aboutsummaryrefslogtreecommitdiffstats
path: root/utils/makemhr/makemhr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/makemhr/makemhr.cpp')
-rw-r--r--utils/makemhr/makemhr.cpp3855
1 files changed, 3855 insertions, 0 deletions
diff --git a/utils/makemhr/makemhr.cpp b/utils/makemhr/makemhr.cpp
new file mode 100644
index 00000000..27b1d69d
--- /dev/null
+++ b/utils/makemhr/makemhr.cpp
@@ -0,0 +1,3855 @@
+/*
+ * HRTF utility for producing and demonstrating the process of creating an
+ * OpenAL Soft compatible HRIR data set.
+ *
+ * Copyright (C) 2011-2019 Christopher Fitzgerald
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
+ *
+ * --------------------------------------------------------------------------
+ *
+ * A big thanks goes out to all those whose work done in the field of
+ * binaural sound synthesis using measured HRTFs makes this utility and the
+ * OpenAL Soft implementation possible.
+ *
+ * The algorithm for diffuse-field equalization was adapted from the work
+ * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
+ * MIT Media Laboratory. It operates as follows:
+ *
+ * 1. Take the FFT of each HRIR and only keep the magnitude responses.
+ * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
+ * their contribution to the total surface area covered by their
+ * measurement. This has since been modified to use coverage volume for
+ * multi-field HRIR data sets.
+ * 3. Take the diffuse-field average and limit its magnitude range.
+ * 4. Equalize the responses by using the inverse of the diffuse-field
+ * average.
+ * 5. Reconstruct the minimum-phase responses.
+ * 5. Zero the DC component.
+ * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
+ *
+ * The spherical head algorithm for calculating propagation delay was adapted
+ * from the paper:
+ *
+ * Modeling Interaural Time Difference Assuming a Spherical Head
+ * Joel David Miller
+ * Music 150, Musical Acoustics, Stanford University
+ * December 2, 2001
+ *
+ * The formulae for calculating the Kaiser window metrics are from the
+ * the textbook:
+ *
+ * Discrete-Time Signal Processing
+ * Alan V. Oppenheim and Ronald W. Schafer
+ * Prentice-Hall Signal Processing Series
+ * 1999
+ */
+
+#include "config.h"
+
+#define _UNICODE
+#include <cstdio>
+#include <cstdlib>
+#include <cstdarg>
+#include <cstddef>
+#include <cstring>
+#include <climits>
+#include <cstdint>
+#include <cctype>
+#include <cmath>
+#ifdef HAVE_STRINGS_H
+#include <strings.h>
+#endif
+#ifdef HAVE_GETOPT
+#include <unistd.h>
+#else
+#include "getopt.h"
+#endif
+
+#include <atomic>
+#include <limits>
+#include <vector>
+#include <chrono>
+#include <thread>
+#include <complex>
+#include <numeric>
+#include <algorithm>
+#include <functional>
+
+#include "mysofa.h"
+
+#include "win_main_utf8.h"
+
+namespace {
+
+using namespace std::placeholders;
+
+} // namespace
+
+#ifndef M_PI
+#define M_PI (3.14159265358979323846)
+#endif
+
+
+// The epsilon used to maintain signal stability.
+#define EPSILON (1e-9)
+
+// Constants for accessing the token reader's ring buffer.
+#define TR_RING_BITS (16)
+#define TR_RING_SIZE (1 << TR_RING_BITS)
+#define TR_RING_MASK (TR_RING_SIZE - 1)
+
+// The token reader's load interval in bytes.
+#define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
+
+// The maximum identifier length used when processing the data set
+// definition.
+#define MAX_IDENT_LEN (16)
+
+// The maximum path length used when processing filenames.
+#define MAX_PATH_LEN (256)
+
+// The limits for the sample 'rate' metric in the data set definition and for
+// resampling.
+#define MIN_RATE (32000)
+#define MAX_RATE (96000)
+
+// The limits for the HRIR 'points' metric in the data set definition.
+#define MIN_POINTS (16)
+#define MAX_POINTS (8192)
+
+// The limit to the number of 'distances' listed in the data set definition.
+#define MAX_FD_COUNT (16)
+
+// The limits to the number of 'azimuths' listed in the data set definition.
+#define MIN_EV_COUNT (5)
+#define MAX_EV_COUNT (128)
+
+// The limits for each of the 'azimuths' listed in the data set definition.
+#define MIN_AZ_COUNT (1)
+#define MAX_AZ_COUNT (128)
+
+// The limits for the listener's head 'radius' in the data set definition.
+#define MIN_RADIUS (0.05)
+#define MAX_RADIUS (0.15)
+
+// The limits for the 'distance' from source to listener for each field in
+// the definition file.
+#define MIN_DISTANCE (0.05)
+#define MAX_DISTANCE (2.50)
+
+// The maximum number of channels that can be addressed for a WAVE file
+// source listed in the data set definition.
+#define MAX_WAVE_CHANNELS (65535)
+
+// The limits to the byte size for a binary source listed in the definition
+// file.
+#define MIN_BIN_SIZE (2)
+#define MAX_BIN_SIZE (4)
+
+// The minimum number of significant bits for binary sources listed in the
+// data set definition. The maximum is calculated from the byte size.
+#define MIN_BIN_BITS (16)
+
+// The limits to the number of significant bits for an ASCII source listed in
+// the data set definition.
+#define MIN_ASCII_BITS (16)
+#define MAX_ASCII_BITS (32)
+
+// The limits to the FFT window size override on the command line.
+#define MIN_FFTSIZE (65536)
+#define MAX_FFTSIZE (131072)
+
+// The limits to the equalization range limit on the command line.
+#define MIN_LIMIT (2.0)
+#define MAX_LIMIT (120.0)
+
+// The limits to the truncation window size on the command line.
+#define MIN_TRUNCSIZE (16)
+#define MAX_TRUNCSIZE (512)
+
+// The limits to the custom head radius on the command line.
+#define MIN_CUSTOM_RADIUS (0.05)
+#define MAX_CUSTOM_RADIUS (0.15)
+
+// The truncation window size must be a multiple of the below value to allow
+// for vectorized convolution.
+#define MOD_TRUNCSIZE (8)
+
+// The defaults for the command line options.
+#define DEFAULT_FFTSIZE (65536)
+#define DEFAULT_EQUALIZE (1)
+#define DEFAULT_SURFACE (1)
+#define DEFAULT_LIMIT (24.0)
+#define DEFAULT_TRUNCSIZE (32)
+#define DEFAULT_HEAD_MODEL (HM_DATASET)
+#define DEFAULT_CUSTOM_RADIUS (0.0)
+
+// The four-character-codes for RIFF/RIFX WAVE file chunks.
