aboutsummaryrefslogtreecommitdiffstats
path: root/utils/makehrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'utils/makehrtf.c')
-rw-r--r--utils/makehrtf.c3455
1 files changed, 0 insertions, 3455 deletions
diff --git a/utils/makehrtf.c b/utils/makehrtf.c
deleted file mode 100644
index 0bd36849..00000000
--- a/utils/makehrtf.c
+++ /dev/null
@@ -1,3455 +0,0 @@
-/*
- * HRTF utility for producing and demonstrating the process of creating an
- * OpenAL Soft compatible HRIR data set.
- *
- * Copyright (C) 2011-2017 Christopher Fitzgerald
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- *
- * --------------------------------------------------------------------------
- *
- * A big thanks goes out to all those whose work done in the field of
- * binaural sound synthesis using measured HRTFs makes this utility and the
- * OpenAL Soft implementation possible.
- *
- * The algorithm for diffuse-field equalization was adapted from the work
- * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
- * MIT Media Laboratory. It operates as follows:
- *
- * 1. Take the FFT of each HRIR and only keep the magnitude responses.
- * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
- * their contribution to the total surface area covered by their
- * measurement.
- * 3. Take the diffuse-field average and limit its magnitude range.
- * 4. Equalize the responses by using the inverse of the diffuse-field
- * average.
- * 5. Reconstruct the minimum-phase responses.
- * 5. Zero the DC component.
- * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
- *
- * The spherical head algorithm for calculating propagation delay was adapted
- * from the paper:
- *
- * Modeling Interaural Time Difference Assuming a Spherical Head
- * Joel David Miller
- * Music 150, Musical Acoustics, Stanford University
- * December 2, 2001
- *
- * The formulae for calculating the Kaiser window metrics are from the
- * the textbook:
- *
- * Discrete-Time Signal Processing
- * Alan V. Oppenheim and Ronald W. Schafer
- * Prentice-Hall Signal Processing Series
- * 1999
- */
-
-#include "config.h"
-
-#define _UNICODE
-#include <stdio.h>
-#include <stdlib.h>
-#include <stdarg.h>
-#include <stddef.h>
-#include <string.h>
-#include <limits.h>
-#include <ctype.h>
-#include <math.h>
-#ifdef HAVE_STRINGS_H
-#include <strings.h>
-#endif
-#ifdef HAVE_GETOPT
-#include <unistd.h>
-#else
-#include "getopt.h"
-#endif
-
-#include "win_main_utf8.h"
-
-/* Define int64_t and uint64_t types */
-#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
-#include <inttypes.h>
-#elif defined(_WIN32) && defined(__GNUC__)
-#include <stdint.h>
-#elif defined(_WIN32)
-typedef __int64 int64_t;
-typedef unsigned __int64 uint64_t;
-#else
-/* Fallback if nothing above works */
-#include <inttypes.h>
-#endif
-
-#ifndef M_PI
-#define M_PI (3.14159265358979323846)
-#endif
-
-#ifndef HUGE_VAL
-#define HUGE_VAL (1.0 / 0.0)
-#endif
-
-
-// The epsilon used to maintain signal stability.
-#define EPSILON (1e-9)
-
-// Constants for accessing the token reader's ring buffer.
-#define TR_RING_BITS (16)
-#define TR_RING_SIZE (1 << TR_RING_BITS)
-#define TR_RING_MASK (TR_RING_SIZE - 1)
-
-// The token reader's load interval in bytes.
-#define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
-
-// The maximum identifier length used when processing the data set
-// definition.
-#define MAX_IDENT_LEN (16)
-
-// The maximum path length used when processing filenames.
-#define MAX_PATH_LEN (256)
-
-// The limits for the sample 'rate' metric in the data set definition and for
-// resampling.
-#define MIN_RATE (32000)
-#define MAX_RATE (96000)
-
-// The limits for the HRIR 'points' metric in the data set definition.
-#define MIN_POINTS (16)
-#define MAX_POINTS (8192)
-
-// The limit to the number of 'distances' listed in the data set definition.
-#define MAX_FD_COUNT (16)
-
-// The limits to the number of 'azimuths' listed in the data set definition.
-#define MIN_EV_COUNT (5)
-#define MAX_EV_COUNT (128)
-
-// The limits for each of the 'azimuths' listed in the data set definition.
-#define MIN_AZ_COUNT (1)
-#define MAX_AZ_COUNT (128)
-
-// The limits for the listener's head 'radius' in the data set definition.
-#define MIN_RADIUS (0.05)
-#define MAX_RADIUS (0.15)
-
-// The limits for the 'distance' from source to listener for each field in
-// the definition file.
-#define MIN_DISTANCE (0.05)
-#define MAX_DISTANCE (2.50)
-
-// The maximum number of channels that can be addressed for a WAVE file
-// source listed in the data set definition.
-#define MAX_WAVE_CHANNELS (65535)
-
-// The limits to the byte size for a binary source listed in the definition
-// file.
-#define MIN_BIN_SIZE (2)
-#define MAX_BIN_SIZE (4)
-
-// The minimum number of significant bits for binary sources listed in the
-// data set definition. The maximum is calculated from the byte size.
-#define MIN_BIN_BITS (16)
-
-// The limits to the number of significant bits for an ASCII source listed in
-// the data set definition.
-#define MIN_ASCII_BITS (16)
-#define MAX_ASCII_BITS (32)
-
-// The limits to the FFT window size override on the command line.
-#define MIN_FFTSIZE (65536)
-#define MAX_FFTSIZE (131072)
-
-// The limits to the equalization range limit on the command line.
-#define MIN_LIMIT (2.0)
-#define MAX_LIMIT (120.0)
-
-// The limits to the truncation window size on the command line.
-#define MIN_TRUNCSIZE (16)
-#define MAX_TRUNCSIZE (512)
-
-// The limits to the custom head radius on the command line.
-#define MIN_CUSTOM_RADIUS (0.05)
-#define MAX_CUSTOM_RADIUS (0.15)
-
-// The truncation window size must be a multiple of the below value to allow
-// for vectorized convolution.
-#define MOD_TRUNCSIZE (8)
-
-// The defaults for the command line options.
-#define DEFAULT_FFTSIZE (65536)
-#define DEFAULT_EQUALIZE (1)
-#define DEFAULT_SURFACE (1)
-#define DEFAULT_LIMIT (24.0)
-#define DEFAULT_TRUNCSIZE (32)
-#define DEFAULT_HEAD_MODEL (HM_DATASET)
-#define DEFAULT_CUSTOM_RADIUS (0.0)
-
-// The four-character-codes for RIFF/RIFX WAVE file chunks.
-#define FOURCC_RIFF (0x46464952) // 'RIFF'
-#define FOURCC_RIFX (0x58464952) // 'RIFX'
-#define FOURCC_WAVE (0x45564157) // 'WAVE'
-#define FOURCC_FMT (0x20746D66) // 'fmt '
-#define FOURCC_DATA (0x61746164) // 'data'
-#define FOURCC_LIST (0x5453494C) // 'LIST'
-#define FOURCC_WAVL (0x6C766177) // 'wavl'
-#define FOURCC_SLNT (0x746E6C73) // 'slnt'
-
-// The supported wave formats.
-#define WAVE_FORMAT_PCM (0x0001)
-#define WAVE_FORMAT_IEEE_FLOAT (0x0003)
-#define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
-
-// The maximum propagation delay value supported by OpenAL Soft.
-#define MAX_HRTD (63.0)
-
-// The OpenAL Soft HRTF format marker. It stands for minimum-phase head
-// response protocol 02.
-#define MHR_FORMAT ("MinPHR02")
-
-// Sample and channel type enum values.
-typedef enum SampleTypeT {
- ST_S16 = 0,
- ST_S24 = 1
-} SampleTypeT;
-
-// Certain iterations rely on these integer enum values.
-typedef enum ChannelTypeT {
- CT_NONE = -1,
- CT_MONO = 0,
- CT_STEREO = 1
-} ChannelTypeT;
-
-// Byte order for the serialization routines.
-typedef enum ByteOrderT {
- BO_NONE,
- BO_LITTLE,
- BO_BIG
-} ByteOrderT;
-
-// Source format for the references listed in the data set definition.
-typedef enum SourceFormatT {
- SF_NONE,
- SF_WAVE, // RIFF/RIFX WAVE file.
- SF_BIN_LE, // Little-endian binary file.
- SF_BIN_BE, // Big-endian binary file.
- SF_ASCII // ASCII text file.
-} SourceFormatT;
-
-// Element types for the references listed in the data set definition.
-typedef enum ElementTypeT {
- ET_NONE,
- ET_INT, // Integer elements.
- ET_FP // Floating-point elements.
-} ElementTypeT;
-
-// Head model used for calculating the impulse delays.
-typedef enum HeadModelT {
- HM_NONE,
- HM_DATASET, // Measure the onset from the dataset.
- HM_SPHERE // Calculate the onset using a spherical head model.
-} HeadModelT;
-
-// Unsigned integer type.
-typedef unsigned int uint;
-
-// Serialization types. The trailing digit indicates the number of bits.
-typedef unsigned char uint8;
-typedef int int32;
-typedef unsigned int uint32;
-typedef uint64_t uint64;
-
-// Token reader state for parsing the data set definition.
-typedef struct TokenReaderT {
- FILE *mFile;
- const char *mName;
- uint mLine;
- uint mColumn;
- char mRing[TR_RING_SIZE];
- size_t mIn;
- size_t mOut;
-} TokenReaderT;
-
-// Source reference state used when loading sources.
