proceed to the next token. -static int TrIsOperator(TokenReaderT *tr, const char *op) -{ - size_t out, len; - char ch; - - if(!TrSkipWhitespace(tr)) - return 0; - out = tr->mOut; - len = 0; - while(op[len] != '\0' && out < tr->mIn) - { - ch = tr->mRing[out&TR_RING_MASK]; - if(ch != op[len]) break; - len++; - out++; - } - if(op[len] == '\0') - return 1; - return 0; -} - -/* The TrRead*() routines obtain the value of a matching token type. They - * display type, form, and boundary errors and will proceed to the next - * token. - */ - -// Reads and validates an identifier token. -static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) -{ - uint col, len; - char ch; - - col = tr->mColumn; - if(TrSkipWhitespace(tr)) - { - col = tr->mColumn; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(ch == '_' || isalpha(ch)) - { - len = 0; - do { - if(len < maxLen) - ident[len] = ch; - len++; - tr->mOut++; - if(!TrLoad(tr)) - break; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - } while(ch == '_' || isdigit(ch) || isalpha(ch)); - - tr->mColumn += len; - if(len < maxLen) - { - ident[len] = '\0'; - return 1; - } - TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); - return 0; - } - } - TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); - return 0; -} - -// Reads and validates (including bounds) an integer token. -static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) -{ - uint col, digis, len; - char ch, temp[64+1]; - - col = tr->mColumn; - if(TrSkipWhitespace(tr)) - { - col = tr->mColumn; - len = 0; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(ch == '+' || ch == '-') - { - temp[len] = ch; - len++; - tr->mOut++; - } - digis = 0; - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(!isdigit(ch)) break; - if(len < 64) - temp[len] = ch; - len++; - digis++; - tr->mOut++; - } - tr->mColumn += len; - if(digis > 0 && ch != '.' && !isalpha(ch)) - { - if(len > 64) - { - TrErrorAt(tr, tr->mLine, col, "Integer is too long."); - return 0; - } - temp[len] = '\0'; - *value = strtol(temp, NULL, 10); - if(*value < loBound || *value > hiBound) - { - TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); - return 0; - } - return 1; - } - } - TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); - return 0; -} - -// Reads and validates (including bounds) a float token. -static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) -{ - uint col, digis, len; - char ch, temp[64+1]; - - col = tr->mColumn; - if(TrSkipWhitespace(tr)) - { - col = tr->mColumn; - len = 0; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(ch == '+' || ch == '-') - { - temp[len] = ch; - len++; - tr->mOut++; - } - - digis = 0; - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(!isdigit(ch)) break; - if(len < 64) - temp[len] = ch; - len++; - digis++; - tr->mOut++; - } - if(ch == '.') - { - if(len < 64) - temp[len] = ch; - len++; - tr->mOut++; - } - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(!isdigit(ch)) break; - if(len < 64) - temp[len] = ch; - len++; - digis++; - tr->mOut++; - } - if(digis > 0) - { - if(ch == 'E' || ch == 'e') - { - if(len < 64) - temp[len] = ch; - len++; - digis = 0; - tr->mOut++; - if(ch == '+' || ch == '-') - { - if(len < 64) - temp[len] = ch; - len++; - tr->mOut++; - } - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(!isdigit(ch)) break; - if(len < 64) - temp[len] = ch; - len++; - digis++; - tr->mOut++; - } - } - tr->mColumn += len; - if(digis > 0 && ch != '.' && !isalpha(ch)) - { - if(len > 64) - { - TrErrorAt(tr, tr->mLine, col, "Float is too long."); - return 0; - } - temp[len] = '\0'; - *value = strtod(temp, NULL); - if(*value < loBound || *value > hiBound) - { - TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); - return 0; - } - return 1; - } - } - else - tr->mColumn += len; - } - TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); - return 0; -} - -// Reads and validates a string token. -static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) -{ - uint col, len; - char ch; - - col = tr->mColumn; - if(TrSkipWhitespace(tr)) - { - col = tr->mColumn; - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(ch == '\"') - { - tr->mOut++; - len = 0; - while(TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - tr->mOut++; - if(ch == '\"') - break; - if(ch == '\n') - { - TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n"); - return 0; - } - if(len < maxLen) - text[len] = ch; - len++; - } - if(ch != '\"') - { - tr->mColumn += 1 + len; - TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); - return 0; - } - tr->mColumn += 2 + len; - if(len > maxLen) - { - TrErrorAt(tr, tr->mLine, col, "String is too long.\n"); - return 0; - } - text[len] = '\0'; - return 1; - } - } - TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); - return 0; -} - -// Reads and validates the given operator. -static int TrReadOperator(TokenReaderT *tr, const char *op) -{ - uint col, len; - char ch; - - col = tr->mColumn; - if(TrSkipWhitespace(tr)) - { - col = tr->mColumn; - len = 0; - while(op[len] != '\0' && TrLoad(tr)) - { - ch = tr->mRing[tr->mOut&TR_RING_MASK]; - if(ch != op[len]) break; - len++; - tr->mOut++; - } - tr->mColumn += len; - if(op[len] == '\0') - return 1; - } - TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); - return 0; -} - -/* Performs a string substitution. Any case-insensitive occurrences of the - * pattern string are replaced with the replacement string. The result is - * truncated if necessary. - */ -static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out) -{ - size_t inLen, patLen, repLen; - size_t si, di; - int truncated; - - inLen = strlen(in); - patLen = strlen(pat); - repLen = strlen(rep); - si = 0; - di = 0; - truncated = 0; - while(si < inLen && di < maxLen) - { - if(patLen <= inLen-si) - { - if(strncasecmp(&in[si], pat, patLen) == 0) - { - if(repLen > maxLen-di) - { - repLen = maxLen - di; - truncated = 1; - } - strncpy(&out[di], rep, repLen); - si += patLen; - di += repLen; - } - } - out[di] = in[si]; - si++; - di++; - } - if(si < inLen) - truncated = 1; - out[di] = '\0'; - return !truncated; -} - - -/********************* - *** Math routines *** - *********************/ - -// Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013). -#if defined(_MSC_VER) && _MSC_VER < 1800 -static double round(double val) -{ - if(val < 0.0) - return ceil(val-0.5); - return floor(val+0.5); -} - -static double fmin(double a, double b) -{ - return (a<b) ? a : b; -} - -static double fmax(double a, double b) -{ - return (a>b) ? a : b; -} -#endif - -// Simple clamp routine. -static double Clamp(const double val, const double lower, const double upper) -{ - return fmin(fmax(val, lower), upper); -} - -// Performs linear interpolation. -static double Lerp(const double a, const double b, const double f) -{ - return a + f * (b - a); -} - -static inline uint dither_rng(uint *seed) -{ - *seed = *seed * 96314165 + 907633515; - return *seed; -} - -// Performs a triangular probability density function dither. The input samples -// should be normalized (-1 to +1). -static void TpdfDither(double *restrict out, const double *restrict in, const double scale, - const int count, const int step, uint *seed) -{ - static const double PRNG_SCALE = 1.0 / UINT_MAX; - uint prn0, prn1; - int i; - - for(i = 0;i < count;i++) - { - prn0 = dither_rng(seed); - prn1 = dither_rng(seed); - out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE)); - } -} - -// Allocates an array of doubles. -static double *CreateDoubles(size_t n) -{ - double *a; - - a = calloc(n?n:1, sizeof(*a)); - if(a == NULL) - { - fprintf(stderr, "Error: Out of memory.\n"); - exit(-1); - } - return a; -} - -// Allocates an array of complex numbers. -static Complex *CreateComplexes(size_t n) -{ - Complex *a; - - a = calloc(n?n:1, sizeof(*a)); - if(a == NULL) - { - fprintf(stderr, "Error: Out of memory.