+#define FOURCC_RIFF (0x46464952) // 'RIFF'
+#define FOURCC_RIFX (0x58464952) // 'RIFX'
+#define FOURCC_WAVE (0x45564157) // 'WAVE'
+#define FOURCC_FMT (0x20746D66) // 'fmt '
+#define FOURCC_DATA (0x61746164) // 'data'
+#define FOURCC_LIST (0x5453494C) // 'LIST'
+#define FOURCC_WAVL (0x6C766177) // 'wavl'
+#define FOURCC_SLNT (0x746E6C73) // 'slnt'
+
+// The supported wave formats.
+#define WAVE_FORMAT_PCM (0x0001)
+#define WAVE_FORMAT_IEEE_FLOAT (0x0003)
+#define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
+
+// The maximum propagation delay value supported by OpenAL Soft.
+#define MAX_HRTD (63.0)
+
+// The OpenAL Soft HRTF format marker. It stands for minimum-phase head
+// response protocol 02.
+#define MHR_FORMAT ("MinPHR02")
+
+// Sample and channel type enum values.
+enum SampleTypeT {
+ ST_S16 = 0,
+ ST_S24 = 1
+};
+
+// Certain iterations rely on these integer enum values.
+enum ChannelTypeT {
+ CT_NONE = -1,
+ CT_MONO = 0,
+ CT_STEREO = 1
+};
+
+// Byte order for the serialization routines.
+enum ByteOrderT {
+ BO_NONE,
+ BO_LITTLE,
+ BO_BIG
+};
+
+// Source format for the references listed in the data set definition.
+enum SourceFormatT {
+ SF_NONE,
+ SF_ASCII, // ASCII text file.
+ SF_BIN_LE, // Little-endian binary file.
+ SF_BIN_BE, // Big-endian binary file.
+ SF_WAVE, // RIFF/RIFX WAVE file.
+ SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file.
+};
+
+// Element types for the references listed in the data set definition.
+enum ElementTypeT {
+ ET_NONE,
+ ET_INT, // Integer elements.
+ ET_FP // Floating-point elements.
+};
+
+// Head model used for calculating the impulse delays.
+enum HeadModelT {
+ HM_NONE,
+ HM_DATASET, // Measure the onset from the dataset.
+ HM_SPHERE // Calculate the onset using a spherical head model.
+};
+
+/* Unsigned integer type. */
+using uint = unsigned int;
+
+/* Complex double type. */
+using complex_d = std::complex<double>;
+
+/* Channel index enums. Mono uses LeftChannel only. */
+enum ChannelIndex : uint {
+ LeftChannel = 0u,
+ RightChannel = 1u
+};
+
+
+// Token reader state for parsing the data set definition.
+struct TokenReaderT {
+ FILE *mFile;
+ const char *mName;
+ uint mLine;
+ uint mColumn;
+ char mRing[TR_RING_SIZE];
+ size_t mIn;
+ size_t mOut;
+};
+
+// Source reference state used when loading sources.
+struct SourceRefT {
+ SourceFormatT mFormat;
+ ElementTypeT mType;
+ uint mSize;
+ int mBits;
+ uint mChannel;
+ double mAzimuth;
+ double mElevation;
+ double mRadius;
+ uint mSkip;
+ uint mOffset;
+ char mPath[MAX_PATH_LEN+1];
+};
+
+// Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
+struct HrirAzT {
+ double mAzimuth{0.0};
+ uint mIndex{0u};
+ double mDelays[2]{0.0, 0.0};
+ double *mIrs[2]{nullptr, nullptr};
+};
+
+struct HrirEvT {
+ double mElevation{0.0};
+ uint mIrCount{0u};
+ uint mAzCount{0u};
+ HrirAzT *mAzs{nullptr};
+};
+
+struct HrirFdT {
+ double mDistance{0.0};
+ uint mIrCount{0u};
+ uint mEvCount{0u};
+ uint mEvStart{0u};
+ HrirEvT *mEvs{nullptr};
+};
+
+// The HRIR metrics and data set used when loading, processing, and storing
+// the resulting HRTF.
+struct HrirDataT {
+ uint mIrRate{0u};
+ SampleTypeT mSampleType{ST_S24};
+ ChannelTypeT mChannelType{CT_NONE};
+ uint mIrPoints{0u};
+ uint mFftSize{0u};
+ uint mIrSize{0u};
+ double mRadius{0.0};
+ uint mIrCount{0u};
+ uint mFdCount{0u};
+
+ std::vector<double> mHrirsBase;
+ std::vector<HrirEvT> mEvsBase;
+ std::vector<HrirAzT> mAzsBase;
+
+ std::vector<HrirFdT> mFds;
+};
+
+// The resampler metrics and FIR filter.
+struct ResamplerT {
+ uint mP, mQ, mM, mL;
+ std::vector<double> mF;
+};
+
+
+/*****************************
+ *** Token reader routines ***
+ *****************************/
+
+/* Whitespace is not significant. It can process tokens as identifiers, numbers
+ * (integer and floating-point), strings, and operators. Strings must be
+ * encapsulated by double-quotes and cannot span multiple lines.
+ */
+
+// Setup the reader on the given file. The filename can be NULL if no error
+// output is desired.
+static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
+{
+ const char *name = nullptr;
+
+ if(filename)
+ {
+ const char *slash = strrchr(filename, '/');
+ if(slash)
+ {
+ const char *bslash = strrchr(slash+1, '\\');
+ if(bslash) name = bslash+1;
+ else name = slash+1;
+ }
+ else
+ {
+ const char *bslash = strrchr(filename, '\\');
+ if(bslash) name = bslash+1;
+ else name = filename;
+ }
+ }
+
+ tr->mFile = fp;
+ tr->mName = name;
+ tr->mLine = 1;
+ tr->mColumn = 1;
+ tr->mIn = 0;
+ tr->mOut = 0;
+}
+
+// Prime the reader's ring buffer, and return a result indicating that there
+// is text to process.
+static int TrLoad(TokenReaderT *tr)
+{
+ size_t toLoad, in, count;
+
+ toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
+ if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
+ {
+ // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
+ toLoad = TR_LOAD_SIZE;
+ in = tr->mIn&TR_RING_MASK;
+ count = TR_RING_SIZE - in;
+ if(count < toLoad)
+ {
+ tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
+ tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
+ }
+ else
+ tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
+
+ if(tr->mOut >= TR_RING_SIZE)
+ {
+ tr->mOut -= TR_RING_SIZE;
+ tr->mIn -= TR_RING_SIZE;
+ }
+ }
+ if(tr->mIn > tr->mOut)
+ return 1;
+ return 0;
+}
+
+// Error display routine. Only displays when the base name is not NULL.
+static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
+{
+ if(!tr->mName)
+ return;
+ fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column);
+ vfprintf(stderr, format, argPtr);
+}
+
+// Used to display an error at a saved line/column.
+static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
+{
+ va_list argPtr;
+
+ va_start(argPtr, format);
+ TrErrorVA(tr, line, column, format, argPtr);
+ va_end(argPtr);
+}
+
+// Used to display an error at the current line/column.