-typedef struct SourceRefT {
- SourceFormatT mFormat;
- ElementTypeT mType;
- uint mSize;
- int mBits;
- uint mChannel;
- uint mSkip;
- uint mOffset;
- char mPath[MAX_PATH_LEN+1];
-} SourceRefT;
-
-// Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
-typedef struct HrirAzT {
- double mAzimuth;
- uint mIndex;
- double mDelays[2];
- double *mIrs[2];
-} HrirAzT;
-
-typedef struct HrirEvT {
- double mElevation;
- uint mIrCount;
- uint mAzCount;
- HrirAzT *mAzs;
-} HrirEvT;
-
-typedef struct HrirFdT {
- double mDistance;
- uint mIrCount;
- uint mEvCount;
- uint mEvStart;
- HrirEvT *mEvs;
-} HrirFdT;
-
-// The HRIR metrics and data set used when loading, processing, and storing
-// the resulting HRTF.
-typedef struct HrirDataT {
- uint mIrRate;
- SampleTypeT mSampleType;
- ChannelTypeT mChannelType;
- uint mIrPoints;
- uint mFftSize;
- uint mIrSize;
- double mRadius;
- uint mIrCount;
- uint mFdCount;
- HrirFdT *mFds;
-} HrirDataT;
-
-// The resampler metrics and FIR filter.
-typedef struct ResamplerT {
- uint mP, mQ, mM, mL;
- double *mF;
-} ResamplerT;
-
-
-/****************************************
- *** Complex number type and routines ***
- ****************************************/
-
-typedef struct {
- double Real, Imag;
-} Complex;
-
-static Complex MakeComplex(double r, double i)
-{
- Complex c = { r, i };
- return c;
-}
-
-static Complex c_add(Complex a, Complex b)
-{
- Complex r;
- r.Real = a.Real + b.Real;
- r.Imag = a.Imag + b.Imag;
- return r;
-}
-
-static Complex c_sub(Complex a, Complex b)
-{
- Complex r;
- r.Real = a.Real - b.Real;
- r.Imag = a.Imag - b.Imag;
- return r;
-}
-
-static Complex c_mul(Complex a, Complex b)
-{
- Complex r;
- r.Real = a.Real*b.Real - a.Imag*b.Imag;
- r.Imag = a.Imag*b.Real + a.Real*b.Imag;
- return r;
-}
-
-static Complex c_muls(Complex a, double s)
-{
- Complex r;
- r.Real = a.Real * s;
- r.Imag = a.Imag * s;
- return r;
-}
-
-static double c_abs(Complex a)
-{
- return sqrt(a.Real*a.Real + a.Imag*a.Imag);
-}
-
-static Complex c_exp(Complex a)
-{
- Complex r;
- double e = exp(a.Real);
- r.Real = e * cos(a.Imag);
- r.Imag = e * sin(a.Imag);
- return r;
-}
-
-/*****************************
- *** Token reader routines ***
- *****************************/
-
-/* Whitespace is not significant. It can process tokens as identifiers, numbers
- * (integer and floating-point), strings, and operators. Strings must be
- * encapsulated by double-quotes and cannot span multiple lines.
- */
-
-// Setup the reader on the given file. The filename can be NULL if no error
-// output is desired.
-static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
-{
- const char *name = NULL;
-
- if(filename)
- {
- const char *slash = strrchr(filename, '/');
- if(slash)
- {
- const char *bslash = strrchr(slash+1, '\\');
- if(bslash) name = bslash+1;
- else name = slash+1;
- }
- else
- {
- const char *bslash = strrchr(filename, '\\');
- if(bslash) name = bslash+1;
- else name = filename;
- }
- }
-
- tr->mFile = fp;
- tr->mName = name;
- tr->mLine = 1;
- tr->mColumn = 1;
- tr->mIn = 0;
- tr->mOut = 0;
-}
-
-// Prime the reader's ring buffer, and return a result indicating that there
-// is text to process.
-static int TrLoad(TokenReaderT *tr)
-{
- size_t toLoad, in, count;
-
- toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
- if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
- {
- // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
- toLoad = TR_LOAD_SIZE;
- in = tr->mIn&TR_RING_MASK;
- count = TR_RING_SIZE - in;
- if(count < toLoad)
- {
- tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
- tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
- }
- else
- tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
-
- if(tr->mOut >= TR_RING_SIZE)
- {
- tr->mOut -= TR_RING_SIZE;
- tr->mIn -= TR_RING_SIZE;
- }
- }
- if(tr->mIn > tr->mOut)
- return 1;
- return 0;
-}
-
-// Error display routine. Only displays when the base name is not NULL.
-static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
-{
- if(!tr->mName)
- return;
- fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column);
- vfprintf(stderr, format, argPtr);
-}
-
-// Used to display an error at a saved line/column.
-static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
-{
- va_list argPtr;
-
- va_start(argPtr, format);
- TrErrorVA(tr, line, column, format, argPtr);
- va_end(argPtr);
-}
-
-// Used to display an error at the current line/column.
-static void TrError(const TokenReaderT *tr, const char *format, ...)
-{
- va_list argPtr;
-
- va_start(argPtr, format);
- TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
- va_end(argPtr);
-}
-
-// Skips to the next line.
-static void TrSkipLine(TokenReaderT *tr)
-{
- char ch;
-
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- tr->mOut++;
- if(ch == '\n')
- {
- tr->mLine++;
- tr->mColumn = 1;
- break;
- }
- tr->mColumn ++;
- }
-}
-
-// Skips to the next token.
-static int TrSkipWhitespace(TokenReaderT *tr)
-{
- char ch;
-
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(isspace(ch))
- {
- tr->mOut++;
- if(ch == '\n')
- {
- tr->mLine++;
- tr->mColumn = 1;
- }
- else
- tr->mColumn++;
- }
- else if(ch == '#')
- TrSkipLine(tr);
- else
- return 1;
- }
- return 0;
-}
-
-// Get the line and/or column of the next token (or the end of input).
-static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
-{
- TrSkipWhitespace(tr);
- if(line) *line = tr->mLine;
- if(column) *column = tr->mColumn;
-}
-
-// Checks to see if a token is (likely to be) an identifier. It does not
-// display any errors and will not proceed to the next token.
-static int TrIsIdent(TokenReaderT *tr)
-{
- char ch;
-
- if(!TrSkipWhitespace(tr))
- return 0;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- return ch == '_' || isalpha(ch);
-}
-
-
-// Checks to see if a token is the given operator. It does not display any
-// errors and will not proceed to the next token.
-static int TrIsOperator(TokenReaderT *tr, const char *op)
-{
- size_t out, len;
- char ch;
-
- if(!TrSkipWhitespace(tr))
- return 0;
- out = tr->mOut;
- len = 0;
- while(op[len] != '\0' && out < tr->mIn)
- {
- ch = tr->mRing[out&TR_RING_MASK];
- if(ch != op[len]) break;
- len++;
- out++;
- }
- if(op[len] == '\0')
- return 1;
- return 0;
-}
-
-/* The TrRead*() routines obtain the value of a matching token type. They
- * display type, form, and boundary errors and will proceed to the next
- * token.
- */
-
-// Reads and validates an identifier token.
-static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
-{
- uint col, len;
- char ch;
-
- col = tr->mColumn;
- if(TrSkipWhitespace(tr))
- {
- col = tr->mColumn;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(ch == '_' || isalpha(ch))
- {
- len = 0;
- do {
- if(len < maxLen)
- ident[len] = ch;
- len++;
- tr->mOut++;
- if(!TrLoad(tr))
- break;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- } while(ch == '_' || isdigit(ch) || isalpha(ch));
-
- tr->mColumn += len;
- if(len < maxLen)
- {
- ident[len] = '\0';
- return 1;
- }
- TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
- return 0;
- }
- }
- TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
- return 0;
-}
-
-// Reads and validates (including bounds) an integer token.
-static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
-{
- uint col, digis, len;
- char ch, temp[64+1];
-
- col = tr->mColumn;
- if(TrSkipWhitespace(tr))
- {
- col = tr->mColumn;
- len = 0;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(ch == '+' || ch == '-')
- {
- temp[len] = ch;
- len++;
- tr->mOut++;
- }
- digis = 0;
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(!isdigit(ch)) break;
- if(len < 64)
- temp[len] = ch;
- len++;
- digis++;
- tr->mOut++;
- }
- tr->mColumn += len;
- if(digis > 0 && ch != '.' && !isalpha(ch))
- {
- if(len > 64)
- {
- TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
- return 0;
- }
- temp[len] = '\0';
- *value = strtol(temp, NULL, 10);
- if(*value < loBound || *value > hiBound)
- {
- TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
- return 0;
- }
- return 1;
- }
- }
- TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
- return 0;
-}
-
-// Reads and validates (including bounds) a float token.
-static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
-{
- uint col, digis, len;
- char ch, temp[64+1];
-
- col = tr->mColumn;
- if(TrSkipWhitespace(tr))
- {
- col = tr->mColumn;
- len = 0;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(ch == '+' || ch == '-')
- {
- temp[len] = ch;
- len++;
- tr->mOut++;
- }
-
- digis = 0;
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(!isdigit(ch)) break;
- if(len < 64)
- temp[len] = ch;
- len++;
- digis++;
- tr->mOut++;
- }
- if(ch == '.')
- {
- if(len < 64)
- temp[len] = ch;
- len++;
- tr->mOut++;
- }
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(!isdigit(ch)) break;
- if(len < 64)
- temp[len] = ch;
- len++;
- digis++;
- tr->mOut++;
- }
- if(digis > 0)
- {
- if(ch == 'E' || ch == 'e')
- {
- if(len < 64)
- temp[len] = ch;
- len++;
- digis = 0;
- tr->mOut++;
- if(ch == '+' || ch == '-')
- {
- if(len < 64)
- temp[len] = ch;
- len++;
- tr->mOut++;
- }
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(!isdigit(ch)) break;
- if(len < 64)
- temp[len] = ch;
- len++;
- digis++;
- tr->mOut++;
- }
- }
- tr->mColumn += len;
- if(digis > 0 && ch != '.' && !isalpha(ch))
- {
- if(len > 64)
- {
- TrErrorAt(tr, tr->mLine, col, "Float is too long.");
- return 0;
- }
- temp[len] = '\0';
- *value = strtod(temp, NULL);
- if(*value < loBound || *value > hiBound)
- {
- TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
- return 0;
- }
- return 1;
- }
- }
- else
- tr->mColumn += len;
- }
- TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
- return 0;
-}
-
-// Reads and validates a string token.