\n"); - exit(-1); - } - return a; -} - -/* Fast Fourier transform routines. The number of points must be a power of - * two. - */ - -// Performs bit-reversal ordering. -static void FftArrange(const uint n, Complex *inout) -{ - uint rk, k, m; - - // Handle in-place arrangement. - rk = 0; - for(k = 0;k < n;k++) - { - if(rk > k) - { - Complex temp = inout[rk]; - inout[rk] = inout[k]; - inout[k] = temp; - } - - m = n; - while(rk&(m >>= 1)) - rk &= ~m; - rk |= m; - } -} - -// Performs the summation. -static void FftSummation(const int n, const double s, Complex *cplx) -{ - double pi; - int m, m2; - int i, k, mk; - - pi = s * M_PI; - for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1) - { - // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) - double sm = sin(0.5 * pi / m); - Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m)); - Complex w = MakeComplex(1.0, 0.0); - for(i = 0;i < m;i++) - { - for(k = i;k < n;k += m2) - { - Complex t; - mk = k + m; - t = c_mul(w, cplx[mk]); - cplx[mk] = c_sub(cplx[k], t); - cplx[k] = c_add(cplx[k], t); - } - w = c_add(w, c_mul(v, w)); - } - } -} - -// Performs a forward FFT. -static void FftForward(const uint n, Complex *inout) -{ - FftArrange(n, inout); - FftSummation(n, 1.0, inout); -} - -// Performs an inverse FFT. -static void FftInverse(const uint n, Complex *inout) -{ - double f; - uint i; - - FftArrange(n, inout); - FftSummation(n, -1.0, inout); - f = 1.0 / n; - for(i = 0;i < n;i++) - inout[i] = c_muls(inout[i], f); -} - -/* Calculate the complex helical sequence (or discrete-time analytical signal) - * of the given input using the Hilbert transform. Given the natural logarithm - * of a signal's magnitude response, the imaginary components can be used as - * the angles for minimum-phase reconstruction. - */ -static void Hilbert(const uint n, Complex *inout) -{ - uint i; - - // Handle in-place operation. - for(i = 0;i < n;i++) - inout[i].Imag = 0.0; - - FftInverse(n, inout); - for(i = 1;i < (n+1)/2;i++) - inout[i] = c_muls(inout[i], 2.0); - /* Increment i if n is even. */ - i += (n&1)^1; - for(;i < n;i++) - inout[i] = MakeComplex(0.0, 0.0); - FftForward(n, inout); -} - -/* Calculate the magnitude response of the given input. This is used in - * place of phase decomposition, since the phase residuals are discarded for - * minimum phase reconstruction. The mirrored half of the response is also - * discarded. - */ -static void MagnitudeResponse(const uint n, const Complex *in, double *out) -{ - const uint m = 1 + (n / 2); - uint i; - for(i = 0;i < m;i++) - out[i] = fmax(c_abs(in[i]), EPSILON); -} - -/* Apply a range limit (in dB) to the given magnitude response. This is used - * to adjust the effects of the diffuse-field average on the equalization - * process. - */ -static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out) -{ - double halfLim; - uint i, lower, upper; - double ave; - - halfLim = limit / 2.0; - // Convert the response to dB. - for(i = 0;i < m;i++) - out[i] = 20.0 * log10(in[i]); - // Use six octaves to calculate the average magnitude of the signal. - lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1; - upper = ((uint)floor(n / pow(2.0, 2.0))) - 1; - ave = 0.0; - for(i = lower;i <= upper;i++) - ave += out[i]; - ave /= upper - lower + 1; - // Keep the response within range of the average magnitude. - for(i = 0;i < m;i++) - out[i] = Clamp(out[i], ave - halfLim, ave + halfLim); - // Convert the response back to linear magnitude. - for(i = 0;i < m;i++) - out[i] = pow(10.0, out[i] / 20.0); -} - -/* Reconstructs the minimum-phase component for the given magnitude response - * of a signal. This is equivalent to phase recomposition, sans the missing - * residuals (which were discarded). The mirrored half of the response is - * reconstructed. - */ -static void MinimumPhase(const uint n, const double *in, Complex *out) -{ - const uint m = 1 + (n / 2); - double *mags; - uint i; - - mags = CreateDoubles(n); - for(i = 0;i < m;i++) - { - mags[i] = fmax(EPSILON, in[i]); - out[i] = MakeComplex(log(mags[i]), 0.0); - } - for(;i < n;i++) - { - mags[i] = mags[n - i]; - out[i] = out[n - i]; - } - Hilbert(n, out); - // Remove any DC offset the filter has. - mags[0] = EPSILON; - for(i = 0;i < n;i++) - { - Complex a = c_exp(MakeComplex(0.0, out[i].Imag)); - out[i] = c_mul(MakeComplex(mags[i], 0.0), a); - } - free(mags); -} - - -/*************************** - *** Resampler functions *** - ***************************/ - -/* This is the normalized cardinal sine (sinc) function. - * - * sinc(x) = { 1, x = 0 - * { sin(pi x) / (pi x), otherwise. - */ -static double Sinc(const double x) -{ - if(fabs(x) < EPSILON) - return 1.0; - return sin(M_PI * x) / (M_PI * x); -} - -/* The zero-order modified Bessel function of the first kind, used for the - * Kaiser window. - * - * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) - * = sum_{k=0}^inf ((x / 2)^k / k!)^2 - */ -static double BesselI_0(const double x) -{ - double term, sum, x2, y, last_sum; - int k; - - // Start at k=1 since k=0 is trivial. - term = 1.0; - sum = 1.0; - x2 = x/2.0; - k = 1; - - // Let the integration converge until the term of the sum is no longer - // significant. - do { - y = x2 / k; - k++; - last_sum = sum; - term *= y * y; - sum += term; - } while(sum != last_sum); - return sum; -} - -/* Calculate a Kaiser window from the given beta value and a normalized k - * [-1, 1]. - * - * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 - * { 0, elsewhere. - * - * Where k can be calculated as: - * - * k = i / l, where -l <= i <= l. - * - * or: - * - * k = 2 i / M - 1, where 0 <= i <= M. - */ -static double Kaiser(const double b, const double k) -{ - if(!(k >= -1.0 && k <= 1.0)) - return 0.0; - return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b); -} - -// Calculates the greatest common divisor of a and b. -static uint Gcd(uint x, uint y) -{ - while(y > 0) - { - uint z = y; - y = x % y; - x = z; - } - return x; -} - -/* Calculates the size (order) of the Kaiser window. Rejection is in dB and - * the transition width is normalized frequency (0.5 is nyquist). - * - * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21 - * { ceil(5.79 / 2 pi f_t), r <= 21. - * - */ -static uint CalcKaiserOrder(const double rejection, const double transition) -{ - double w_t = 2.0 * M_PI * transition; - if(rejection > 21.0) - return (uint)ceil((rejection - 7.95) / (2.285 * w_t)); - return (uint)ceil(5.79 / w_t); -} - -// Calculates the beta value of the Kaiser window. Rejection is in dB. -static double CalcKaiserBeta(const double rejection) -{ - if(rejection > 50.0) - return 0.1102 * (rejection - 8.7); - if(rejection >= 21.0) - return (0.5842 * pow(rejection - 21.0, 0.4)) + - (0.07886 * (rejection - 21.0)); - return 0.0; -} - -/* Calculates a point on the Kaiser-windowed sinc filter for the given half- - * width, beta, gain, and cutoff. The point is specified in non-normalized - * samples, from 0 to M, where M = (2 l + 1). - * - * w(k) 2 p f_t sinc(2 f_t x) - * - * x -- centered sample index (i - l) - * k -- normalized and centered window index (x / l) - * w(k) -- window function (Kaiser) - * p -- gain compensation factor when sampling - * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) - */ -static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i) -{ - return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l)); -} - -/* This is a polyphase sinc-filtered resampler. - * - * Upsample Downsample - * - * p/q = 3/2 p/q = 3/5 - * - * M-+-+-+-> M-+-+-+-> - * -------------------+ ---------------------+ - * p s * f f f f|f| | p s * f f f f f | - * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| | - * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 | - * s * f|f|f f f | s * f f|f|f f | - * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 | - * --------+=+--------+ 0 * |0|0 0 0 0 | - * d . d .|d|. d . d ----------+=+--------+ - * d . . . .