+static void TrError(const TokenReaderT *tr, const char *format, ...)
+{
+ va_list argPtr;
+
+ va_start(argPtr, format);
+ TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
+ va_end(argPtr);
+}
+
+// Skips to the next line.
+static void TrSkipLine(TokenReaderT *tr)
+{
+ char ch;
+
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ tr->mOut++;
+ if(ch == '\n')
+ {
+ tr->mLine++;
+ tr->mColumn = 1;
+ break;
+ }
+ tr->mColumn ++;
+ }
+}
+
+// Skips to the next token.
+static int TrSkipWhitespace(TokenReaderT *tr)
+{
+ while(TrLoad(tr))
+ {
+ char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
+ if(isspace(ch))
+ {
+ tr->mOut++;
+ if(ch == '\n')
+ {
+ tr->mLine++;
+ tr->mColumn = 1;
+ }
+ else
+ tr->mColumn++;
+ }
+ else if(ch == '#')
+ TrSkipLine(tr);
+ else
+ return 1;
+ }
+ return 0;
+}
+
+// Get the line and/or column of the next token (or the end of input).
+static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
+{
+ TrSkipWhitespace(tr);
+ if(line) *line = tr->mLine;
+ if(column) *column = tr->mColumn;
+}
+
+// Checks to see if a token is (likely to be) an identifier. It does not
+// display any errors and will not proceed to the next token.
+static int TrIsIdent(TokenReaderT *tr)
+{
+ if(!TrSkipWhitespace(tr))
+ return 0;
+ char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
+ return ch == '_' || isalpha(ch);
+}
+
+
+// Checks to see if a token is the given operator. It does not display any
+// errors and will not proceed to the next token.
+static int TrIsOperator(TokenReaderT *tr, const char *op)
+{
+ size_t out, len;
+ char ch;
+
+ if(!TrSkipWhitespace(tr))
+ return 0;
+ out = tr->mOut;
+ len = 0;
+ while(op[len] != '\0' && out < tr->mIn)
+ {
+ ch = tr->mRing[out&TR_RING_MASK];
+ if(ch != op[len]) break;
+ len++;
+ out++;
+ }
+ if(op[len] == '\0')
+ return 1;
+ return 0;
+}
+
+/* The TrRead*() routines obtain the value of a matching token type. They
+ * display type, form, and boundary errors and will proceed to the next
+ * token.
+ */
+
+// Reads and validates an identifier token.
+static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '_' || isalpha(ch))
+ {
+ len = 0;
+ do {
+ if(len < maxLen)
+ ident[len] = ch;
+ len++;
+ tr->mOut++;
+ if(!TrLoad(tr))
+ break;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ } while(ch == '_' || isdigit(ch) || isalpha(ch));
+
+ tr->mColumn += len;
+ if(len < maxLen)
+ {
+ ident[len] = '\0';
+ return 1;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
+ return 0;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
+ return 0;
+}
+
+// Reads and validates (including bounds) an integer token.
+static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
+{
+ uint col, digis, len;
+ char ch, temp[64+1];
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '+' || ch == '-')
+ {
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ digis = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ tr->mColumn += len;
+ if(digis > 0 && ch != '.' && !isalpha(ch))
+ {
+ if(len > 64)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
+ return 0;
+ }
+ temp[len] = '\0';
+ *value = strtol(temp, nullptr, 10);
+ if(*value < loBound || *value > hiBound)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
+ return 0;
+ }
+ return 1;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
+ return 0;
+}
+
+// Reads and validates (including bounds) a float token.
+static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
+{
+ uint col, digis, len;
+ char ch, temp[64+1];
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '+' || ch == '-')
+ {
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+
+ digis = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ if(ch == '.')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ if(digis > 0)
+ {
+ if(ch == 'E' || ch == 'e')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis = 0;
+ tr->mOut++;
+ if(ch == '+' || ch == '-')
+ {
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ tr->mOut++;
+ }
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(!isdigit(ch)) break;
+ if(len < 64)
+ temp[len] = ch;
+ len++;
+ digis++;
+ tr->mOut++;
+ }
+ }
+ tr->mColumn += len;
+ if(digis > 0 && ch != '.' && !isalpha(ch))
+ {
+ if(len > 64)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Float is too long.");
+ return 0;
+ }
+ temp[len] = '\0';
+ *value = strtod(temp, nullptr);
+ if(*value < loBound || *value > hiBound)
+ {
+ TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
+ return 0;
+ }
+ return 1;
+ }
+ }
+ else
+ tr->mColumn += len;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
+ return 0;
+}
+
+// Reads and validates a string token.
+static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch == '\"')
+ {
+ tr->mOut++;
+ len = 0;
+ while(TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ tr->mOut++;
+ if(ch == '\"')
+ break;
+ if(ch == '\n')
+ {
+ TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
+ return 0;
+ }
+ if(len < maxLen)
+ text[len] = ch;
+ len++;
+ }
+ if(ch != '\"')
+ {
+ tr->mColumn += 1 + len;
+ TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
+ return 0;
+ }
+ tr->mColumn += 2 + len;
+ if(len > maxLen)
+ {
+ TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
+ return 0;
+ }
+ text[len] = '\0';
+ return 1;
+ }
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
+ return 0;
+}
+
+// Reads and validates the given operator.
+static int TrReadOperator(TokenReaderT *tr, const char *op)
+{
+ uint col, len;
+ char ch;
+
+ col = tr->mColumn;
+ if(TrSkipWhitespace(tr))
+ {
+ col = tr->mColumn;
+ len = 0;
+ while(op[len] != '\0' && TrLoad(tr))
+ {
+ ch = tr->mRing[tr->mOut&TR_RING_MASK];
+ if(ch != op[len]) break;
+ len++;
+ tr->mOut++;
+ }
+ tr->mColumn += len;
+ if(op[len] == '\0')
+ return 1;
+ }
+ TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
+ return 0;
+}
+
+/* Performs a string substitution. Any case-insensitive occurrences of the
+ * pattern string are replaced with the replacement string. The result is
+ * truncated if necessary.
+ */
+static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
+{
+ size_t inLen, patLen, repLen;
+ size_t si, di;
+ int truncated;
+
+ inLen = strlen(in);
+ patLen = strlen(pat);
+ repLen = strlen(rep);
+ si = 0;
+ di = 0;
+ truncated = 0;
+ while(si < inLen && di < maxLen)
+ {
+ if(patLen <= inLen-si)
+ {
+ if(strncasecmp(&in[si], pat, patLen) == 0)
+ {
+ if(repLen > maxLen-di)
+ {
+ repLen = maxLen - di;
+ truncated = 1;
+ }
+ strncpy(&out[di], rep, repLen);
+ si += patLen;
+ di += repLen;
+ }
+ }
+ out[di] = in[si];
+ si++;
+ di++;
+ }
+ if(si < inLen)
+ truncated = 1;
+ out[di] = '\0';
+ return !truncated;
+}
+
+
+/*********************
+ *** Math routines ***
+ *********************/
+
+// Simple clamp routine.