-static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
-{
- uint col, len;
- char ch;
-
- col = tr->mColumn;
- if(TrSkipWhitespace(tr))
- {
- col = tr->mColumn;
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(ch == '\"')
- {
- tr->mOut++;
- len = 0;
- while(TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- tr->mOut++;
- if(ch == '\"')
- break;
- if(ch == '\n')
- {
- TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
- return 0;
- }
- if(len < maxLen)
- text[len] = ch;
- len++;
- }
- if(ch != '\"')
- {
- tr->mColumn += 1 + len;
- TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
- return 0;
- }
- tr->mColumn += 2 + len;
- if(len > maxLen)
- {
- TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
- return 0;
- }
- text[len] = '\0';
- return 1;
- }
- }
- TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
- return 0;
-}
-
-// Reads and validates the given operator.
-static int TrReadOperator(TokenReaderT *tr, const char *op)
-{
- uint col, len;
- char ch;
-
- col = tr->mColumn;
- if(TrSkipWhitespace(tr))
- {
- col = tr->mColumn;
- len = 0;
- while(op[len] != '\0' && TrLoad(tr))
- {
- ch = tr->mRing[tr->mOut&TR_RING_MASK];
- if(ch != op[len]) break;
- len++;
- tr->mOut++;
- }
- tr->mColumn += len;
- if(op[len] == '\0')
- return 1;
- }
- TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
- return 0;
-}
-
-/* Performs a string substitution. Any case-insensitive occurrences of the
- * pattern string are replaced with the replacement string. The result is
- * truncated if necessary.
- */
-static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
-{
- size_t inLen, patLen, repLen;
- size_t si, di;
- int truncated;
-
- inLen = strlen(in);
- patLen = strlen(pat);
- repLen = strlen(rep);
- si = 0;
- di = 0;
- truncated = 0;
- while(si < inLen && di < maxLen)
- {
- if(patLen <= inLen-si)
- {
- if(strncasecmp(&in[si], pat, patLen) == 0)
- {
- if(repLen > maxLen-di)
- {
- repLen = maxLen - di;
- truncated = 1;
- }
- strncpy(&out[di], rep, repLen);
- si += patLen;
- di += repLen;
- }
- }
- out[di] = in[si];
- si++;
- di++;
- }
- if(si < inLen)
- truncated = 1;
- out[di] = '\0';
- return !truncated;
-}
-
-
-/*********************
- *** Math routines ***
- *********************/
-
-// Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013).
-#if defined(_MSC_VER) && _MSC_VER < 1800
-static double round(double val)
-{
- if(val < 0.0)
- return ceil(val-0.5);
- return floor(val+0.5);
-}
-
-static double fmin(double a, double b)
-{
- return (a<b) ? a : b;
-}
-
-static double fmax(double a, double b)
-{
- return (a>b) ? a : b;
-}
-#endif
-
-// Simple clamp routine.
-static double Clamp(const double val, const double lower, const double upper)
-{
- return fmin(fmax(val, lower), upper);
-}
-
-// Performs linear interpolation.
-static double Lerp(const double a, const double b, const double f)
-{
- return a + f * (b - a);
-}
-
-static inline uint dither_rng(uint *seed)
-{
- *seed = *seed * 96314165 + 907633515;
- return *seed;
-}
-
-// Performs a triangular probability density function dither. The input samples
-// should be normalized (-1 to +1).
-static void TpdfDither(double *restrict out, const double *restrict in, const double scale,
- const int count, const int step, uint *seed)
-{
- static const double PRNG_SCALE = 1.0 / UINT_MAX;
- uint prn0, prn1;
- int i;
-
- for(i = 0;i < count;i++)
- {
- prn0 = dither_rng(seed);
- prn1 = dither_rng(seed);
- out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
- }
-}
-
-// Allocates an array of doubles.
-static double *CreateDoubles(size_t n)
-{
- double *a;
-
- a = calloc(n?n:1, sizeof(*a));
- if(a == NULL)
- {
- fprintf(stderr, "Error: Out of memory.\n");
- exit(-1);
- }
- return a;
-}
-
-// Allocates an array of complex numbers.
-static Complex *CreateComplexes(size_t n)
-{
- Complex *a;
-
- a = calloc(n?n:1, sizeof(*a));
- if(a == NULL)
- {
- fprintf(stderr, "Error: Out of memory.\n");
- exit(-1);
- }
- return a;
-}
-
-/* Fast Fourier transform routines. The number of points must be a power of
- * two.
- */
-
-// Performs bit-reversal ordering.
-static void FftArrange(const uint n, Complex *inout)
-{
- uint rk, k, m;
-
- // Handle in-place arrangement.
- rk = 0;
- for(k = 0;k < n;k++)
- {
- if(rk > k)
- {
- Complex temp = inout[rk];
- inout[rk] = inout[k];
- inout[k] = temp;
- }
-
- m = n;
- while(rk&(m >>= 1))
- rk &= ~m;
- rk |= m;
- }
-}
-
-// Performs the summation.
-static void FftSummation(const int n, const double s, Complex *cplx)
-{
- double pi;
- int m, m2;
- int i, k, mk;
-
- pi = s * M_PI;
- for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
- {
- // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
- double sm = sin(0.5 * pi / m);
- Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m));
- Complex w = MakeComplex(1.0, 0.0);
- for(i = 0;i < m;i++)
- {
- for(k = i;k < n;k += m2)
- {
- Complex t;
- mk = k + m;
- t = c_mul(w, cplx[mk]);
- cplx[mk] = c_sub(cplx[k], t);
- cplx[k] = c_add(cplx[k], t);
- }
- w = c_add(w, c_mul(v, w));
- }
- }
-}
-
-// Performs a forward FFT.
-static void FftForward(const uint n, Complex *inout)
-{
- FftArrange(n, inout);
- FftSummation(n, 1.0, inout);
-}
-
-// Performs an inverse FFT.
-static void FftInverse(const uint n, Complex *inout)
-{
- double f;
- uint i;
-
- FftArrange(n, inout);
- FftSummation(n, -1.0, inout);
- f = 1.0 / n;
- for(i = 0;i < n;i++)
- inout[i] = c_muls(inout[i], f);
-}
-
-/* Calculate the complex helical sequence (or discrete-time analytical signal)
- * of the given input using the Hilbert transform. Given the natural logarithm
- * of a signal's magnitude response, the imaginary components can be used as
- * the angles for minimum-phase reconstruction.
- */
-static void Hilbert(const uint n, Complex *inout)
-{
- uint i;
-
- // Handle in-place operation.
- for(i = 0;i < n;i++)
- inout[i].Imag = 0.0;
-
- FftInverse(n, inout);
- for(i = 1;i < (n+1)/2;i++)
- inout[i] = c_muls(inout[i], 2.0);
- /* Increment i if n is even. */
- i += (n&1)^1;
- for(;i < n;i++)
- inout[i] = MakeComplex(0.0, 0.0);
- FftForward(n, inout);
-}
-
-/* Calculate the magnitude response of the given input. This is used in
- * place of phase decomposition, since the phase residuals are discarded for
- * minimum phase reconstruction. The mirrored half of the response is also
- * discarded.
- */
-static void MagnitudeResponse(const uint n, const Complex *in, double *out)
-{
- const uint m = 1 + (n / 2);
- uint i;
- for(i = 0;i < m;i++)
- out[i] = fmax(c_abs(in[i]), EPSILON);
-}
-
-/* Apply a range limit (in dB) to the given magnitude response. This is used
- * to adjust the effects of the diffuse-field average on the equalization
- * process.
- */
-static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
-{
- double halfLim;
- uint i, lower, upper;
- double ave;
-
- halfLim = limit / 2.0;
- // Convert the response to dB.
- for(i = 0;i < m;i++)
- out[i] = 20.0 * log10(in[i]);
- // Use six octaves to calculate the average magnitude of the signal.
- lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1;
- upper = ((uint)floor(n / pow(2.0, 2.0))) - 1;
- ave = 0.0;
- for(i = lower;i <= upper;i++)
- ave += out[i];
- ave /= upper - lower + 1;
- // Keep the response within range of the average magnitude.
- for(i = 0;i < m;i++)
- out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
- // Convert the response back to linear magnitude.
- for(i = 0;i < m;i++)
- out[i] = pow(10.0, out[i] / 20.0);
-}
-
-/* Reconstructs the minimum-phase component for the given magnitude response
- * of a signal. This is equivalent to phase recomposition, sans the missing
- * residuals (which were discarded). The mirrored half of the response is
- * reconstructed.
- */
-static void MinimumPhase(const uint n, const double *in, Complex *out)
-{
- const uint m = 1 + (n / 2);
- double *mags;
- uint i;
-
- mags = CreateDoubles(n);
- for(i = 0;i < m;i++)
- {
- mags[i] = fmax(EPSILON, in[i]);
- out[i] = MakeComplex(log(mags[i]), 0.0);
- }
- for(;i < n;i++)
- {
- mags[i] = mags[n - i];
- out[i] = out[n - i];
- }
- Hilbert(n, out);
- // Remove any DC offset the filter has.
- mags[0] = EPSILON;
- for(i = 0;i < n;i++)
- {
- Complex a = c_exp(MakeComplex(0.0, out[i].Imag));
- out[i] = c_mul(MakeComplex(mags[i], 0.0), a);
- }
- free(mags);
-}
-
-
-/***************************
- *** Resampler functions ***
- ***************************/
-
-/* This is the normalized cardinal sine (sinc) function.