|d|. . . . - * q-> - * q-+-+-+-> - * - * P_f(i,j) = q i mod p + pj - * P_s(i,j) = floor(q i / p) - j - * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} { - * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M - * { 0, P_f(i,j) >= M. } - */ - -// Calculate the resampling metrics and build the Kaiser-windowed sinc filter -// that's used to cut frequencies above the destination nyquist. -static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate) -{ - double cutoff, width, beta; - uint gcd, l; - int i; - - gcd = Gcd(srcRate, dstRate); - rs->mP = dstRate / gcd; - rs->mQ = srcRate / gcd; - /* The cutoff is adjusted by half the transition width, so the transition - * ends before the nyquist (0.5). Both are scaled by the downsampling - * factor. - */ - if(rs->mP > rs->mQ) - { - cutoff = 0.475 / rs->mP; - width = 0.05 / rs->mP; - } - else - { - cutoff = 0.475 / rs->mQ; - width = 0.05 / rs->mQ; - } - // A rejection of -180 dB is used for the stop band. Round up when - // calculating the left offset to avoid increasing the transition width. - l = (CalcKaiserOrder(180.0, width)+1) / 2; - beta = CalcKaiserBeta(180.0); - rs->mM = l*2 + 1; - rs->mL = l; - rs->mF = CreateDoubles(rs->mM); - for(i = 0;i < ((int)rs->mM);i++) - rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i); -} - -// Clean up after the resampler. -static void ResamplerClear(ResamplerT *rs) -{ - free(rs->mF); - rs->mF = NULL; -} - -// Perform the upsample-filter-downsample resampling operation using a -// polyphase filter implementation. -static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out) -{ - const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL; - const double *f = rs->mF; - uint j_f, j_s; - double *work; - uint i; - - if(outN == 0) - return; - - // Handle in-place operation. - if(in == out) - work = CreateDoubles(outN); - else - work = out; - // Resample the input. - for(i = 0;i < outN;i++) - { - double r = 0.0; - // Input starts at l to compensate for the filter delay. This will - // drop any build-up from the first half of the filter. - j_f = (l + (q * i)) % p; - j_s = (l + (q * i)) / p; - while(j_f < m) - { - // Only take input when 0 <= j_s < inN. This single unsigned - // comparison catches both cases. - if(j_s < inN) - r += f[j_f] * in[j_s]; - j_f += p; - j_s--; - } - work[i] = r; - } - // Clean up after in-place operation. - if(work != out) - { - for(i = 0;i < outN;i++) - out[i] = work[i]; - free(work); - } -} - -/************************* - *** File source input *** - *************************/ - -// Read a binary value of the specified byte order and byte size from a file, -// storing it as a 32-bit unsigned integer. -static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out) -{ - uint8 in[4]; - uint32 accum; - uint i; - - if(fread(in, 1, bytes, fp) != bytes) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); - return 0; - } - accum = 0; - switch(order) - { - case BO_LITTLE: - for(i = 0;i < bytes;i++) - accum = (accum<<8) | in[bytes - i - 1]; - break; - case BO_BIG: - for(i = 0;i < bytes;i++) - accum = (accum<<8) | in[i]; - break; - default: - break; - } - *out = accum; - return 1; -} - -// Read a binary value of the specified byte order from a file, storing it as -// a 64-bit unsigned integer. -static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out) -{ - uint8 in [8]; - uint64 accum; - uint i; - - if(fread(in, 1, 8, fp) != 8) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); - return 0; - } - accum = 0ULL; - switch(order) - { - case BO_LITTLE: - for(i = 0;i < 8;i++) - accum = (accum<<8) | in[8 - i - 1]; - break; - case BO_BIG: - for(i = 0;i < 8;i++) - accum = (accum<<8) | in[i]; - break; - default: - break; - } - *out = accum; - return 1; -} - -/* Read a binary value of the specified type, byte order, and byte size from - * a file, converting it to a double. For integer types, the significant - * bits are used to normalize the result. The sign of bits determines - * whether they are padded toward the MSB (negative) or LSB (positive). - * Floating-point types are not normalized. - */ -static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) -{ - union { - uint32 ui; - int32 i; - float f; - } v4; - union { - uint64 ui; - double f; - } v8; - - *out = 0.0; - if(bytes > 4) - { - if(!ReadBin8(fp, filename, order, &v8.ui)) - return 0; - if(type == ET_FP) - *out = v8.f; - } - else - { - if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) - return 0; - if(type == ET_FP) - *out = v4.f; - else - { - if(bits > 0) - v4.ui >>= (8*bytes) - ((uint)bits); - else - v4.ui &= (0xFFFFFFFF >> (32+bits)); - - if(v4.ui&(uint)(1<<(abs(bits)-1))) - v4.ui |= (0xFFFFFFFF << abs (bits)); - *out = v4.i / (double)(1<<(abs(bits)-1)); - } - } - return 1; -} - -/* Read an ascii value of the specified type from a file, converting it to a - * double. For integer types, the significant bits are used to normalize the - * result. The sign of the bits should always be positive. This also skips - * up to one separator character before the element itself. - */ -static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) -{ - if(TrIsOperator(tr, ",")) - TrReadOperator(tr, ","); - else if(TrIsOperator(tr, ":")) - TrReadOperator(tr, ":"); - else if(TrIsOperator(tr, ";")) - TrReadOperator(tr, ";"); - else if(TrIsOperator(tr, "|")) - TrReadOperator(tr, "|"); - - if(type == ET_FP) - { - if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out)) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); - return 0; - } - } - else - { - int v; - if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", filename); - return 0; - } - *out = v / (double)((1<<(bits-1))-1); - } - return 1; -} - -// Read the RIFF/RIFX WAVE format chunk from a file, validating it against -// the source parameters and data set metrics. -static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) -{ - uint32 fourCC, chunkSize; - uint32 format, channels, rate, dummy, block, size, bits; - - chunkSize = 0; - do { - if(chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || - !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) - return 0; - } while(fourCC != FOURCC_FMT); - if(!ReadBin4(fp, src->mPath, order, 2, &format) || - !ReadBin4(fp, src->mPath, order, 2, &channels) || - !ReadBin4(fp, src->mPath, order, 4, &rate) || - !ReadBin4(fp, src->mPath, order, 4, &dummy) || - !ReadBin4(fp, src->mPath, order, 2, &block)) - return 0; - block /= channels; - if(chunkSize > 14) - { - if(!ReadBin4(fp, src->mPath, order, 2, &size)) - return 0; - size /= 8; - if(block > size) - size = block; - } - else - size = block; - if(format == WAVE_FORMAT_EXTENSIBLE) - { - fseek(fp, 2, SEEK_CUR); - if(!ReadBin4(fp, src->mPath, order, 2, &bits)) - return 0; - if(bits == 0) - bits = 8 * size; - fseek(fp, 4, SEEK_CUR); - if(!ReadBin4(fp, src->mPath, order, 2, &format)) - return 0; - fseek(fp, (long)(chunkSize - 26), SEEK_CUR); - } - else - { - bits = 8 * size; - if(chunkSize > 14) - fseek(fp, (long)(chunkSize - 16), SEEK_CUR); - else - fseek(fp, (long)(chunkSize - 14), SEEK_CUR); - } - if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) - { - fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath); - return 0; - } - if(src->mChannel >= channels) - { - fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath); - return 0; - } - if(rate != hrirRate) - { - fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); - return 0; - } - if(format == WAVE_FORMAT_PCM) - { - if(size < 2 || size > 4) - { - fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); - return 0; - } - if(bits < 16 || bits > (8*size)) - { - fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath); - return 0; - } - src->mType = ET_INT; - } - else - { - if(size != 4 && size != 8) - { - fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath); - return 0; - } - src->mType = ET_FP; - } - src->mSize = size; - src->mBits = (int)bits; - src->mSkip = channels; - return 1; -} - -// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. -static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) -{ - int pre, post, skip; - uint i; - - pre = (int)(src->mSize * src->mChannel); - post = (int)(src->mSize * (src->mSkip - src->mChannel - 1)); - skip = 0; - for(i = 0;i < n;i++) - { - skip += pre; - if(skip > 0) - fseek(fp, skip, SEEK_CUR); - if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) - return 0; - skip = post; - } - if(skip > 0) - fseek(fp, skip, SEEK_CUR); - return 1; -} - -// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to -// doubles. -static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) -{ - uint32 fourCC, chunkSize, listSize, count; - uint block, skip, offset, i; - double lastSample; - - for(;;) - { - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || - !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) - return 0; - - if(fourCC == FOURCC_DATA) - { - block = src->mSize * src->mSkip; - count = chunkSize / block; - if(count < (src->mOffset + n)) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); - return 0; - } - fseek(fp, (long)(src->mOffset * block), SEEK_CUR); - if(!ReadWaveData(fp, src, order, n, &hrir[0])) - return 0; - return 1; - } - else if(fourCC == FOURCC_LIST) - { - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) - return 0; - chunkSize -= 4; - if(fourCC == FOURCC_WAVL) - break; - } - if(chunkSize > 0) - fseek(fp, (long)chunkSize, SEEK_CUR); - } - listSize = chunkSize; - block = src->mSize * src->mSkip; - skip = src->mOffset; - offset = 0; - lastSample = 0.0; - while(offset < n && listSize > 8) - { - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || - !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) - return 0; - listSize -= 8 + chunkSize; - if(fourCC == FOURCC_DATA) - { - count = chunkSize / block; - if(count > skip) - { - fseek(fp, (long)(skip * block), SEEK_CUR); - chunkSize -= skip * block; - count -= skip; - skip = 0; - if(count > (n - offset)) - count = n - offset; - if(!ReadWaveData(fp, src, order, count, &hrir[offset])) - return 0; - chunkSize -= count * block; - offset += count; - lastSample = hrir [offset - 1]; - } - else - { - skip -= count; - count = 0; - } - } - else if(fourCC == FOURCC_SLNT) - { - if(!ReadBin4(fp, src->mPath, order, 4, &count)) - return 0; - chunkSize -= 4; - if(count > skip) - { - count -= skip; - skip = 0; - if(count > (n - offset)) - count = n - offset; - for(i = 0; i < count; i ++) - hrir[offset + i] = lastSample; - offset += count; - } - else - { - skip -= count; - count = 0; - } - } - if(chunkSize > 0) - fseek(fp, (long)chunkSize, SEEK_CUR); - } - if(offset < n) - { - fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath); - return 0; - } - return 1; -} - -// Load a source HRIR from a RIFF/RIFX WAVE file. -static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) -{ - uint32 fourCC, dummy; - ByteOrderT order; - - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || - !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) - return 0; - if(fourCC == FOURCC_RIFF) - order = BO_LITTLE; - else if(fourCC == FOURCC_RIFX) - order = BO_BIG; - else - { - fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); - return 0; - } - - if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) - return 0; - if(fourCC != FOURCC_WAVE) - { - fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); - return 0; - } - if(!ReadWaveFormat(fp, order, hrirRate, src)) - return 0; - if(!ReadWaveList(fp, src, order, n, hrir)) - return 0; - return 1; -} - -// Load a source HRIR from a binary file. -static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) -{ - uint i; - - fseek(fp, (long)src->mOffset, SEEK_SET); - for(i = 0;i < n;i++) - { - if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) - return 0; - if(src->mSkip > 0) - fseek(fp, (long)src->mSkip, SEEK_CUR); - } - return 1; -} - -// Load a source HRIR from an ASCII text file containing a list of elements -// separated by whitespace or common list operators (',', ';', ':', '|'). -static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) -{ - TokenReaderT tr; - uint i, j; - double dummy; - - TrSetup(fp, NULL, &tr); - for(i = 0;i < src->mOffset;i++) - { - if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) - return 0; - } - for(i = 0;i < n;i++) - { - if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i])) - return 0; - for(j = 0;j < src->mSkip;j++) - { - if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy)) - return 0; - } - } - return 1; -} - -// Load a source HRIR from a supported file type. -static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) -{ - int result; - FILE *fp; - - if(src->mFormat == SF_ASCII) - fp = fopen(src->mPath, "r"); - else - fp = fopen(src->mPath, "rb"); - if(fp == NULL) - { - fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath); - return 0; - } - if(src->mFormat == SF_WAVE) - result = LoadWaveSource(fp, src, hrirRate, n, hrir); - else if(src->mFormat == SF_BIN_LE) - result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); - else if(src->mFormat == SF_BIN_BE) - result = LoadBinarySource(fp, src, BO_BIG, n, hrir); - else - result = LoadAsciiSource(fp, src, n, hrir); - fclose(fp); - return result; -} - - -/*************************** - *** File storage output *** - ***************************/ - -// Write an ASCII string to a file. -static int WriteAscii(const char *out, FILE *fp, const char *filename) -{ - size_t len; - - len = strlen(out); - if(fwrite(out, 1, len, fp) != len) - { - fclose(fp); - fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); - return 0; - } - return 1; -} - -// Write a binary value of the given byte order and byte size to a file, -// loading it from a 32-bit unsigned integer. -static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename) -{ - uint8 out[4]; - uint i; - - switch(order) - { - case BO_LITTLE: - for(i = 0;i < bytes;i++) - out[i] = (in>>(i*8)) & 0x000000FF; - break; - case BO_BIG: - for(i = 0;i < bytes;i++) - out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF; - break; - default: - break; - } - if(fwrite(out, 1, bytes, fp) != bytes) - { - fprintf(stderr, "Error: Bad write to file '%s'.\n", filename); - return 0; - } - return 1; -} - -// Store the OpenAL Soft HRTF data set. -static int StoreMhr(const HrirDataT *hData, const char *filename) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint n = hData->mIrPoints; - FILE *fp; - uint fi, ei, ai, i; - uint dither_seed = 22222; - - if((fp=fopen(filename, "wb")) == NULL) - { - fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename); - return 0; - } - if(!WriteAscii(MHR_FORMAT, fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename)) - return 0; - for(fi = 0;fi < hData->mFdCount;fi++) - { - if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename)) - return 0; - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename)) - return 0; - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename)) - return 0; - } - } - - for(fi = 0;fi < hData->mFdCount;fi++) - { - const double scale = (hData->mSampleType == ST_S16) ? 32767.0 : - ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0); - const int bps = (hData->mSampleType == ST_S16) ? 2 : - ((hData->mSampleType == ST_S24) ? 3 : 0); - - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - double out[2 * MAX_TRUNCSIZE]; - - TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed); - if(hData->mChannelType == CT_STEREO) - TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed); - for(i = 0;i < (channels * n);i++) - { - int v = (int)Clamp(out[i], -scale-1.0, scale); - if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename)) - return 0; - } - } - } - } - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD); - - if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) - return 0; - if(hData->mChannelType == CT_STEREO) - { - v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD); - - if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename)) - return 0; - } - } - } - } - fclose(fp); - return 1; -} - - -/*********************** - *** HRTF processing *** - ***********************/ - -// Calculate the onset time of an HRIR and average it with any existing -// timing for its field, elevation, azimuth, and ear. -static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset) -{ - double mag = 0.0; - uint i; - - for(i = 0;i < n;i++) - mag = fmax(fabs(hrir[i]), mag); - mag *= 0.15; - for(i = 0;i < n;i++) - { - if(fabs(hrir[i]) >= mag) - break; - } - return Lerp(onset, (double)i / rate, f); -} - -// Calculate the magnitude response of an HRIR and average it with any -// existing responses for its field, elevation, azimuth, and ear. -static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag) -{ - uint m = 1 + (n / 2), i; - Complex *h = CreateComplexes(n); - double *r = CreateDoubles(n); - - for(i = 0;i < points;i++) - h[i] = MakeComplex(hrir[i], 0.0); - for(;i < n;i++) - h[i] = MakeComplex(0.0, 0.0); - FftForward(n, h); - MagnitudeResponse(n, h, r); - for(i = 0;i < m;i++) - mag[i] = Lerp(mag[i], r[i], f); - free(r); - free(h); -} - -/* Calculate the contribution of each HRIR to the diffuse-field average based - * on the area of its surface patch. All patches are centered at the HRIR - * coordinates on the unit sphere and are measured by solid angle. - */ -static void CalculateDfWeights(const HrirDataT *hData, double *weights) -{ - double sum, evs, ev, upperEv, lowerEv, solidAngle; - uint fi, ei; - - sum = 0.0; - for(fi = 0;fi < hData->mFdCount;fi++) - { - evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1); - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - { - // For each elevation, calculate the upper and lower limits of - // the patch band. - ev = hData->mFds[fi].mEvs[ei].mElevation; - lowerEv = fmax(-M_PI / 2.0, ev - evs); - upperEv = fmin(M_PI / 2.0, ev + evs); - // Calculate the area of the patch band. - solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv)); - // Each weight is the area of one patch. - weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount; - // Sum the total surface area covered by the HRIRs of all fields. - sum += solidAngle; - } - } - /* TODO: It may be interesting to experiment with how a volume-based - weighting performs compared to the existing distance-indepenent - surface patches. - */ - for(fi = 0;fi < hData->mFdCount;fi++) - { - // Normalize the weights given the total surface coverage for all - // fields. - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - weights[(fi * MAX_EV_COUNT) + ei] /= sum; - } -} - -/* Calculate the diffuse-field average from the given magnitude responses of - * the HRIR set. Weighting can be applied to compensate for the varying - * surface area covered by each HRIR. The final average can then be limited - * by the specified magnitude range (in positive dB; 0.0 to skip). - */ -static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa) -{ - double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT); - uint count, ti, fi, ei, i, ai; - - if(weighted) - { - // Use coverage weighting to calculate the average. - CalculateDfWeights(hData, weights); - } - else - { - double weight; - - // If coverage weighting is not used, the weights still need to be - // averaged by the number of existing HRIRs. - count = hData->mIrCount; - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) - count -= hData->mFds[fi].mEvs[ei].mAzCount; - } - weight = 1.0 / count; - - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - weights[(fi * MAX_EV_COUNT) + ei] = weight; - } - } - for(ti = 0;ti < channels;ti++) - { - for(i = 0;i < m;i++) - dfa[(ti * m) + i] = 0.0; - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - // Get the weight for this HRIR's contribution. - double weight = weights[(fi * MAX_EV_COUNT) + ei]; - - // Add this HRIR's weighted power average to the total. - for(i = 0;i < m;i++) - dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i]; - } - } - } - // Finish the average calculation and keep it from being too small. - for(i = 0;i < m;i++) - dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON); - // Apply a limit to the magnitude range of the diffuse-field average - // if desired. - if(limit > 0.0) - LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]); - } - free(weights); -} - -// Perform diffuse-field equalization on the magnitude responses of the HRIR -// set using the given average response. -static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData) -{ - uint ti, fi, ei, ai, i; - - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - for(i = 0;i < m;i++) - azd->mIrs[ti][i] /= dfa[(ti * m) + i]; - } - } - } - } -} - -// Perform minimum-phase reconstruction using the magnitude responses of the -// HRIR set. -static void ReconstructHrirs(const HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint n = hData->mFftSize; - uint ti, fi, ei, ai, i; - Complex *h = CreateComplexes(n); - uint total, count, pcdone, lastpc; - - total = hData->mIrCount; - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) - total -= hData->mFds[fi].mEvs[ei].mAzCount; - } - total *= channels; - count = pcdone = lastpc = 0; - printf("%3d%% done.", pcdone); - fflush(stdout); - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - MinimumPhase(n, azd->mIrs[ti], h); - FftInverse(n, h); - for(i = 0;i < hData->mIrPoints;i++) - azd->mIrs[ti][i] = h[i].Real; - pcdone = ++count * 100 / total; - if(pcdone != lastpc) - { - lastpc = pcdone; - printf("\r%3d%% done.", pcdone); - fflush(stdout); - } - } - } - } - } - printf("\n"); - free(h); -} - -// Resamples the HRIRs for use at the given sampling rate. -static void ResampleHrirs(const uint rate, HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint n = hData->mIrPoints; - uint ti, fi, ei, ai; - ResamplerT rs; - - ResamplerSetup(&rs, hData->mIrRate, rate); - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]); - } - } - } - hData->mIrRate = rate; - ResamplerClear(&rs); -} - -/* Given field and elevation indices and an azimuth, calculate the indices of - * the two HRIRs that bound the coordinate along with a factor for - * calculating the continuous HRIR using interpolation. - */ -static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af) -{ - double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI); - uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount; - - f -= floor(f); - *a0 = i; - *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount; - *af = f; -} - -// Synthesize any missing onset timings at the bottom elevations of each -// field. This just blends between slightly exaggerated known onsets (not -// an accurate model). -static void SynthesizeOnsets(HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint ti, fi, oi, ai, ei, a0, a1; - double t, of, af; - - for(fi = 0;fi < hData->mFdCount;fi++) - { - if(hData->mFds[fi].mEvStart <= 0) - continue; - oi = hData->mFds[fi].mEvStart; - - for(ti = 0;ti < channels;ti++) - { - t = 0.0; - for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) - t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti]; - hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount); - for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) - { - of = (double)ei / hData->mFds[fi].mEvStart; - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); - hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp( - hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti], - Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti], - hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af), - of - ); - } - } - } - } -} - -/* Attempt to synthesize any missing HRIRs at the bottom elevations of each - * field. Right now this just blends the lowest elevation HRIRs together and - * applies some attenuation and high frequency damping. It is a simple, if - * inaccurate model. - */ -static void SynthesizeHrirs(HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint n = hData->mIrPoints; - uint ti, fi, ai, ei, i; - double lp[4], s0, s1; - double of, b; - uint a0, a1; - double af; - - for(fi = 0;fi < hData->mFdCount;fi++) - { - const uint oi = hData->mFds[fi].mEvStart; - if(oi <= 0) continue; - - for(ti = 0;ti < channels;ti++) - { - for(i = 0;i < n;i++) - hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0; - for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++) - { - for(i = 0;i < n;i++) - hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] / - hData->mFds[fi].mEvs[oi].mAzCount; - } - for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++) - { - of = (double)ei / hData->mFds[fi].mEvStart; - b = (1.0 - of) * (3.5e-6 * hData->mIrRate); - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); - lp[0] = 0.0; - lp[1] = 0.0; - lp[2] = 0.0; - lp[3] = 0.0; - for(i = 0;i < n;i++) - { - s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; - s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i], - hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af); - s0 = Lerp(s0, s1, of); - lp[0] = Lerp(s0, lp[0], b); - lp[1] = Lerp(lp[0], lp[1], b); - lp[2] = Lerp(lp[1], lp[2], b); - lp[3] = Lerp(lp[2], lp[3], b); - hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3]; - } - } - } - b = 3.5e-6 * hData->mIrRate; - lp[0] = 0.0; - lp[1] = 0.0; - lp[2] = 0.0; - lp[3] = 0.0; - for(i = 0;i < n;i++) - { - s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i]; - lp[0] = Lerp(s0, lp[0], b); - lp[1] = Lerp(lp[0], lp[1], b); - lp[2] = Lerp(lp[1], lp[2], b); - lp[3] = Lerp(lp[2], lp[3], b); - hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3]; - } - } - hData->mFds[fi].mEvStart = 0; - } -} - -// The following routines assume a full set of HRIRs for all elevations. - -// Normalize the HRIR set and slightly attenuate the result. -static void NormalizeHrirs(const HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - uint n = hData->mIrPoints; - uint ti, fi, ei, ai, i; - double maxLevel = 0.0; - - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - for(i = 0;i < n;i++) - maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel); - } - } - } - } - maxLevel = 1.01 * maxLevel; - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - for(i = 0;i < n;i++) - azd->mIrs[ti][i] /= maxLevel; - } - } - } - } -} - -// Calculate the left-ear time delay using a spherical head model. -static double CalcLTD(const double ev, const double az, const double rad, const double dist) -{ - double azp, dlp, l, al; - - azp = asin(cos(ev) * sin(az)); - dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp))); - l = sqrt((dist*dist) - (rad*rad)); - al = (0.5 * M_PI) + azp; - if(dlp > l) - dlp = l + (rad * (al - acos(rad / dist))); - return dlp / 343.3; -} - -// Calculate the effective head-related time delays for each minimum-phase -// HRIR. -static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - double minHrtd = INFINITY, maxHrtd = -INFINITY; - uint ti, fi, ei, ai; - double t; - - if(model == HM_DATASET) - { - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - t = azd->mDelays[ti] * radius / hData->mRadius; - azd->mDelays[ti] = t; - maxHrtd = fmax(t, maxHrtd); - minHrtd = fmin(t, minHrtd); - } - } - } - } - } - else - { - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - HrirEvT *evd = &hData->mFds[fi].mEvs[ei]; - - for(ai = 0;ai < evd->mAzCount;ai++) - { - HrirAzT *azd = &evd->mAzs[ai]; - - for(ti = 0;ti < channels;ti++) - { - t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance); - azd->mDelays[ti] = t; - maxHrtd = fmax(t, maxHrtd); - minHrtd = fmin(t, minHrtd); - } - } - } - } - } - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ti = 0;ti < channels;ti++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd; - } - } - } -} - -// Clear the initial HRIR data state. -static void ResetHrirData(HrirDataT *hData) -{ - hData->mIrRate = 0; - hData->mSampleType = ST_S24; - hData->mChannelType = CT_NONE; - hData->mIrPoints = 0; - hData->mFftSize = 0; - hData->mIrSize = 0; - hData->mRadius = 0.0; - hData->mIrCount = 0; - hData->mFdCount = 0; - hData->mFds = NULL; -} - -// Allocate and configure dynamic HRIR structures. -static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData) -{ - uint evTotal = 0, azTotal = 0, fi, ei, ai; - - for(fi = 0;fi < fdCount;fi++) - { - evTotal += evCounts[fi]; - for(ei = 0;ei < evCounts[fi];ei++) - azTotal += azCounts[(fi * MAX_EV_COUNT) + ei]; - } - if(!fdCount || !evTotal || !azTotal) - return 0; - - hData->mFds = calloc(fdCount, sizeof(*hData->mFds)); - if(hData->mFds == NULL) - return 0; - hData->mFds[0].mEvs = calloc(evTotal, sizeof(*hData->mFds[0].mEvs)); - if(hData->mFds[0].mEvs == NULL) - return 0; - hData->mFds[0].mEvs[0].mAzs = calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs)); - if(hData->mFds[0].mEvs[0].mAzs == NULL) - return 0; - hData->mIrCount = azTotal; - hData->mFdCount = fdCount; - evTotal = 0; - azTotal = 0; - for(fi = 0;fi < fdCount;fi++) - { - hData->mFds[fi].mDistance = distances[fi]; - hData->mFds[fi].mEvCount = evCounts[fi]; - hData->mFds[fi].mEvStart = 0; - hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal]; - evTotal += evCounts[fi]; - for(ei = 0;ei < evCounts[fi];ei++) - { - uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei]; - - hData->mFds[fi].mIrCount += azCount; - hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1); - hData->mFds[fi].mEvs[ei].mIrCount += azCount; - hData->mFds[fi].mEvs[ei].mAzCount = azCount; - hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal]; - for(ai = 0;ai < azCount;ai++) - { - hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount; - hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai; - hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0; - hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0; - hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL; - hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL; - } - azTotal += azCount; - } - } - return 1; -} - -// Clean up HRIR data. -static void FreeHrirData(HrirDataT *hData) -{ - if(hData->mFds != NULL) - { - if(hData->mFds[0].mEvs != NULL) - { - if(hData->mFds[0].mEvs[0].mAzs) - { - free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]); - free(hData->mFds[0].mEvs[0].mAzs); - } - free(hData->mFds[0].mEvs); - } - free(hData->mFds); - hData->mFds = NULL; - } -} - -// Match the channel type from a given identifier. -static ChannelTypeT MatchChannelType(const char *ident) -{ - if(strcasecmp(ident, "mono") == 0) - return CT_MONO; - if(strcasecmp(ident, "stereo") == 0) - return CT_STEREO; - return CT_NONE; -} - -// Process the data set definition to read and validate the data set metrics. -static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData) -{ - int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; - int hasDistance = 0, hasAzimuths = 0; - char ident[MAX_IDENT_LEN+1]; - uint line, col; - double fpVal; - uint points; - int intVal; - double distances[MAX_FD_COUNT]; - uint fdCount = 0; - uint evCounts[MAX_FD_COUNT]; - uint *azCounts = calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts)); - - if(azCounts == NULL) - { - fprintf(stderr, "Error: Out of memory.\n"); - exit(-1); - } - TrIndication(tr, &line, &col); - while(TrIsIdent(tr)) - { - TrIndication(tr, &line, &col); - if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) - goto error; - if(strcasecmp(ident, "rate") == 0) - { - if(hasRate) - { - TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) - goto error; - hData->mIrRate = (uint)intVal; - hasRate = 1; - } - else if(strcasecmp(ident, "type") == 0) - { - char type[MAX_IDENT_LEN+1]; - - if(hasType) - { - TrErrorAt(tr, line, col, "Redefinition of 'type'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - - if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) - goto error; - hData->mChannelType = MatchChannelType(type); - if(hData->mChannelType == CT_NONE) - { - TrErrorAt(tr, line, col, "Expected a channel type.\n"); - goto error; - } - hasType = 1; - } - else if(strcasecmp(ident, "points") == 0) - { - if(hasPoints) - { - TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - TrIndication(tr, &line, &col); - if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) - goto error; - points = (uint)intVal; - if(fftSize > 0 && points > fftSize) - { - TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); - goto error; - } - if(points < truncSize) - { - TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); - goto error; - } - hData->mIrPoints = points; - if(fftSize <= 0) - { - hData->mFftSize = DEFAULT_FFTSIZE; - hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2); - } - else - { - hData->mFftSize = fftSize; - hData->mIrSize = 1 + (fftSize / 2); - if(points > hData->mIrSize) - hData->mIrSize = points; - } - hasPoints = 1; - } - else if(strcasecmp(ident, "radius") == 0) - { - if(hasRadius) - { - TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) - goto error; - hData->mRadius = fpVal; - hasRadius = 1; - } - else if(strcasecmp(ident, "distance") == 0) - { - uint count = 0; - - if(hasDistance) - { - TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - - for(;;) - { - if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) - goto error; - if(count > 0 && fpVal <= distances[count - 1]) - { - TrError(tr, "Distances are not ascending.