+static double Clamp(const double val, const double lower, const double upper)
+{
+ return std::min(std::max(val, lower), upper);
+}
+
+// Performs linear interpolation.
+static double Lerp(const double a, const double b, const double f)
+{
+ return a + f * (b - a);
+}
+
+static inline uint dither_rng(uint *seed)
+{
+ *seed = *seed * 96314165 + 907633515;
+ return *seed;
+}
+
+// Performs a triangular probability density function dither. The input samples
+// should be normalized (-1 to +1).
+static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
+ const int count, const int step, uint *seed)
+{
+ static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();
+
+ for(int i{0};i < count;i++)
+ {
+ uint prn0{dither_rng(seed)};
+ uint prn1{dither_rng(seed)};
+ out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
+ }
+}
+
+/* Fast Fourier transform routines. The number of points must be a power of
+ * two.
+ */
+
+// Performs bit-reversal ordering.
+static void FftArrange(const uint n, complex_d *inout)
+{
+ // Handle in-place arrangement.
+ uint rk{0u};
+ for(uint k{0u};k < n;k++)
+ {
+ if(rk > k)
+ std::swap(inout[rk], inout[k]);
+
+ uint m{n};
+ while(rk&(m >>= 1))
+ rk &= ~m;
+ rk |= m;
+ }
+}
+
+// Performs the summation.
+static void FftSummation(const int n, const double s, complex_d *cplx)
+{
+ double pi;
+ int m, m2;
+ int i, k, mk;
+
+ pi = s * M_PI;
+ for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
+ {
+ // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
+ double sm = sin(0.5 * pi / m);
+ auto v = complex_d{-2.0*sm*sm, -sin(pi / m)};
+ auto w = complex_d{1.0, 0.0};
+ for(i = 0;i < m;i++)
+ {
+ for(k = i;k < n;k += m2)
+ {
+ mk = k + m;
+ auto t = w * cplx[mk];
+ cplx[mk] = cplx[k] - t;
+ cplx[k] = cplx[k] + t;
+ }
+ w += v*w;
+ }
+ }
+}
+
+// Performs a forward FFT.
+static void FftForward(const uint n, complex_d *inout)
+{
+ FftArrange(n, inout);
+ FftSummation(n, 1.0, inout);
+}
+
+// Performs an inverse FFT.
+static void FftInverse(const uint n, complex_d *inout)
+{
+ FftArrange(n, inout);
+ FftSummation(n, -1.0, inout);
+ double f{1.0 / n};
+ for(uint i{0};i < n;i++)
+ inout[i] *= f;
+}
+
+/* Calculate the complex helical sequence (or discrete-time analytical signal)
+ * of the given input using the Hilbert transform. Given the natural logarithm
+ * of a signal's magnitude response, the imaginary components can be used as
+ * the angles for minimum-phase reconstruction.
+ */
+static void Hilbert(const uint n, complex_d *inout)
+{
+ uint i;
+
+ // Handle in-place operation.
+ for(i = 0;i < n;i++)
+ inout[i].imag(0.0);
+
+ FftInverse(n, inout);
+ for(i = 1;i < (n+1)/2;i++)
+ inout[i] *= 2.0;
+ /* Increment i if n is even. */
+ i += (n&1)^1;
+ for(;i < n;i++)
+ inout[i] = complex_d{0.0, 0.0};
+ FftForward(n, inout);
+}
+
+/* Calculate the magnitude response of the given input. This is used in
+ * place of phase decomposition, since the phase residuals are discarded for
+ * minimum phase reconstruction. The mirrored half of the response is also
+ * discarded.
+ */
+static void MagnitudeResponse(const uint n, const complex_d *in, double *out)
+{
+ const uint m = 1 + (n / 2);
+ uint i;
+ for(i = 0;i < m;i++)
+ out[i] = std::max(std::abs(in[i]), EPSILON);
+}
+
+/* Apply a range limit (in dB) to the given magnitude response. This is used
+ * to adjust the effects of the diffuse-field average on the equalization
+ * process.
+ */
+static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
+{
+ double halfLim;
+ uint i, lower, upper;
+ double ave;
+
+ halfLim = limit / 2.0;
+ // Convert the response to dB.
+ for(i = 0;i < m;i++)
+ out[i] = 20.0 * std::log10(in[i]);
+ // Use six octaves to calculate the average magnitude of the signal.
+ lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
+ upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
+ ave = 0.0;
+ for(i = lower;i <= upper;i++)
+ ave += out[i];
+ ave /= upper - lower + 1;
+ // Keep the response within range of the average magnitude.
+ for(i = 0;i < m;i++)
+ out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
+ // Convert the response back to linear magnitude.
+ for(i = 0;i < m;i++)
+ out[i] = std::pow(10.0, out[i] / 20.0);
+}
+
+/* Reconstructs the minimum-phase component for the given magnitude response
+ * of a signal. This is equivalent to phase recomposition, sans the missing
+ * residuals (which were discarded). The mirrored half of the response is
+ * reconstructed.
+ */
+static void MinimumPhase(const uint n, const double *in, complex_d *out)
+{
+ const uint m = 1 + (n / 2);
+ std::vector<double> mags(n);
+
+ uint i;
+ for(i = 0;i < m;i++)
+ {
+ mags[i] = std::max(EPSILON, in[i]);
+ out[i] = complex_d{std::log(mags[i]), 0.0};
+ }
+ for(;i < n;i++)
+ {
+ mags[i] = mags[n - i];
+ out[i] = out[n - i];
+ }
+ Hilbert(n, out);
+ // Remove any DC offset the filter has.
+ mags[0] = EPSILON;
+ for(i = 0;i < n;i++)
+ {
+ auto a = std::exp(complex_d{0.0, out[i].imag()});
+ out[i] = complex_d{mags[i], 0.0} * a;
+ }
+}
+
+
+/***************************
+ *** Resampler functions ***
+ ***************************/
+
+/* This is the normalized cardinal sine (sinc) function.
+ *
+ * sinc(x) = { 1, x = 0
+ * { sin(pi x) / (pi x), otherwise.
+ */
+static double Sinc(const double x)
+{
+ if(std::abs(x) < EPSILON)
+ return 1.0;
+ return std::sin(M_PI * x) / (M_PI * x);
+}
+
+/* The zero-order modified Bessel function of the first kind, used for the
+ * Kaiser window.
+ *
+ * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
+ * = sum_{k=0}^inf ((x / 2)^k / k!)^2
+ */
+static double BesselI_0(const double x)
+{
+ double term, sum, x2, y, last_sum;
+ int k;
+
+ // Start at k=1 since k=0 is trivial.