- *
- * sinc(x) = { 1, x = 0
- * { sin(pi x) / (pi x), otherwise.
- */
-static double Sinc(const double x)
-{
- if(fabs(x) < EPSILON)
- return 1.0;
- return sin(M_PI * x) / (M_PI * x);
-}
-
-/* The zero-order modified Bessel function of the first kind, used for the
- * Kaiser window.
- *
- * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
- * = sum_{k=0}^inf ((x / 2)^k / k!)^2
- */
-static double BesselI_0(const double x)
-{
- double term, sum, x2, y, last_sum;
- int k;
-
- // Start at k=1 since k=0 is trivial.
- term = 1.0;
- sum = 1.0;
- x2 = x/2.0;
- k = 1;
-
- // Let the integration converge until the term of the sum is no longer
- // significant.
- do {
- y = x2 / k;
- k++;
- last_sum = sum;
- term *= y * y;
- sum += term;
- } while(sum != last_sum);
- return sum;
-}
-
-/* Calculate a Kaiser window from the given beta value and a normalized k
- * [-1, 1].
- *
- * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
- * { 0, elsewhere.
- *
- * Where k can be calculated as:
- *
- * k = i / l, where -l <= i <= l.
- *
- * or:
- *
- * k = 2 i / M - 1, where 0 <= i <= M.
- */
-static double Kaiser(const double b, const double k)
-{
- if(!(k >= -1.0 && k <= 1.0))
- return 0.0;
- return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b);
-}
-
-// Calculates the greatest common divisor of a and b.
-static uint Gcd(uint x, uint y)
-{
- while(y > 0)
- {
- uint z = y;
- y = x % y;
- x = z;
- }
- return x;
-}
-
-/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
- * the transition width is normalized frequency (0.5 is nyquist).
- *
- * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
- * { ceil(5.79 / 2 pi f_t), r <= 21.
- *
- */
-static uint CalcKaiserOrder(const double rejection, const double transition)
-{
- double w_t = 2.0 * M_PI * transition;
- if(rejection > 21.0)
- return (uint)ceil((rejection - 7.95) / (2.285 * w_t));
- return (uint)ceil(5.79 / w_t);
-}
-
-// Calculates the beta value of the Kaiser window. Rejection is in dB.
-static double CalcKaiserBeta(const double rejection)
-{
- if(rejection > 50.0)
- return 0.1102 * (rejection - 8.7);
- if(rejection >= 21.0)
- return (0.5842 * pow(rejection - 21.0, 0.4)) +
- (0.07886 * (rejection - 21.0));
- return 0.0;
-}
-
-/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
- * width, beta, gain, and cutoff. The point is specified in non-normalized
- * samples, from 0 to M, where M = (2 l + 1).
- *
- * w(k) 2 p f_t sinc(2 f_t x)
- *
- * x -- centered sample index (i - l)
- * k -- normalized and centered window index (x / l)
- * w(k) -- window function (Kaiser)
- * p -- gain compensation factor when sampling
- * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
- */
-static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
-{
- return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
-}
-
-/* This is a polyphase sinc-filtered resampler.
- *
- * Upsample Downsample
- *
- * p/q = 3/2 p/q = 3/5
- *
- * M-+-+-+-> M-+-+-+->
- * -------------------+ ---------------------+
- * p s * f f f f|f| | p s * f f f f f |
- * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
- * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
- * s * f|f|f f f | s * f f|f|f f |
- * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
- * --------+=+--------+ 0 * |0|0 0 0 0 |
- * d . d .|d|. d . d ----------+=+--------+
- * d . . . .|d|. . . .
- * q->
- * q-+-+-+->
- *
- * P_f(i,j) = q i mod p + pj
- * P_s(i,j) = floor(q i / p) - j
- * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
- * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
- * { 0, P_f(i,j) >= M. }
- */
-
-// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
-// that's used to cut frequencies above the destination nyquist.
-static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
-{
- double cutoff, width, beta;
- uint gcd, l;
- int i;
-
- gcd = Gcd(srcRate, dstRate);
- rs->mP = dstRate / gcd;
- rs->mQ = srcRate / gcd;
- /* The cutoff is adjusted by half the transition width, so the transition
- * ends before the nyquist (0.5). Both are scaled by the downsampling
- * factor.
- */
- if(rs->mP > rs->mQ)
- {
- cutoff = 0.475 / rs->mP;
- width = 0.05 / rs->mP;
- }
- else
- {
- cutoff = 0.475 / rs->mQ;
- width = 0.05 / rs->mQ;
- }
- // A rejection of -180 dB is used for the stop band. Round up when
- // calculating the left offset to avoid increasing the transition width.
- l = (CalcKaiserOrder(180.0, width)+1) / 2;
- beta = CalcKaiserBeta(180.0);
- rs->mM = l*2 + 1;
- rs->mL = l;
- rs->mF = CreateDoubles(rs->mM);
- for(i = 0;i < ((int)rs->mM);i++)
- rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i);
-}
-
-// Clean up after the resampler.
-static void ResamplerClear(ResamplerT *rs)
-{
- free(rs->mF);
- rs->mF = NULL;
-}
-
-// Perform the upsample-filter-downsample resampling operation using a
-// polyphase filter implementation.
-static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
-{
- const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
- const double *f = rs->mF;
- uint j_f, j_s;
- double *work;
- uint i;
-
- if(outN == 0)
- return;
-
- // Handle in-place operation.
- if(in == out)
- work = CreateDoubles(outN);
- else
- work = out;
- // Resample the input.
- for(i = 0;i < outN;i++)
- {
- double r = 0.0;
- // Input starts at l to compensate for the filter delay. This will
- // drop any build-up from the first half of the filter.
- j_f = (l + (q * i)) % p;
- j_s = (l + (q * i)) / p;
- while(j_f < m)
- {
- // Only take input when 0 <= j_s < inN. This single unsigned
- // comparison catches both cases.
- if(j_s < inN)
- r += f[j_f] * in[j_s];
- j_f += p;
- j_s--;
- }
- work[i] = r;
- }
- // Clean up after in-place operation.
- if(work != out)
- {
- for(i = 0;i < outN;i++)
- out[i] = work[i];
- free(work);
- }
-}
-
-/*************************
- *** File source input ***
- *************************/
-
-// Read a binary value of the specified byte order and byte size from a file,
-// storing it as a 32-bit unsigned integer.
-static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out)
-{
- uint8 in[4];
- uint32 accum;
- uint i;
-
- if(fread(in, 1, bytes, fp) != bytes)
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
- return 0;
- }
- accum = 0;
- switch(order)
- {
- case BO_LITTLE:
- for(i = 0;i < bytes;i++)
- accum = (accum<<8) | in[bytes - i - 1];
- break;
- case BO_BIG:
- for(i = 0;i < bytes;i++)
- accum = (accum<<8) | in[i];
- break;
- default:
- break;
- }
- *out = accum;
- return 1;
-}
-
-// Read a binary value of the specified byte order from a file, storing it as
-// a 64-bit unsigned integer.
-static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out)
-{
- uint8 in [8];
- uint64 accum;
- uint i;
-
- if(fread(in, 1, 8, fp) != 8)
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
- return 0;
- }
- accum = 0ULL;
- switch(order)
- {
- case BO_LITTLE:
- for(i = 0;i < 8;i++)
- accum = (accum<<8) | in[8 - i - 1];
- break;
- case BO_BIG:
- for(i = 0;i < 8;i++)
- accum = (accum<<8) | in[i];
- break;
- default:
- break;
- }
- *out = accum;
- return 1;
-}
-
-/* Read a binary value of the specified type, byte order, and byte size from
- * a file, converting it to a double. For integer types, the significant
- * bits are used to normalize the result. The sign of bits determines
- * whether they are padded toward the MSB (negative) or LSB (positive).
- * Floating-point types are not normalized.
- */
-static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
-{
- union {
- uint32 ui;
- int32 i;
- float f;
- } v4;
- union {
- uint64 ui;
- double f;
- } v8;
-
- *out = 0.0;
- if(bytes > 4)
- {
- if(!ReadBin8(fp, filename, order, &v8.ui))
- return 0;
- if(type == ET_FP)
- *out = v8.f;
- }
- else
- {
- if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
- return 0;
- if(type == ET_FP)
- *out = v4.f;
- else
- {
- if(bits > 0)
- v4.ui >>= (8*bytes) - ((uint)bits);
- else
- v4.ui &= (0xFFFFFFFF >> (32+bits));
-
- if(v4.ui&(uint)(1<<(abs(bits)-1)))
- v4.ui |= (0xFFFFFFFF << abs (bits));
- *out = v4.i / (double)(1<<(abs(bits)-1));
- }
- }
- return 1;
-}
-
-/* Read an ascii value of the specified type from a file, converting it to a
- * double. For integer types, the significant bits are used to normalize the
- * result. The sign of the bits should always be positive. This also skips
- * up to one separator character before the element itself.
- */
-static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
-{
- if(TrIsOperator(tr, ","))
- TrReadOperator(tr, ",");
- else if(TrIsOperator(tr, ":"))
- TrReadOperator(tr, ":");
- else if(TrIsOperator(tr, ";"))
- TrReadOperator(tr, ";");
- else if(TrIsOperator(tr, "|"))
- TrReadOperator(tr, "|");
-
- if(type == ET_FP)
- {
- if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out))
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
- return 0;
- }
- }
- else
- {
- int v;
- if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
- return 0;
- }
- *out = v / (double)((1<<(bits-1))-1);
- }
- return 1;
-}
-
-// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
-// the source parameters and data set metrics.