\n"); - goto error; - } - distances[count++] = fpVal; - if(!TrIsOperator(tr, ",")) - break; - if(count >= MAX_FD_COUNT) - { - TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT); - goto error; - } - TrReadOperator(tr, ","); - } - if(fdCount != 0 && count != fdCount) - { - TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); - goto error; - } - fdCount = count; - hasDistance = 1; - } - else if(strcasecmp(ident, "azimuths") == 0) - { - uint count = 0; - - if(hasAzimuths) - { - TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - - evCounts[0] = 0; - for(;;) - { - if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) - goto error; - azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal; - if(TrIsOperator(tr, ",")) - { - if(evCounts[count] >= MAX_EV_COUNT) - { - TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); - goto error; - } - TrReadOperator(tr, ","); - } - else - { - if(evCounts[count] < MIN_EV_COUNT) - { - TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); - goto error; - } - if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1) - { - TrError(tr, "Poles are not singular for field %d.\n", count - 1); - goto error; - } - count++; - if(TrIsOperator(tr, ";")) - { - if(count >= MAX_FD_COUNT) - { - TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT); - goto error; - } - evCounts[count] = 0; - TrReadOperator(tr, ";"); - } - else - { - break; - } - } - } - if(fdCount != 0 && count != fdCount) - { - TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); - goto error; - } - fdCount = count; - hasAzimuths = 1; - } - else - { - TrErrorAt(tr, line, col, "Expected a metric name.\n"); - goto error; - } - TrSkipWhitespace(tr); - } - if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) - { - TrErrorAt(tr, line, col, "Expected a metric name.\n"); - goto error; - } - if(distances[0] < hData->mRadius) - { - TrError(tr, "Distance cannot start below head radius.\n"); - goto error; - } - if(hData->mChannelType == CT_NONE) - hData->mChannelType = CT_MONO; - if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData)) - { - fprintf(stderr, "Error: Out of memory.\n"); - exit(-1); - } - free(azCounts); - return 1; - -error: - free(azCounts); - return 0; -} - -// Parse an index triplet from the data set definition. -static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai) -{ - int intVal; - - if(hData->mFdCount > 1) - { - if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal)) - return 0; - *fi = (uint)intVal; - if(!TrReadOperator(tr, ",")) - return 0; - } - else - { - *fi = 0; - } - if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal)) - return 0; - *ei = (uint)intVal; - if(!TrReadOperator(tr, ",")) - return 0; - if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal)) - return 0; - *ai = (uint)intVal; - return 1; -} - -// Match the source format from a given identifier. -static SourceFormatT MatchSourceFormat(const char *ident) -{ - if(strcasecmp(ident, "wave") == 0) - return SF_WAVE; - if(strcasecmp(ident, "bin_le") == 0) - return SF_BIN_LE; - if(strcasecmp(ident, "bin_be") == 0) - return SF_BIN_BE; - if(strcasecmp(ident, "ascii") == 0) - return SF_ASCII; - return SF_NONE; -} - -// Match the source element type from a given identifier. -static ElementTypeT MatchElementType(const char *ident) -{ - if(strcasecmp(ident, "int") == 0) - return ET_INT; - if(strcasecmp(ident, "fp") == 0) - return ET_FP; - return ET_NONE; -} - -// Parse and validate a source reference from the data set definition. -static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) -{ - char ident[MAX_IDENT_LEN+1]; - uint line, col; - int intVal; - - TrIndication(tr, &line, &col); - if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) - return 0; - src->mFormat = MatchSourceFormat(ident); - if(src->mFormat == SF_NONE) - { - TrErrorAt(tr, line, col, "Expected a source format.\n"); - return 0; - } - if(!TrReadOperator(tr, "(")) - return 0; - if(src->mFormat == SF_WAVE) - { - if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) - return 0; - src->mType = ET_NONE; - src->mSize = 0; - src->mBits = 0; - src->mChannel = (uint)intVal; - src->mSkip = 0; - } - else - { - TrIndication(tr, &line, &col); - if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) - return 0; - src->mType = MatchElementType(ident); - if(src->mType == ET_NONE) - { - TrErrorAt(tr, line, col, "Expected a source element type.\n"); - return 0; - } - if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) - { - if(!TrReadOperator(tr, ",")) - return 0; - if(src->mType == ET_INT) - { - if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) - return 0; - src->mSize = (uint)intVal; - if(!TrIsOperator(tr, ",")) - src->mBits = (int)(8*src->mSize); - else - { - TrReadOperator(tr, ","); - TrIndication(tr, &line, &col); - if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) - return 0; - if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize)) - { - TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); - return 0; - } - src->mBits = intVal; - } - } - else - { - TrIndication(tr, &line, &col); - if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) - return 0; - if(intVal != 4 && intVal != 8) - { - TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); - return 0; - } - src->mSize = (uint)intVal; - src->mBits = 0; - } - } - else if(src->mFormat == SF_ASCII && src->mType == ET_INT) - { - if(!TrReadOperator(tr, ",")) - return 0; - if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) - return 0; - src->mSize = 0; - src->mBits = intVal; - } - else - { - src->mSize = 0; - src->mBits = 0; - } - - if(!TrIsOperator(tr, ";")) - src->mSkip = 0; - else - { - TrReadOperator(tr, ";"); - if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) - return 0; - src->mSkip = (uint)intVal; - } - } - if(!TrReadOperator(tr, ")")) - return 0; - if(TrIsOperator(tr, "@")) - { - TrReadOperator(tr, "@"); - if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) - return 0; - src->mOffset = (uint)intVal; - } - else - src->mOffset = 0; - if(!TrReadOperator(tr, ":")) - return 0; - if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) - return 0; - return 1; -} - -// Match the target ear (index) from a given identifier. -static int MatchTargetEar(const char *ident) -{ - if(strcasecmp(ident, "left") == 0) - return 0; - if(strcasecmp(ident, "right") == 0) - return 1; - return -1; -} - -// Process the list of sources in the data set definition. -static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData) -{ - uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; - double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize); - double *hrir = CreateDoubles(hData->mIrPoints); - uint line, col, fi, ei, ai, ti; - int count; - - printf("Loading sources..."); - fflush(stdout); - count = 0; - while(TrIsOperator(tr, "[")) - { - double factor[2] = { 1.0, 1.0 }; - - TrIndication(tr, &line, &col); - TrReadOperator(tr, "["); - if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) - goto error; - if(!TrReadOperator(tr, "]")) - goto error; - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - if(azd->mIrs[0] != NULL) - { - TrErrorAt(tr, line, col, "Redefinition of source.\n"); - goto error; - } - if(!TrReadOperator(tr, "=")) - goto error; - - for(;;) - { - SourceRefT src; - uint ti = 0; - - if(!ReadSourceRef(tr, &src)) - goto error; - - // TODO: Would be nice to display 'x of y files', but that would - // require preparing the source refs first to get a total count - // before loading them. - ++count; - printf("\rLoading sources... %d file%s", count, (count==1)?"":"s"); - fflush(stdout); - - if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir)) - goto error; - - if(hData->mChannelType == CT_STEREO) - { - char ident[MAX_IDENT_LEN+1]; - - if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) - goto error; - ti = MatchTargetEar(ident); - if((int)ti < 0) - { - TrErrorAt(tr, line, col, "Expected a target ear.