+ term = 1.0;
+ sum = 1.0;
+ x2 = x/2.0;
+ k = 1;
+
+ // Let the integration converge until the term of the sum is no longer
+ // significant.
+ do {
+ y = x2 / k;
+ k++;
+ last_sum = sum;
+ term *= y * y;
+ sum += term;
+ } while(sum != last_sum);
+ return sum;
+}
+
+/* Calculate a Kaiser window from the given beta value and a normalized k
+ * [-1, 1].
+ *
+ * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
+ * { 0, elsewhere.
+ *
+ * Where k can be calculated as:
+ *
+ * k = i / l, where -l <= i <= l.
+ *
+ * or:
+ *
+ * k = 2 i / M - 1, where 0 <= i <= M.
+ */
+static double Kaiser(const double b, const double k)
+{
+ if(!(k >= -1.0 && k <= 1.0))
+ return 0.0;
+ return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
+}
+
+// Calculates the greatest common divisor of a and b.
+static uint Gcd(uint x, uint y)
+{
+ while(y > 0)
+ {
+ uint z{y};
+ y = x % y;
+ x = z;
+ }
+ return x;
+}
+
+/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
+ * the transition width is normalized frequency (0.5 is nyquist).
+ *
+ * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
+ * { ceil(5.79 / 2 pi f_t), r <= 21.
+ *
+ */
+static uint CalcKaiserOrder(const double rejection, const double transition)
+{
+ double w_t = 2.0 * M_PI * transition;
+ if(rejection > 21.0)
+ return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
+ return static_cast<uint>(std::ceil(5.79 / w_t));
+}
+
+// Calculates the beta value of the Kaiser window. Rejection is in dB.
+static double CalcKaiserBeta(const double rejection)
+{
+ if(rejection > 50.0)
+ return 0.1102 * (rejection - 8.7);
+ if(rejection >= 21.0)
+ return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
+ (0.07886 * (rejection - 21.0));
+ return 0.0;
+}
+
+/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
+ * width, beta, gain, and cutoff. The point is specified in non-normalized
+ * samples, from 0 to M, where M = (2 l + 1).
+ *
+ * w(k) 2 p f_t sinc(2 f_t x)
+ *
+ * x -- centered sample index (i - l)
+ * k -- normalized and centered window index (x / l)
+ * w(k) -- window function (Kaiser)
+ * p -- gain compensation factor when sampling
+ * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
+ */
+static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
+{
+ return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
+}
+
+/* This is a polyphase sinc-filtered resampler.
+ *
+ * Upsample Downsample
+ *
+ * p/q = 3/2 p/q = 3/5
+ *
+ * M-+-+-+-> M-+-+-+->
+ * -------------------+ ---------------------+
+ * p s * f f f f|f| | p s * f f f f f |
+ * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
+ * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
+ * s * f|f|f f f | s * f f|f|f f |
+ * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
+ * --------+=+--------+ 0 * |0|0 0 0 0 |
+ * d . d .|d|. d . d ----------+=+--------+
+ * d . . . .|d|. . . .
+ * q->
+ * q-+-+-+->
+ *
+ * P_f(i,j) = q i mod p + pj
+ * P_s(i,j) = floor(q i / p) - j
+ * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
+ * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
+ * { 0, P_f(i,j) >= M. }
+ */
+
+// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
+// that's used to cut frequencies above the destination nyquist.
+static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
+{
+ double cutoff, width, beta;
+ uint gcd, l;
+ int i;
+
+ gcd = Gcd(srcRate, dstRate);
+ rs->mP = dstRate / gcd;
+ rs->mQ = srcRate / gcd;
+ /* The cutoff is adjusted by half the transition width, so the transition
+ * ends before the nyquist (0.5). Both are scaled by the downsampling
+ * factor.
+ */
+ if(rs->mP > rs->mQ)
+ {
+ cutoff = 0.475 / rs->mP;
+ width = 0.05 / rs->mP;
+ }
+ else
+ {
+ cutoff = 0.475 / rs->mQ;
+ width = 0.05 / rs->mQ;
+ }
+ // A rejection of -180 dB is used for the stop band. Round up when
+ // calculating the left offset to avoid increasing the transition width.
+ l = (CalcKaiserOrder(180.0, width)+1) / 2;
+ beta = CalcKaiserBeta(180.0);
+ rs->mM = l*2 + 1;
+ rs->mL = l;
+ rs->mF.resize(rs->mM);
+ for(i = 0;i < (static_cast<int>(rs->mM));i++)
+ rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i);
+}
+
+// Perform the upsample-filter-downsample resampling operation using a
+// polyphase filter implementation.
+static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
+{
+ const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
+ std::vector<double> workspace;
+ const double *f = rs->mF.data();
+ uint j_f, j_s;
+ double *work;
+ uint i;
+
+ if(outN == 0)
+ return;
+
+ // Handle in-place operation.
+ if(in == out)
+ {
+ workspace.resize(outN);
+ work = workspace.data();
+ }
+ else
+ work = out;
+ // Resample the input.
+ for(i = 0;i < outN;i++)
+ {
+ double r = 0.0;
+ // Input starts at l to compensate for the filter delay. This will
+ // drop any build-up from the first half of the filter.
+ j_f = (l + (q * i)) % p;
+ j_s = (l + (q * i)) / p;
+ while(j_f < m)
+ {
+ // Only take input when 0 <= j_s < inN. This single unsigned
+ // comparison catches both cases.
+ if(j_s < inN)
+ r += f[j_f] * in[j_s];
+ j_f += p;
+ j_s--;
+ }
+ work[i] = r;
+ }
+ // Clean up after in-place operation.
+ if(work != out)
+ {
+ for(i = 0;i < outN;i++)
+ out[i] = work[i];
+ }
+}
+
+/*************************
+ *** File source input ***
+ *************************/
+
+// Read a binary value of the specified byte order and byte size from a file,
+// storing it as a 32-bit unsigned integer.
+static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out)
+{
+ uint8_t in[4];
+ uint32_t accum;
+ uint i;
+
+ if(fread(in, 1, bytes, fp) != bytes)
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ accum = 0;
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < bytes;i++)
+ accum = (accum<<8) | in[bytes - i - 1];
+ break;
+ case BO_BIG:
+ for(i = 0;i < bytes;i++)
+ accum = (accum<<8) | in[i];
+ break;
+ default:
+ break;
+ }
+ *out = accum;
+ return 1;
+}
+
+// Read a binary value of the specified byte order from a file, storing it as
+// a 64-bit unsigned integer.