-static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
-{
- uint32 fourCC, chunkSize;
- uint32 format, channels, rate, dummy, block, size, bits;
-
- chunkSize = 0;
- do {
- if(chunkSize > 0)
- fseek (fp, (long) chunkSize, SEEK_CUR);
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
- !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
- return 0;
- } while(fourCC != FOURCC_FMT);
- if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
- !ReadBin4(fp, src->mPath, order, 2, &channels) ||
- !ReadBin4(fp, src->mPath, order, 4, &rate) ||
- !ReadBin4(fp, src->mPath, order, 4, &dummy) ||
- !ReadBin4(fp, src->mPath, order, 2, &block))
- return 0;
- block /= channels;
- if(chunkSize > 14)
- {
- if(!ReadBin4(fp, src->mPath, order, 2, &size))
- return 0;
- size /= 8;
- if(block > size)
- size = block;
- }
- else
- size = block;
- if(format == WAVE_FORMAT_EXTENSIBLE)
- {
- fseek(fp, 2, SEEK_CUR);
- if(!ReadBin4(fp, src->mPath, order, 2, &bits))
- return 0;
- if(bits == 0)
- bits = 8 * size;
- fseek(fp, 4, SEEK_CUR);
- if(!ReadBin4(fp, src->mPath, order, 2, &format))
- return 0;
- fseek(fp, (long)(chunkSize - 26), SEEK_CUR);
- }
- else
- {
- bits = 8 * size;
- if(chunkSize > 14)
- fseek(fp, (long)(chunkSize - 16), SEEK_CUR);
- else
- fseek(fp, (long)(chunkSize - 14), SEEK_CUR);
- }
- if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
- {
- fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath);
- return 0;
- }
- if(src->mChannel >= channels)
- {
- fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- if(rate != hrirRate)
- {
- fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- if(format == WAVE_FORMAT_PCM)
- {
- if(size < 2 || size > 4)
- {
- fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- if(bits < 16 || bits > (8*size))
- {
- fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- src->mType = ET_INT;
- }
- else
- {
- if(size != 4 && size != 8)
- {
- fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- src->mType = ET_FP;
- }
- src->mSize = size;
- src->mBits = (int)bits;
- src->mSkip = channels;
- return 1;
-}
-
-// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
-static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
-{
- int pre, post, skip;
- uint i;
-
- pre = (int)(src->mSize * src->mChannel);
- post = (int)(src->mSize * (src->mSkip - src->mChannel - 1));
- skip = 0;
- for(i = 0;i < n;i++)
- {
- skip += pre;
- if(skip > 0)
- fseek(fp, skip, SEEK_CUR);
- if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
- return 0;
- skip = post;
- }
- if(skip > 0)
- fseek(fp, skip, SEEK_CUR);
- return 1;
-}
-
-// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
-// doubles.
-static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
-{
- uint32 fourCC, chunkSize, listSize, count;
- uint block, skip, offset, i;
- double lastSample;
-
- for(;;)
- {
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
- !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
- return 0;
-
- if(fourCC == FOURCC_DATA)
- {
- block = src->mSize * src->mSkip;
- count = chunkSize / block;
- if(count < (src->mOffset + n))
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
- return 0;
- }
- fseek(fp, (long)(src->mOffset * block), SEEK_CUR);
- if(!ReadWaveData(fp, src, order, n, &hrir[0]))
- return 0;
- return 1;
- }
- else if(fourCC == FOURCC_LIST)
- {
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
- return 0;
- chunkSize -= 4;
- if(fourCC == FOURCC_WAVL)
- break;
- }
- if(chunkSize > 0)
- fseek(fp, (long)chunkSize, SEEK_CUR);
- }
- listSize = chunkSize;
- block = src->mSize * src->mSkip;
- skip = src->mOffset;
- offset = 0;
- lastSample = 0.0;
- while(offset < n && listSize > 8)
- {
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
- !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
- return 0;
- listSize -= 8 + chunkSize;
- if(fourCC == FOURCC_DATA)
- {
- count = chunkSize / block;
- if(count > skip)
- {
- fseek(fp, (long)(skip * block), SEEK_CUR);
- chunkSize -= skip * block;
- count -= skip;
- skip = 0;
- if(count > (n - offset))
- count = n - offset;
- if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
- return 0;
- chunkSize -= count * block;
- offset += count;
- lastSample = hrir [offset - 1];
- }
- else
- {
- skip -= count;
- count = 0;
- }
- }
- else if(fourCC == FOURCC_SLNT)
- {
- if(!ReadBin4(fp, src->mPath, order, 4, &count))
- return 0;
- chunkSize -= 4;
- if(count > skip)
- {
- count -= skip;
- skip = 0;
- if(count > (n - offset))
- count = n - offset;
- for(i = 0; i < count; i ++)
- hrir[offset + i] = lastSample;
- offset += count;
- }
- else
- {
- skip -= count;
- count = 0;
- }
- }
- if(chunkSize > 0)
- fseek(fp, (long)chunkSize, SEEK_CUR);
- }
- if(offset < n)
- {
- fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
- return 0;
- }
- return 1;
-}
-
-// Load a source HRIR from a RIFF/RIFX WAVE file.
-static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
-{
- uint32 fourCC, dummy;
- ByteOrderT order;
-
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
- !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
- return 0;
- if(fourCC == FOURCC_RIFF)
- order = BO_LITTLE;
- else if(fourCC == FOURCC_RIFX)
- order = BO_BIG;
- else
- {
- fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
- return 0;
- }
-
- if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
- return 0;
- if(fourCC != FOURCC_WAVE)
- {
- fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
- return 0;
- }
- if(!ReadWaveFormat(fp, order, hrirRate, src))
- return 0;
- if(!ReadWaveList(fp, src, order, n, hrir))
- return 0;
- return 1;
-}
-
-// Load a source HRIR from a binary file.
-static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
-{
- uint i;
-
- fseek(fp, (long)src->mOffset, SEEK_SET);
- for(i = 0;i < n;i++)
- {
- if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
- return 0;
- if(src->mSkip > 0)
- fseek(fp, (long)src->mSkip, SEEK_CUR);
- }
- return 1;
-}
-
-// Load a source HRIR from an ASCII text file containing a list of elements
-// separated by whitespace or common list operators (',', ';', ':', '|').
-static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
-{
- TokenReaderT tr;
- uint i, j;
- double dummy;
-
- TrSetup(fp, NULL, &tr);
- for(i = 0;i < src->mOffset;i++)
- {
- if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
- return 0;
- }
- for(i = 0;i < n;i++)
- {
- if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i]))
- return 0;
- for(j = 0;j < src->mSkip;j++)
- {
- if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
- return 0;
- }
- }
- return 1;
-}
-
-// Load a source HRIR from a supported file type.
-static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
-{
- int result;
- FILE *fp;
-
- if(src->mFormat == SF_ASCII)
- fp = fopen(src->mPath, "r");
- else
- fp = fopen(src->mPath, "rb");
- if(fp == NULL)
- {
- fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath);
- return 0;
- }
- if(src->mFormat == SF_WAVE)
- result = LoadWaveSource(fp, src, hrirRate, n, hrir);
- else if(src->mFormat == SF_BIN_LE)
- result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
- else if(src->mFormat == SF_BIN_BE)
- result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
- else
- result = LoadAsciiSource(fp, src, n, hrir);
- fclose(fp);
- return result;
-}
-
-
-/***************************
- *** File storage output ***
- ***************************/
-
-// Write an ASCII string to a file.
-static int WriteAscii(const char *out, FILE *fp, const char *filename)
-{
- size_t len;
-
- len = strlen(out);
- if(fwrite(out, 1, len, fp) != len)
- {
- fclose(fp);
- fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
- return 0;
- }
- return 1;
-}
-
-// Write a binary value of the given byte order and byte size to a file,
-// loading it from a 32-bit unsigned integer.
-static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename)
-{
- uint8 out[4];
- uint i;
-
- switch(order)
- {
- case BO_LITTLE:
- for(i = 0;i < bytes;i++)
- out[i] = (in>>(i*8)) & 0x000000FF;
- break;
- case BO_BIG:
- for(i = 0;i < bytes;i++)
- out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
- break;
- default:
- break;
- }
- if(fwrite(out, 1, bytes, fp) != bytes)
- {
- fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
- return 0;
- }
- return 1;
-}
-
-// Store the OpenAL Soft HRTF data set.
-static int StoreMhr(const HrirDataT *hData, const char *filename)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- FILE *fp;
- uint fi, ei, ai, i;
- uint dither_seed = 22222;
-
- if((fp=fopen(filename, "wb")) == NULL)
- {
- fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename);
- return 0;
- }
- if(!WriteAscii(MHR_FORMAT, fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename))
- return 0;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename))
- return 0;
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename))
- return 0;
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
- return 0;
- }
- }
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
- ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
- const int bps = (hData->mSampleType == ST_S16) ? 2 :
- ((hData->mSampleType == ST_S24) ? 3 : 0);
-
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- double out[2 * MAX_TRUNCSIZE];
-
- TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
- if(hData->mChannelType == CT_STEREO)
- TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
- for(i = 0;i < (channels * n);i++)
- {
- int v = (int)Clamp(out[i], -scale-1.0, scale);
- if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename))
- return 0;
- }
- }
- }
- }
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD);
-
- if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
- return 0;
- if(hData->mChannelType == CT_STEREO)
- {
- v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD);
-
- if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
- return 0;
- }
- }
- }
- }
- fclose(fp);
- return 1;
-}
-
-
-/***********************
- *** HRTF processing ***
- ***********************/
-
-// Calculate the onset time of an HRIR and average it with any existing
-// timing for its field, elevation, azimuth, and ear.
-static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
-{
- double mag = 0.0;
- uint i;
-
- for(i = 0;i < n;i++)
- mag = fmax(fabs(hrir[i]), mag);
- mag *= 0.15;
- for(i = 0;i < n;i++)
- {
- if(fabs(hrir[i]) >= mag)
- break;
- }
- return Lerp(onset, (double)i / rate, f);
-}
-
-// Calculate the magnitude response of an HRIR and average it with any
-// existing responses for its field, elevation, azimuth, and ear.