\n"); - goto error; - } - } - azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; - if(model == HM_DATASET) - azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]); - AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]); - factor[ti] += 1.0; - if(!TrIsOperator(tr, "+")) - break; - TrReadOperator(tr, "+"); - } - if(hData->mChannelType == CT_STEREO) - { - if(azd->mIrs[0] == NULL) - { - TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n"); - goto error; - } - else if(azd->mIrs[1] == NULL) - { - TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n"); - goto error; - } - } - } - printf("\n"); - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - if(azd->mIrs[0] != NULL) - break; - } - if(ai < hData->mFds[fi].mEvs[ei].mAzCount) - break; - } - if(ei >= hData->mFds[fi].mEvCount) - { - TrError(tr, "Missing source references [ %d, *, * ].\n", fi); - goto error; - } - hData->mFds[fi].mEvStart = ei; - for(;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - if(azd->mIrs[0] == NULL) - { - TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); - goto error; - } - } - } - } - for(ti = 0;ti < channels;ti++) - { - for(fi = 0;fi < hData->mFdCount;fi++) - { - for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) - { - for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) - { - HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; - - azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; - } - } - } - } - if(!TrLoad(tr)) - { - free(hrir); - return 1; - } - TrError(tr, "Errant data at end of source list.\n"); - -error: - free(hrir); - return 0; -} - -/* Parse the data set definition and process the source data, storing the - * resulting data set as desired. If the input name is NULL it will read - * from standard input. - */ -static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName) -{ - char rateStr[8+1], expName[MAX_PATH_LEN]; - TokenReaderT tr; - HrirDataT hData; - FILE *fp; - int ret; - - ResetHrirData(&hData); - fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin"); - if(inName != NULL) - { - fp = fopen(inName, "r"); - if(fp == NULL) - { - fprintf(stderr, "Error: Could not open definition file '%s'\n", inName); - return 0; - } - TrSetup(fp, inName, &tr); - } - else - { - fp = stdin; - TrSetup(fp, "<stdin>", &tr); - } - if(!ProcessMetrics(&tr, fftSize, truncSize, &hData)) - { - if(inName != NULL) - fclose(fp); - return 0; - } - if(!ProcessSources(model, &tr, &hData)) - { - FreeHrirData(&hData); - if(inName != NULL) - fclose(fp); - return 0; - } - if(fp != stdin) - fclose(fp); - if(equalize) - { - uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1; - uint m = 1 + hData.mFftSize / 2; - double *dfa = CreateDoubles(c * m); - - fprintf(stdout, "Calculating diffuse-field average...\n"); - CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa); - fprintf(stdout, "Performing diffuse-field equalization...\n"); - DiffuseFieldEqualize(c, m, dfa, &hData); - free(dfa); - } - fprintf(stdout, "Performing minimum phase reconstruction...\n"); - ReconstructHrirs(&hData); - if(outRate != 0 && outRate != hData.mIrRate) - { - fprintf(stdout, "Resampling HRIRs...\n"); - ResampleHrirs(outRate, &hData); - } - fprintf(stdout, "Truncating minimum-phase HRIRs...\n"); - hData.mIrPoints = truncSize; - fprintf(stdout, "Synthesizing missing elevations...\n"); - if(model == HM_DATASET) - SynthesizeOnsets(&hData); - SynthesizeHrirs(&hData); - fprintf(stdout, "Normalizing final HRIRs...\n"); - NormalizeHrirs(&hData); - fprintf(stdout, "Calculating impulse delays...\n"); - CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData); - snprintf(rateStr, 8, "%u", hData.mIrRate); - StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName); - fprintf(stdout, "Creating MHR data set %s...\n", expName); - ret = StoreMhr(&hData, expName); - - FreeHrirData(&hData); - return ret; -} - -static void PrintHelp(const char *argv0, FILE *ofile) -{ - fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0); - fprintf(ofile, "Options:\n"); - fprintf(ofile, " -m Ignored for compatibility.\n"); - fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n"); - fprintf(ofile, " resample the HRIRs accordingly.\n"); - fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE); - fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off")); - fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off")); - fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n"); - fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT); - fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n"); - fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE); - fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n"); - fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere")); - fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n"); - fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n"); - fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n"); - fprintf(ofile, " the data set sample rate.\n"); -} - -// Standard command line dispatch. -int main(int argc, char *argv[]) -{ - const char *inName = NULL, *outName = NULL; - uint outRate, fftSize; - int equalize, surface; - char *end = NULL; - HeadModelT model; - uint truncSize; - double radius; - double limit; - int opt; - - GET_UNICODE_ARGS(&argc, &argv); - - if(argc < 2) - { - fprintf(stdout, "HRTF Processing and Composition Utility\n\n"); - PrintHelp(argv[0], stdout); - exit(EXIT_SUCCESS); - } - - outName = "./oalsoft_hrtf_%r.mhr"; - outRate = 0; - fftSize = 0; - equalize = DEFAULT_EQUALIZE; - surface = DEFAULT_SURFACE; - limit = DEFAULT_LIMIT; - truncSize = DEFAULT_TRUNCSIZE; - model = DEFAULT_HEAD_MODEL; - radius = DEFAULT_CUSTOM_RADIUS; - - while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1) - { - switch(opt) - { - case 'm': - fprintf(stderr, "Ignoring unused command '-m'.\n"); - break; - - case 'r': - outRate = strtoul(optarg, &end, 10); - if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE) - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE); - exit(EXIT_FAILURE); - } - break; - - case 'f': - fftSize = strtoul(optarg, &end, 10); - if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE) - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE); - exit(EXIT_FAILURE); - } - break; - - case 'e': - if(strcmp(optarg, "on") == 0) - equalize = 1; - else if(strcmp(optarg, "off") == 0) - equalize = 0; - else - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); - exit(EXIT_FAILURE); - } - break; - - case 's': - if(strcmp(optarg, "on") == 0) - surface = 1; - else if(strcmp(optarg, "off") == 0) - surface = 0; - else - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); - exit(EXIT_FAILURE); - } - break; - - case 'l': - if(strcmp(optarg, "none") == 0) - limit = 0.0; - else - { - limit = strtod(optarg, &end); - if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT) - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT); - exit(EXIT_FAILURE); - } - } - break; - - case 'w': - truncSize = strtoul(optarg, &end, 10); - if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE)) - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE); - exit(EXIT_FAILURE); - } - break; - - case 'd': - if(strcmp(optarg, "dataset") == 0) - model = HM_DATASET; - else if(strcmp(optarg, "sphere") == 0) - model = HM_SPHERE; - else - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt); - exit(EXIT_FAILURE); - } - break; - - case 'c': - radius = strtod(optarg, &end); - if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS) - { - fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS); - exit(EXIT_FAILURE); - } - break; - - case 'i': - inName = optarg; - break; - - case 'o': - outName = optarg; - break; - - case 'h': - PrintHelp(argv[0], stdout); - exit(EXIT_SUCCESS); - - default: /* '?' */ - PrintHelp(argv[0], stderr); - exit(EXIT_FAILURE); - } - } - - if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit, - truncSize, model, radius, outName)) - return -1; - fprintf(stdout, "Operation completed.\n"); - - return EXIT_SUCCESS; -} |