+static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out)
+{
+ uint8_t in[8];
+ uint64_t accum;
+ uint i;
+
+ if(fread(in, 1, 8, fp) != 8)
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ accum = 0ULL;
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < 8;i++)
+ accum = (accum<<8) | in[8 - i - 1];
+ break;
+ case BO_BIG:
+ for(i = 0;i < 8;i++)
+ accum = (accum<<8) | in[i];
+ break;
+ default:
+ break;
+ }
+ *out = accum;
+ return 1;
+}
+
+/* Read a binary value of the specified type, byte order, and byte size from
+ * a file, converting it to a double. For integer types, the significant
+ * bits are used to normalize the result. The sign of bits determines
+ * whether they are padded toward the MSB (negative) or LSB (positive).
+ * Floating-point types are not normalized.
+ */
+static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
+{
+ union {
+ uint32_t ui;
+ int32_t i;
+ float f;
+ } v4;
+ union {
+ uint64_t ui;
+ double f;
+ } v8;
+
+ *out = 0.0;
+ if(bytes > 4)
+ {
+ if(!ReadBin8(fp, filename, order, &v8.ui))
+ return 0;
+ if(type == ET_FP)
+ *out = v8.f;
+ }
+ else
+ {
+ if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
+ return 0;
+ if(type == ET_FP)
+ *out = v4.f;
+ else
+ {
+ if(bits > 0)
+ v4.ui >>= (8*bytes) - (static_cast<uint>(bits));
+ else
+ v4.ui &= (0xFFFFFFFF >> (32+bits));
+
+ if(v4.ui&static_cast<uint>(1<<(std::abs(bits)-1)))
+ v4.ui |= (0xFFFFFFFF << std::abs(bits));
+ *out = v4.i / static_cast<double>(1<<(std::abs(bits)-1));
+ }
+ }
+ return 1;
+}
+
+/* Read an ascii value of the specified type from a file, converting it to a
+ * double. For integer types, the significant bits are used to normalize the
+ * result. The sign of the bits should always be positive. This also skips
+ * up to one separator character before the element itself.
+ */
+static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
+{
+ if(TrIsOperator(tr, ","))
+ TrReadOperator(tr, ",");
+ else if(TrIsOperator(tr, ":"))
+ TrReadOperator(tr, ":");
+ else if(TrIsOperator(tr, ";"))
+ TrReadOperator(tr, ";");
+ else if(TrIsOperator(tr, "|"))
+ TrReadOperator(tr, "|");
+
+ if(type == ET_FP)
+ {
+ if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(),
+ std::numeric_limits<double>::infinity(), out))
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ }
+ else
+ {
+ int v;
+ if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
+ return 0;
+ }
+ *out = v / static_cast<double>((1<<(bits-1))-1);
+ }
+ return 1;
+}
+
+// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
+// the source parameters and data set metrics.
+static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
+{
+ uint32_t fourCC, chunkSize;
+ uint32_t format, channels, rate, dummy, block, size, bits;
+
+ chunkSize = 0;
+ do {
+ if(chunkSize > 0)
+ fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+ } while(fourCC != FOURCC_FMT);
+ if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
+ !ReadBin4(fp, src->mPath, order, 2, &channels) ||
+ !ReadBin4(fp, src->mPath, order, 4, &rate) ||
+ !ReadBin4(fp, src->mPath, order, 4, &dummy) ||
+ !ReadBin4(fp, src->mPath, order, 2, &block))
+ return 0;
+ block /= channels;
+ if(chunkSize > 14)
+ {
+ if(!ReadBin4(fp, src->mPath, order, 2, &size))
+ return 0;
+ size /= 8;
+ if(block > size)
+ size = block;
+ }
+ else
+ size = block;
+ if(format == WAVE_FORMAT_EXTENSIBLE)
+ {
+ fseek(fp, 2, SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, order, 2, &bits))
+ return 0;
+ if(bits == 0)
+ bits = 8 * size;
+ fseek(fp, 4, SEEK_CUR);
+ if(!ReadBin4(fp, src->mPath, order, 2, &format))
+ return 0;
+ fseek(fp, static_cast<long>(chunkSize - 26), SEEK_CUR);
+ }
+ else
+ {
+ bits = 8 * size;
+ if(chunkSize > 14)
+ fseek(fp, static_cast<long>(chunkSize - 16), SEEK_CUR);
+ else
+ fseek(fp, static_cast<long>(chunkSize - 14), SEEK_CUR);
+ }
+ if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
+ {
+ fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(src->mChannel >= channels)
+ {
+ fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(rate != hrirRate)
+ {
+ fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(format == WAVE_FORMAT_PCM)
+ {
+ if(size < 2 || size > 4)
+ {
+ fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(bits < 16 || bits > (8*size))
+ {
+ fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ src->mType = ET_INT;
+ }
+ else
+ {
+ if(size != 4 && size != 8)
+ {
+ fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ src->mType = ET_FP;
+ }
+ src->mSize = size;
+ src->mBits = static_cast<int>(bits);
+ src->mSkip = channels;
+ return 1;
+}
+
+// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
+static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ int pre, post, skip;
+ uint i;
+
+ pre = static_cast<int>(src->mSize * src->mChannel);
+ post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1));
+ skip = 0;
+ for(i = 0;i < n;i++)
+ {
+ skip += pre;
+ if(skip > 0)
+ fseek(fp, skip, SEEK_CUR);
+ if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
+ return 0;
+ skip = post;
+ }
+ if(skip > 0)
+ fseek(fp, skip, SEEK_CUR);
+ return 1;
+}
+
+// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
+// doubles.
+static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ uint32_t fourCC, chunkSize, listSize, count;
+ uint block, skip, offset, i;
+ double lastSample;
+
+ for(;;)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+
+ if(fourCC == FOURCC_DATA)
+ {
+ block = src->mSize * src->mSkip;
+ count = chunkSize / block;
+ if(count < (src->mOffset + n))
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
+ return 0;
+ }
+ fseek(fp, static_cast<long>(src->mOffset * block), SEEK_CUR);
+ if(!ReadWaveData(fp, src, order, n, &hrir[0]))
+ return 0;
+ return 1;
+ }
+ else if(fourCC == FOURCC_LIST)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
+ return 0;
+ chunkSize -= 4;
+ if(fourCC == FOURCC_WAVL)
+ break;
+ }
+ if(chunkSize > 0)
+ fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
+ }
+ listSize = chunkSize;
+ block = src->mSize * src->mSkip;
+ skip = src->mOffset;
+ offset = 0;
+ lastSample = 0.0;
+ while(offset < n && listSize > 8)
+ {
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
+ return 0;
+ listSize -= 8 + chunkSize;
+ if(fourCC == FOURCC_DATA)
+ {
+ count = chunkSize / block;
+ if(count > skip)
+ {
+ fseek(fp, static_cast<long>(skip * block), SEEK_CUR);
+ chunkSize -= skip * block;
+ count -= skip;
+ skip = 0;
+ if(count > (n - offset))
+ count = n - offset;
+ if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
+ return 0;
+ chunkSize -= count * block;
+ offset += count;
+ lastSample = hrir[offset - 1];
+ }
+ else
+ {
+ skip -= count;
+ count = 0;
+ }
+ }
+ else if(fourCC == FOURCC_SLNT)
+ {
+ if(!ReadBin4(fp, src->mPath, order, 4, &count))
+ return 0;
+ chunkSize -= 4;
+ if(count > skip)
+ {
+ count -= skip;
+ skip = 0;
+ if(count > (n - offset))
+ count = n - offset;
+ for(i = 0; i < count; i ++)
+ hrir[offset + i] = lastSample;
+ offset += count;
+ }
+ else
+ {
+ skip -= count;
+ count = 0;
+ }
+ }
+ if(chunkSize > 0)
+ fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
+ }
+ if(offset < n)
+ {
+ fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
+ return 0;
+ }
+ return 1;
+}
+
+// Load a source HRIR from an ASCII text file containing a list of elements
+// separated by whitespace or common list operators (',', ';', ':', '|').