-static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
-{
- uint m = 1 + (n / 2), i;
- Complex *h = CreateComplexes(n);
- double *r = CreateDoubles(n);
-
- for(i = 0;i < points;i++)
- h[i] = MakeComplex(hrir[i], 0.0);
- for(;i < n;i++)
- h[i] = MakeComplex(0.0, 0.0);
- FftForward(n, h);
- MagnitudeResponse(n, h, r);
- for(i = 0;i < m;i++)
- mag[i] = Lerp(mag[i], r[i], f);
- free(r);
- free(h);
-}
-
-/* Calculate the contribution of each HRIR to the diffuse-field average based
- * on the area of its surface patch. All patches are centered at the HRIR
- * coordinates on the unit sphere and are measured by solid angle.
- */
-static void CalculateDfWeights(const HrirDataT *hData, double *weights)
-{
- double sum, evs, ev, upperEv, lowerEv, solidAngle;
- uint fi, ei;
-
- sum = 0.0;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- // For each elevation, calculate the upper and lower limits of
- // the patch band.
- ev = hData->mFds[fi].mEvs[ei].mElevation;
- lowerEv = fmax(-M_PI / 2.0, ev - evs);
- upperEv = fmin(M_PI / 2.0, ev + evs);
- // Calculate the area of the patch band.
- solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv));
- // Each weight is the area of one patch.
- weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount;
- // Sum the total surface area covered by the HRIRs of all fields.
- sum += solidAngle;
- }
- }
- /* TODO: It may be interesting to experiment with how a volume-based
- weighting performs compared to the existing distance-indepenent
- surface patches.
- */
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- // Normalize the weights given the total surface coverage for all
- // fields.
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- weights[(fi * MAX_EV_COUNT) + ei] /= sum;
- }
-}
-
-/* Calculate the diffuse-field average from the given magnitude responses of
- * the HRIR set. Weighting can be applied to compensate for the varying
- * surface area covered by each HRIR. The final average can then be limited
- * by the specified magnitude range (in positive dB; 0.0 to skip).
- */
-static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
-{
- double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT);
- uint count, ti, fi, ei, i, ai;
-
- if(weighted)
- {
- // Use coverage weighting to calculate the average.
- CalculateDfWeights(hData, weights);
- }
- else
- {
- double weight;
-
- // If coverage weighting is not used, the weights still need to be
- // averaged by the number of existing HRIRs.
- count = hData->mIrCount;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
- count -= hData->mFds[fi].mEvs[ei].mAzCount;
- }
- weight = 1.0 / count;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- weights[(fi * MAX_EV_COUNT) + ei] = weight;
- }
- }
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] = 0.0;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- // Get the weight for this HRIR's contribution.
- double weight = weights[(fi * MAX_EV_COUNT) + ei];
-
- // Add this HRIR's weighted power average to the total.
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
- }
- }
- }
- // Finish the average calculation and keep it from being too small.
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON);
- // Apply a limit to the magnitude range of the diffuse-field average
- // if desired.
- if(limit > 0.0)
- LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
- }
- free(weights);
-}
-
-// Perform diffuse-field equalization on the magnitude responses of the HRIR
-// set using the given average response.
-static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
-{
- uint ti, fi, ei, ai, i;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- azd->mIrs[ti][i] /= dfa[(ti * m) + i];
- }
- }
- }
- }
-}
-
-// Perform minimum-phase reconstruction using the magnitude responses of the
-// HRIR set.
-static void ReconstructHrirs(const HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mFftSize;
- uint ti, fi, ei, ai, i;
- Complex *h = CreateComplexes(n);
- uint total, count, pcdone, lastpc;
-
- total = hData->mIrCount;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
- total -= hData->mFds[fi].mEvs[ei].mAzCount;
- }
- total *= channels;
- count = pcdone = lastpc = 0;
- printf("%3d%% done.", pcdone);
- fflush(stdout);
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- MinimumPhase(n, azd->mIrs[ti], h);
- FftInverse(n, h);
- for(i = 0;i < hData->mIrPoints;i++)
- azd->mIrs[ti][i] = h[i].Real;
- pcdone = ++count * 100 / total;
- if(pcdone != lastpc)
- {
- lastpc = pcdone;
- printf("\r%3d%% done.", pcdone);
- fflush(stdout);
- }
- }
- }
- }
- }
- printf("\n");
- free(h);
-}
-
-// Resamples the HRIRs for use at the given sampling rate.
-static void ResampleHrirs(const uint rate, HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- uint ti, fi, ei, ai;
- ResamplerT rs;
-
- ResamplerSetup(&rs, hData->mIrRate, rate);
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
- }
- }
- }
- hData->mIrRate = rate;
- ResamplerClear(&rs);
-}
-
-/* Given field and elevation indices and an azimuth, calculate the indices of
- * the two HRIRs that bound the coordinate along with a factor for
- * calculating the continuous HRIR using interpolation.
- */
-static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af)
-{
- double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI);
- uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount;
-
- f -= floor(f);
- *a0 = i;
- *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount;
- *af = f;
-}
-
-// Synthesize any missing onset timings at the bottom elevations of each
-// field. This just blends between slightly exaggerated known onsets (not
-// an accurate model).
-static void SynthesizeOnsets(HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint ti, fi, oi, ai, ei, a0, a1;
- double t, of, af;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- if(hData->mFds[fi].mEvStart <= 0)
- continue;
- oi = hData->mFds[fi].mEvStart;
-
- for(ti = 0;ti < channels;ti++)
- {
- t = 0.0;
- for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
- t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti];
- hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount);
- for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
- {
- of = (double)ei / hData->mFds[fi].mEvStart;
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp(
- hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti],
- Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti],
- hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af),
- of
- );
- }
- }
- }
- }
-}
-
-/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
- * field. Right now this just blends the lowest elevation HRIRs together and
- * applies some attenuation and high frequency damping. It is a simple, if
- * inaccurate model.
- */
-static void SynthesizeHrirs(HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- uint ti, fi, ai, ei, i;
- double lp[4], s0, s1;
- double of, b;
- uint a0, a1;
- double af;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- const uint oi = hData->mFds[fi].mEvStart;
- if(oi <= 0) continue;
-
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < n;i++)
- hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
- for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
- {
- for(i = 0;i < n;i++)
- hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] /
- hData->mFds[fi].mEvs[oi].mAzCount;
- }
- for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
- {
- of = (double)ei / hData->mFds[fi].mEvStart;
- b = (1.0 - of) * (3.5e-6 * hData->mIrRate);
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
- lp[0] = 0.0;
- lp[1] = 0.0;
- lp[2] = 0.0;
- lp[3] = 0.0;
- for(i = 0;i < n;i++)
- {
- s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
- s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i],
- hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af);
- s0 = Lerp(s0, s1, of);
- lp[0] = Lerp(s0, lp[0], b);
- lp[1] = Lerp(lp[0], lp[1], b);
- lp[2] = Lerp(lp[1], lp[2], b);
- lp[3] = Lerp(lp[2], lp[3], b);
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
- }
- }
- }
- b = 3.5e-6 * hData->mIrRate;
- lp[0] = 0.0;
- lp[1] = 0.0;
- lp[2] = 0.0;
- lp[3] = 0.0;
- for(i = 0;i < n;i++)
- {
- s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
- lp[0] = Lerp(s0, lp[0], b);
- lp[1] = Lerp(lp[0], lp[1], b);
- lp[2] = Lerp(lp[1], lp[2], b);
- lp[3] = Lerp(lp[2], lp[3], b);
- hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
- }
- }
- hData->mFds[fi].mEvStart = 0;
- }
-}
-
-// The following routines assume a full set of HRIRs for all elevations.
-
-// Normalize the HRIR set and slightly attenuate the result.
-static void NormalizeHrirs(const HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- uint ti, fi, ei, ai, i;
- double maxLevel = 0.0;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < n;i++)
- maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel);
- }
- }
- }
- }
- maxLevel = 1.01 * maxLevel;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < n;i++)
- azd->mIrs[ti][i] /= maxLevel;
- }
- }
- }
- }
-}
-
-// Calculate the left-ear time delay using a spherical head model.
-static double CalcLTD(const double ev, const double az, const double rad, const double dist)
-{
- double azp, dlp, l, al;
-
- azp = asin(cos(ev) * sin(az));
- dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
- l = sqrt((dist*dist) - (rad*rad));
- al = (0.5 * M_PI) + azp;
- if(dlp > l)
- dlp = l + (rad * (al - acos(rad / dist)));
- return dlp / 343.3;
-}
-
-// Calculate the effective head-related time delays for each minimum-phase
-// HRIR.
-static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- double minHrtd = INFINITY, maxHrtd = -INFINITY;
- uint ti, fi, ei, ai;
- double t;
-
- if(model == HM_DATASET)
- {
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- t = azd->mDelays[ti] * radius / hData->mRadius;
- azd->mDelays[ti] = t;
- maxHrtd = fmax(t, maxHrtd);
- minHrtd = fmin(t, minHrtd);
- }
- }
- }
- }
- }
- else
- {
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
-
- for(ai = 0;ai < evd->mAzCount;ai++)
- {
- HrirAzT *azd = &evd->mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
- azd->mDelays[ti] = t;
- maxHrtd = fmax(t, maxHrtd);
- minHrtd = fmin(t, minHrtd);
- }
- }
- }
- }
- }
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ti = 0;ti < channels;ti++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
- }
- }
- }
-}
-
-// Clear the initial HRIR data state.
-static void ResetHrirData(HrirDataT *hData)
-{
- hData->mIrRate = 0;
- hData->mSampleType = ST_S24;
- hData->mChannelType = CT_NONE;
- hData->mIrPoints = 0;
- hData->mFftSize = 0;
- hData->mIrSize = 0;
- hData->mRadius = 0.0;
- hData->mIrCount = 0;
- hData->mFdCount = 0;
- hData->mFds = NULL;
-}
-
-// Allocate and configure dynamic HRIR structures.
-static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
-{
- uint evTotal = 0, azTotal = 0, fi, ei, ai;
-
- for(fi = 0;fi < fdCount;fi++)
- {
- evTotal += evCounts[fi];
- for(ei = 0;ei < evCounts[fi];ei++)
- azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
- }
- if(!fdCount || !evTotal || !azTotal)
- return 0;
-
- hData->mFds = calloc(fdCount, sizeof(*hData->mFds));
- if(hData->mFds == NULL)
- return 0;
- hData->mFds[0].mEvs = calloc(evTotal, sizeof(*hData->mFds[0].mEvs));
- if(hData->mFds[0].mEvs == NULL)
- return 0;
- hData->mFds[0].mEvs[0].mAzs = calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs));
- if(hData->mFds[0].mEvs[0].mAzs == NULL)
- return 0;
- hData->mIrCount = azTotal;
- hData->mFdCount = fdCount;
- evTotal = 0;
- azTotal = 0;
- for(fi = 0;fi < fdCount;fi++)
- {
- hData->mFds[fi].mDistance = distances[fi];
- hData->mFds[fi].mEvCount = evCounts[fi];
- hData->mFds[fi].mEvStart = 0;
- hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal];
- evTotal += evCounts[fi];
- for(ei = 0;ei < evCounts[fi];ei++)
- {
- uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
-
- hData->mFds[fi].mIrCount += azCount;
- hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
- hData->mFds[fi].mEvs[ei].mIrCount += azCount;
- hData->mFds[fi].mEvs[ei].mAzCount = azCount;
- hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal];
- for(ai = 0;ai < azCount;ai++)
- {
- hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL;
- }
- azTotal += azCount;
- }
- }
- return 1;
-}
-
-// Clean up HRIR data.
-static void FreeHrirData(HrirDataT *hData)
-{
- if(hData->mFds != NULL)
- {
- if(hData->mFds[0].mEvs != NULL)
- {
- if(hData->mFds[0].mEvs[0].mAzs)
- {
- free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]);
- free(hData->mFds[0].mEvs[0].mAzs);
- }
- free(hData->mFds[0].mEvs);
- }
- free(hData->mFds);
- hData->mFds = NULL;
- }
-}
-
-// Match the channel type from a given identifier.
-static ChannelTypeT MatchChannelType(const char *ident)
-{
- if(strcasecmp(ident, "mono") == 0)
- return CT_MONO;
- if(strcasecmp(ident, "stereo") == 0)
- return CT_STEREO;
- return CT_NONE;
-}
-
-// Process the data set definition to read and validate the data set metrics.
-static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
-{
- int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
- int hasDistance = 0, hasAzimuths = 0;
- char ident[MAX_IDENT_LEN+1];
- uint line, col;
- double fpVal;
- uint points;
- int intVal;
- double distances[MAX_FD_COUNT];
- uint fdCount = 0;
- uint evCounts[MAX_FD_COUNT];
- uint *azCounts = calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts));
-
- if(azCounts == NULL)
- {
- fprintf(stderr, "Error: Out of memory.\n");
- exit(-1);
- }
- TrIndication(tr, &line, &col);
- while(TrIsIdent(tr))
- {
- TrIndication(tr, &line, &col);
- if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
- goto error;
- if(strcasecmp(ident, "rate") == 0)
- {
- if(hasRate)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
- if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
- goto error;
- hData->mIrRate = (uint)intVal;
- hasRate = 1;
- }
- else if(strcasecmp(ident, "type") == 0)
- {
- char type[MAX_IDENT_LEN+1];
-
- if(hasType)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
-
- if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
- goto error;
- hData->mChannelType = MatchChannelType(type);
- if(hData->mChannelType == CT_NONE)
- {
- TrErrorAt(tr, line, col, "Expected a channel type.\n");
- goto error;
- }
- hasType = 1;
- }
- else if(strcasecmp(ident, "points") == 0)
- {
- if(hasPoints)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
- TrIndication(tr, &line, &col);
- if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
- goto error;
- points = (uint)intVal;
- if(fftSize > 0 && points > fftSize)
- {
- TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
- goto error;
- }
- if(points < truncSize)
- {
- TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
- goto error;
- }
- hData->mIrPoints = points;
- if(fftSize <= 0)
- {
- hData->mFftSize = DEFAULT_FFTSIZE;
- hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
- }
- else
- {
- hData->mFftSize = fftSize;
- hData->mIrSize = 1 + (fftSize / 2);
- if(points > hData->mIrSize)
- hData->mIrSize = points;
- }
- hasPoints = 1;
- }
- else if(strcasecmp(ident, "radius") == 0)
- {
- if(hasRadius)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
- if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
- goto error;
- hData->mRadius = fpVal;
- hasRadius = 1;
- }
- else if(strcasecmp(ident, "distance") == 0)
- {
- uint count = 0;
-
- if(hasDistance)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
-
- for(;;)
- {
- if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
- goto error;
- if(count > 0 && fpVal <= distances[count - 1])
- {
- TrError(tr, "Distances are not ascending.\n");
- goto error;
- }
- distances[count++] = fpVal;
- if(!TrIsOperator(tr, ","))
- break;
- if(count >= MAX_FD_COUNT)
- {
- TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
- goto error;
- }
- TrReadOperator(tr, ",");
- }
- if(fdCount != 0 && count != fdCount)
- {
- TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
- goto error;
- }
- fdCount = count;
- hasDistance = 1;
- }
- else if(strcasecmp(ident, "azimuths") == 0)
- {
- uint count = 0;
-
- if(hasAzimuths)
- {
- TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
-
- evCounts[0] = 0;
- for(;;)
- {
- if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
- goto error;
- azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal;
- if(TrIsOperator(tr, ","))
- {
- if(evCounts[count] >= MAX_EV_COUNT)
- {
- TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
- goto error;
- }
- TrReadOperator(tr, ",");
- }
- else
- {
- if(evCounts[count] < MIN_EV_COUNT)
- {
- TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
- goto error;
- }
- if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
- {
- TrError(tr, "Poles are not singular for field %d.\n", count - 1);
- goto error;
- }
- count++;
- if(TrIsOperator(tr, ";"))
- {
- if(count >= MAX_FD_COUNT)
- {
- TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
- goto error;
- }
- evCounts[count] = 0;
- TrReadOperator(tr, ";");
- }
- else
- {
- break;
- }
- }
- }
- if(fdCount != 0 && count != fdCount)
- {
- TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
- goto error;
- }
- fdCount = count;
- hasAzimuths = 1;
- }
- else
- {
- TrErrorAt(tr, line, col, "Expected a metric name.\n");
- goto error;
- }
- TrSkipWhitespace(tr);
- }
- if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
- {
- TrErrorAt(tr, line, col, "Expected a metric name.\n");
- goto error;
- }
- if(distances[0] < hData->mRadius)
- {
- TrError(tr, "Distance cannot start below head radius.\n");
- goto error;
- }
- if(hData->mChannelType == CT_NONE)
- hData->mChannelType = CT_MONO;
- if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData))
- {
- fprintf(stderr, "Error: Out of memory.\n");
- exit(-1);
- }
- free(azCounts);
- return 1;
-
-error:
- free(azCounts);
- return 0;
-}
-
-// Parse an index triplet from the data set definition.
-static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
-{
- int intVal;
-
- if(hData->mFdCount > 1)
- {
- if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal))
- return 0;
- *fi = (uint)intVal;
- if(!TrReadOperator(tr, ","))
- return 0;
- }
- else
- {
- *fi = 0;
- }
- if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal))
- return 0;
- *ei = (uint)intVal;
- if(!TrReadOperator(tr, ","))
- return 0;
- if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal))
- return 0;
- *ai = (uint)intVal;
- return 1;
-}
-
-// Match the source format from a given identifier.
-static SourceFormatT MatchSourceFormat(const char *ident)
-{
- if(strcasecmp(ident, "wave") == 0)
- return SF_WAVE;
- if(strcasecmp(ident, "bin_le") == 0)
- return SF_BIN_LE;
- if(strcasecmp(ident, "bin_be") == 0)
- return SF_BIN_BE;
- if(strcasecmp(ident, "ascii") == 0)
- return SF_ASCII;
- return SF_NONE;
-}
-
-// Match the source element type from a given identifier.
-static ElementTypeT MatchElementType(const char *ident)
-{
- if(strcasecmp(ident, "int") == 0)
- return ET_INT;
- if(strcasecmp(ident, "fp") == 0)
- return ET_FP;
- return ET_NONE;
-}
-
-// Parse and validate a source reference from the data set definition.