+static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
+{
+ TokenReaderT tr;
+ uint i, j;
+ double dummy;
+
+ TrSetup(fp, nullptr, &tr);
+ for(i = 0;i < src->mOffset;i++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
+ return 0;
+ }
+ for(i = 0;i < n;i++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &hrir[i]))
+ return 0;
+ for(j = 0;j < src->mSkip;j++)
+ {
+ if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
+ return 0;
+ }
+ }
+ return 1;
+}
+
+// Load a source HRIR from a binary file.
+static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
+{
+ uint i;
+
+ fseek(fp, static_cast<long>(src->mOffset), SEEK_SET);
+ for(i = 0;i < n;i++)
+ {
+ if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
+ return 0;
+ if(src->mSkip > 0)
+ fseek(fp, static_cast<long>(src->mSkip), SEEK_CUR);
+ }
+ return 1;
+}
+
+// Load a source HRIR from a RIFF/RIFX WAVE file.
+static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
+{
+ uint32_t fourCC, dummy;
+ ByteOrderT order;
+
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
+ !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
+ return 0;
+ if(fourCC == FOURCC_RIFF)
+ order = BO_LITTLE;
+ else if(fourCC == FOURCC_RIFX)
+ order = BO_BIG;
+ else
+ {
+ fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
+ return 0;
+ }
+
+ if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
+ return 0;
+ if(fourCC != FOURCC_WAVE)
+ {
+ fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
+ return 0;
+ }
+ if(!ReadWaveFormat(fp, order, hrirRate, src))
+ return 0;
+ if(!ReadWaveList(fp, src, order, n, hrir))
+ return 0;
+ return 1;
+}
+
+// Load a Spatially Oriented Format for Accoustics (SOFA) file.
+static struct MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n)
+{
+ struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)};
+ if(sofa) return sofa;
+
+ sofa = static_cast<MYSOFA_EASY*>(calloc(1, sizeof(*sofa)));
+ if(sofa == nullptr)
+ {
+ fprintf(stderr, "\nError: Out of memory.\n");
+ return nullptr;
+ }
+ sofa->lookup = nullptr;
+ sofa->neighborhood = nullptr;
+
+ int err;
+ sofa->hrtf = mysofa_load(src->mPath, &err);
+ if(!sofa->hrtf)
+ {
+ mysofa_close(sofa);
+ fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath);
+ return nullptr;
+ }
+ err = mysofa_check(sofa->hrtf);
+ if(err != MYSOFA_OK)
+/* NOTE: Some valid SOFA files are failing this check.
+ {
+ mysofa_close(sofa);
+ fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath);
+ return nullptr;
+ }*/
+ fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath);
+ if((src->mOffset + n) > sofa->hrtf->N)
+ {
+ mysofa_close(sofa);
+ fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath);
+ return nullptr;
+ }
+ if(src->mChannel >= sofa->hrtf->R)
+ {
+ mysofa_close(sofa);
+ fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath);
+ return nullptr;
+ }
+ mysofa_tocartesian(sofa->hrtf);
+ sofa->lookup = mysofa_lookup_init(sofa->hrtf);
+ if(sofa->lookup == nullptr)
+ {
+ mysofa_close(sofa);
+ fprintf(stderr, "\nError: Out of memory.\n");
+ return nullptr;
+ }
+ return mysofa_cache_store(sofa, src->mPath, (float)hrirRate);
+}
+
+// Copies the HRIR data from a particular SOFA measurement.
+static void ExtractSofaHrir(const struct MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir)
+{
+ for(uint i{0u};i < n;i++)
+ hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i];
+}
+
+// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA)
+// file.
+static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
+{
+ struct MYSOFA_EASY *sofa;
+ float target[3];
+ int nearest;
+ float *coords;
+
+ sofa = LoadSofaFile(src, hrirRate, n);
+ if(sofa == nullptr)
+ return 0;
+
+ /* NOTE: At some point it may be benficial or necessary to consider the
+ various coordinate systems, listener/source orientations, and
+ direciontal vectors defined in the SOFA file.
+ */
+ target[0] = src->mAzimuth;
+ target[1] = src->mElevation;
+ target[2] = src->mRadius;
+ mysofa_s2c(target);
+
+ nearest = mysofa_lookup(sofa->lookup, target);
+ if(nearest < 0)
+ {
+ fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath);
+ return 0;
+ }
+
+ coords = &sofa->hrtf->SourcePosition.values[3 * nearest];
+ if(std::fabs(coords[0] - target[0]) > 0.001 || std::fabs(coords[1] - target[1]) > 0.001 || std::fabs(coords[2] - target[2]) > 0.001)
+ {
+ fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath);
+ target[0] = coords[0];
+ target[1] = coords[1];
+ target[2] = coords[2];
+ mysofa_c2s(target);
+ fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]);
+ return 0;
+ }
+
+ ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir);
+
+ return 1;
+}
+
+// Load a source HRIR from a supported file type.
+static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
+{
+ FILE *fp{nullptr};
+ if(src->mFormat != SF_SOFA)
+ {
+ if(src->mFormat == SF_ASCII)
+ fp = fopen(src->mPath, "r");
+ else
+ fp = fopen(src->mPath, "rb");
+ if(fp == nullptr)
+ {
+ fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath);
+ return 0;
+ }
+ }
+ int result;
+ switch(src->mFormat)
+ {
+ case SF_ASCII:
+ result = LoadAsciiSource(fp, src, n, hrir);
+ break;
+ case SF_BIN_LE:
+ result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
+ break;
+ case SF_BIN_BE:
+ result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
+ break;
+ case SF_WAVE:
+ result = LoadWaveSource(fp, src, hrirRate, n, hrir);
+ break;
+ case SF_SOFA:
+ result = LoadSofaSource(src, hrirRate, n, hrir);
+ break;
+ default:
+ result = 0;
+ }
+ if(fp) fclose(fp);
+ return result;
+}
+
+
+/***************************
+ *** File storage output ***
+ ***************************/
+
+// Write an ASCII string to a file.