-static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
-{
- char ident[MAX_IDENT_LEN+1];
- uint line, col;
- int intVal;
-
- TrIndication(tr, &line, &col);
- if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
- return 0;
- src->mFormat = MatchSourceFormat(ident);
- if(src->mFormat == SF_NONE)
- {
- TrErrorAt(tr, line, col, "Expected a source format.\n");
- return 0;
- }
- if(!TrReadOperator(tr, "("))
- return 0;
- if(src->mFormat == SF_WAVE)
- {
- if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
- return 0;
- src->mType = ET_NONE;
- src->mSize = 0;
- src->mBits = 0;
- src->mChannel = (uint)intVal;
- src->mSkip = 0;
- }
- else
- {
- TrIndication(tr, &line, &col);
- if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
- return 0;
- src->mType = MatchElementType(ident);
- if(src->mType == ET_NONE)
- {
- TrErrorAt(tr, line, col, "Expected a source element type.\n");
- return 0;
- }
- if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
- {
- if(!TrReadOperator(tr, ","))
- return 0;
- if(src->mType == ET_INT)
- {
- if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
- return 0;
- src->mSize = (uint)intVal;
- if(!TrIsOperator(tr, ","))
- src->mBits = (int)(8*src->mSize);
- else
- {
- TrReadOperator(tr, ",");
- TrIndication(tr, &line, &col);
- if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
- return 0;
- if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize))
- {
- TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
- return 0;
- }
- src->mBits = intVal;
- }
- }
- else
- {
- TrIndication(tr, &line, &col);
- if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
- return 0;
- if(intVal != 4 && intVal != 8)
- {
- TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
- return 0;
- }
- src->mSize = (uint)intVal;
- src->mBits = 0;
- }
- }
- else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
- {
- if(!TrReadOperator(tr, ","))
- return 0;
- if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
- return 0;
- src->mSize = 0;
- src->mBits = intVal;
- }
- else
- {
- src->mSize = 0;
- src->mBits = 0;
- }
-
- if(!TrIsOperator(tr, ";"))
- src->mSkip = 0;
- else
- {
- TrReadOperator(tr, ";");
- if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
- return 0;
- src->mSkip = (uint)intVal;
- }
- }
- if(!TrReadOperator(tr, ")"))
- return 0;
- if(TrIsOperator(tr, "@"))
- {
- TrReadOperator(tr, "@");
- if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
- return 0;
- src->mOffset = (uint)intVal;
- }
- else
- src->mOffset = 0;
- if(!TrReadOperator(tr, ":"))
- return 0;
- if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
- return 0;
- return 1;
-}
-
-// Match the target ear (index) from a given identifier.
-static int MatchTargetEar(const char *ident)
-{
- if(strcasecmp(ident, "left") == 0)
- return 0;
- if(strcasecmp(ident, "right") == 0)
- return 1;
- return -1;
-}
-
-// Process the list of sources in the data set definition.
-static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
-{
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize);
- double *hrir = CreateDoubles(hData->mIrPoints);
- uint line, col, fi, ei, ai, ti;
- int count;
-
- printf("Loading sources...");
- fflush(stdout);
- count = 0;
- while(TrIsOperator(tr, "["))
- {
- double factor[2] = { 1.0, 1.0 };
-
- TrIndication(tr, &line, &col);
- TrReadOperator(tr, "[");
- if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
- goto error;
- if(!TrReadOperator(tr, "]"))
- goto error;
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- if(azd->mIrs[0] != NULL)
- {
- TrErrorAt(tr, line, col, "Redefinition of source.\n");
- goto error;
- }
- if(!TrReadOperator(tr, "="))
- goto error;
-
- for(;;)
- {
- SourceRefT src;
- uint ti = 0;
-
- if(!ReadSourceRef(tr, &src))
- goto error;
-
- // TODO: Would be nice to display 'x of y files', but that would
- // require preparing the source refs first to get a total count
- // before loading them.
- ++count;
- printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
- fflush(stdout);
-
- if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir))
- goto error;
-
- if(hData->mChannelType == CT_STEREO)
- {
- char ident[MAX_IDENT_LEN+1];
-
- if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
- goto error;
- ti = MatchTargetEar(ident);
- if((int)ti < 0)
- {
- TrErrorAt(tr, line, col, "Expected a target ear.\n");
- goto error;
- }
- }
- azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
- if(model == HM_DATASET)
- azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]);
- AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]);
- factor[ti] += 1.0;
- if(!TrIsOperator(tr, "+"))
- break;
- TrReadOperator(tr, "+");
- }
- if(hData->mChannelType == CT_STEREO)
- {
- if(azd->mIrs[0] == NULL)
- {
- TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
- goto error;
- }
- else if(azd->mIrs[1] == NULL)
- {
- TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
- goto error;
- }
- }
- }
- printf("\n");
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- if(azd->mIrs[0] != NULL)
- break;
- }
- if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
- break;
- }
- if(ei >= hData->mFds[fi].mEvCount)
- {
- TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
- goto error;
- }
- hData->mFds[fi].mEvStart = ei;
- for(;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- if(azd->mIrs[0] == NULL)
- {
- TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
- goto error;
- }
- }
- }
- }
- for(ti = 0;ti < channels;ti++)
- {
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
- }
- }
- }
- }
- if(!TrLoad(tr))
- {
- free(hrir);
- return 1;
- }
- TrError(tr, "Errant data at end of source list.\n");
-
-error:
- free(hrir);
- return 0;
-}
-
-/* Parse the data set definition and process the source data, storing the
- * resulting data set as desired. If the input name is NULL it will read
- * from standard input.
- */
-static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
-{
- char rateStr[8+1], expName[MAX_PATH_LEN];
- TokenReaderT tr;
- HrirDataT hData;
- FILE *fp;
- int ret;
-
- ResetHrirData(&hData);
- fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
- if(inName != NULL)
- {
- fp = fopen(inName, "r");
- if(fp == NULL)
- {
- fprintf(stderr, "Error: Could not open definition file '%s'\n", inName);
- return 0;
- }
- TrSetup(fp, inName, &tr);
- }
- else
- {
- fp = stdin;
- TrSetup(fp, "<stdin>", &tr);
- }
- if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
- {
- if(inName != NULL)
- fclose(fp);
- return 0;
- }
- if(!ProcessSources(model, &tr, &hData))
- {
- FreeHrirData(&hData);
- if(inName != NULL)
- fclose(fp);
- return 0;
- }
- if(fp != stdin)
- fclose(fp);
- if(equalize)
- {
- uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
- uint m = 1 + hData.mFftSize / 2;
- double *dfa = CreateDoubles(c * m);
-
- fprintf(stdout, "Calculating diffuse-field average...\n");
- CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa);
- fprintf(stdout, "Performing diffuse-field equalization...\n");
- DiffuseFieldEqualize(c, m, dfa, &hData);
- free(dfa);
- }
- fprintf(stdout, "Performing minimum phase reconstruction...\n");
- ReconstructHrirs(&hData);
- if(outRate != 0 && outRate != hData.mIrRate)
- {
- fprintf(stdout, "Resampling HRIRs...\n");
- ResampleHrirs(outRate, &hData);
- }
- fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
- hData.mIrPoints = truncSize;
- fprintf(stdout, "Synthesizing missing elevations...\n");
- if(model == HM_DATASET)
- SynthesizeOnsets(&hData);
- SynthesizeHrirs(&hData);
- fprintf(stdout, "Normalizing final HRIRs...\n");
- NormalizeHrirs(&hData);
- fprintf(stdout, "Calculating impulse delays...\n");
- CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
- snprintf(rateStr, 8, "%u", hData.mIrRate);
- StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
- fprintf(stdout, "Creating MHR data set %s...\n", expName);
- ret = StoreMhr(&hData, expName);
-
- FreeHrirData(&hData);
- return ret;
-}
-
-static void PrintHelp(const char *argv0, FILE *ofile)
-{
- fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
- fprintf(ofile, "Options:\n");
- fprintf(ofile, " -m Ignored for compatibility.\n");
- fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
- fprintf(ofile, " resample the HRIRs accordingly.\n");
- fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
- fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
- fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
- fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
- fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
- fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
- fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
- fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
- fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
- fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n");
- fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
- fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
- fprintf(ofile, " the data set sample rate.\n");
-}
-
-// Standard command line dispatch.
-int main(int argc, char *argv[])
-{
- const char *inName = NULL, *outName = NULL;
- uint outRate, fftSize;
- int equalize, surface;
- char *end = NULL;
- HeadModelT model;
- uint truncSize;
- double radius;
- double limit;
- int opt;
-
- GET_UNICODE_ARGS(&argc, &argv);
-
- if(argc < 2)
- {
- fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
- PrintHelp(argv[0], stdout);
- exit(EXIT_SUCCESS);
- }
-
- outName = "./oalsoft_hrtf_%r.mhr";
- outRate = 0;
- fftSize = 0;
- equalize = DEFAULT_EQUALIZE;
- surface = DEFAULT_SURFACE;
- limit = DEFAULT_LIMIT;
- truncSize = DEFAULT_TRUNCSIZE;
- model = DEFAULT_HEAD_MODEL;
- radius = DEFAULT_CUSTOM_RADIUS;
-
- while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1)
- {
- switch(opt)
- {
- case 'm':
- fprintf(stderr, "Ignoring unused command '-m'.\n");
- break;
-
- case 'r':
- outRate = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'f':
- fftSize = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'e':
- if(strcmp(optarg, "on") == 0)
- equalize = 1;
- else if(strcmp(optarg, "off") == 0)
- equalize = 0;
- else
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 's':
- if(strcmp(optarg, "on") == 0)
- surface = 1;
- else if(strcmp(optarg, "off") == 0)
- surface = 0;
- else
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'l':
- if(strcmp(optarg, "none") == 0)
- limit = 0.0;
- else
- {
- limit = strtod(optarg, &end);
- if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
- exit(EXIT_FAILURE);
- }
- }
- break;
-
- case 'w':
- truncSize = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'd':
- if(strcmp(optarg, "dataset") == 0)
- model = HM_DATASET;
- else if(strcmp(optarg, "sphere") == 0)
- model = HM_SPHERE;
- else
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'c':
- radius = strtod(optarg, &end);
- if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
- {
- fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'i':
- inName = optarg;
- break;
-
- case 'o':
- outName = optarg;
- break;
-
- case 'h':
- PrintHelp(argv[0], stdout);
- exit(EXIT_SUCCESS);
-
- default: /* '?' */
- PrintHelp(argv[0], stderr);
- exit(EXIT_FAILURE);
- }
- }
-
- if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
- truncSize, model, radius, outName))
- return -1;
- fprintf(stdout, "Operation completed.\n");
-
- return EXIT_SUCCESS;
-}