+static int WriteAscii(const char *out, FILE *fp, const char *filename)
+{
+ size_t len;
+
+ len = strlen(out);
+ if(fwrite(out, 1, len, fp) != len)
+ {
+ fclose(fp);
+ fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
+ return 0;
+ }
+ return 1;
+}
+
+// Write a binary value of the given byte order and byte size to a file,
+// loading it from a 32-bit unsigned integer.
+static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32_t in, FILE *fp, const char *filename)
+{
+ uint8_t out[4];
+ uint i;
+
+ switch(order)
+ {
+ case BO_LITTLE:
+ for(i = 0;i < bytes;i++)
+ out[i] = (in>>(i*8)) & 0x000000FF;
+ break;
+ case BO_BIG:
+ for(i = 0;i < bytes;i++)
+ out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
+ break;
+ default:
+ break;
+ }
+ if(fwrite(out, 1, bytes, fp) != bytes)
+ {
+ fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
+ return 0;
+ }
+ return 1;
+}
+
+// Store the OpenAL Soft HRTF data set.
+static int StoreMhr(const HrirDataT *hData, const char *filename)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ FILE *fp;
+ uint fi, ei, ai, i;
+ uint dither_seed = 22222;
+
+ if((fp=fopen(filename, "wb")) == nullptr)
+ {
+ fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename);
+ return 0;
+ }
+ if(!WriteAscii(MHR_FORMAT, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 4, hData->mIrRate, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mSampleType), fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mChannelType), fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, hData->mIrPoints, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, hData->mFdCount, fp, filename))
+ return 0;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance));
+ if(!WriteBin4(BO_LITTLE, 2, fdist, fp, filename))
+ return 0;
+ if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvCount, fp, filename))
+ return 0;
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
+ return 0;
+ }
+ }
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
+ ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
+ const int bps = (hData->mSampleType == ST_S16) ? 2 :
+ ((hData->mSampleType == ST_S24) ? 3 : 0);
+
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ double out[2 * MAX_TRUNCSIZE];
+
+ TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
+ if(hData->mChannelType == CT_STEREO)
+ TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
+ for(i = 0;i < (channels * n);i++)
+ {
+ int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
+ if(!WriteBin4(BO_LITTLE, bps, static_cast<uint32_t>(v), fp, filename))
+ return 0;
+ }
+ }
+ }
+ }
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
+ int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD));
+
+ if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
+ return 0;
+ if(hData->mChannelType == CT_STEREO)
+ {
+ v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD));
+
+ if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
+ return 0;
+ }
+ }
+ }
+ }
+ fclose(fp);
+ return 1;
+}
+
+
+/***********************
+ *** HRTF processing ***
+ ***********************/
+
+// Calculate the onset time of an HRIR and average it with any existing
+// timing for its field, elevation, azimuth, and ear.
+static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
+{
+ std::vector<double> upsampled(10 * n);
+ {
+ ResamplerT rs;
+ ResamplerSetup(&rs, rate, 10 * rate);
+ ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
+ }
+
+ double mag{0.0};
+ for(uint i{0u};i < 10*n;i++)
+ mag = std::max(std::abs(upsampled[i]), mag);
+
+ mag *= 0.15;
+ uint i{0u};
+ for(;i < 10*n;i++)
+ {
+ if(std::abs(upsampled[i]) >= mag)
+ break;
+ }
+ return Lerp(onset, static_cast<double>(i) / (10*rate), f);
+}
+
+// Calculate the magnitude response of an HRIR and average it with any
+// existing responses for its field, elevation, azimuth, and ear.
+static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
+{
+ uint m = 1 + (n / 2), i;
+ std::vector<complex_d> h(n);
+ std::vector<double> r(n);
+
+ for(i = 0;i < points;i++)
+ h[i] = complex_d{hrir[i], 0.0};
+ for(;i < n;i++)
+ h[i] = complex_d{0.0, 0.0};
+ FftForward(n, h.data());
+ MagnitudeResponse(n, h.data(), r.data());
+ for(i = 0;i < m;i++)
+ mag[i] = Lerp(mag[i], r[i], f);
+}
+
+/* Balances the maximum HRIR magnitudes of multi-field data sets by
+ * independently normalizing each field in relation to the overall maximum.
+ * This is done to ignore distance attenuation.
+ */
+static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
+{
+ double maxMags[MAX_FD_COUNT];
+ uint fi, ei, ai, ti, i;
+
+ double maxMag{0.0};
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ maxMags[fi] = 0.0;
+
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]);
+ }
+ }
+ }
+
+ maxMag = std::max(maxMags[fi], maxMag);
+ }
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ maxMags[fi] /= maxMag;
+
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ azd->mIrs[ti][i] /= maxMags[fi];
+ }
+ }
+ }
+ }
+}
+
+/* Calculate the contribution of each HRIR to the diffuse-field average based
+ * on its coverage volume. All volumes are centered at the spherical HRIR
+ * coordinates and measured by extruded solid angle.
+ */
+static void CalculateDfWeights(const HrirDataT *hData, double *weights)
+{
+ double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
+ double solidAngle, solidVolume;
+ uint fi, ei;
+
+ sum = 0.0;
+ // The head radius acts as the limit for the inner radius.
+ innerRa = hData->mRadius;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ // Each volume ends half way between progressive field measurements.
+ if((fi + 1) < hData->mFdCount)
+ outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
+ // The final volume has its limit extended to some practical value.
+ // This is done to emphasize the far-field responses in the average.
+ else
+ outerRa = 10.0f;
+
+ evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ // For each elevation, calculate the upper and lower limits of
+ // the patch band.
+ ev = hData->mFds[fi].mEvs[ei].mElevation;
+ lowerEv = std::max(-M_PI / 2.0, ev - evs);
+ upperEv = std::min(M_PI / 2.0, ev + evs);
+ // Calculate the surface area of the patch band.
+ solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv));
+ // Then the volume of the extruded patch band.
+ solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0;
+ // Each weight is the volume of one extruded patch.
+ weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount;
+ // Sum the total coverage volume of the HRIRs for all fields.
+ sum += solidAngle;
+ }
+
+ innerRa = outerRa;
+ }
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ // Normalize the weights given the total surface coverage for all
+ // fields.
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ weights[(fi * MAX_EV_COUNT) + ei] /= sum;
+ }
+}
+
+/* Calculate the diffuse-field average from the given magnitude responses of
+ * the HRIR set. Weighting can be applied to compensate for the varying
+ * coverage of each HRIR. The final average can then be limited by the
+ * specified magnitude range (in positive dB; 0.0 to skip).
+ */
+static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
+{
+ std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT);
+ uint count, ti, fi, ei, i, ai;
+
+ if(weighted)
+ {
+ // Use coverage weighting to calculate the average.
+ CalculateDfWeights(hData, weights.data());
+ }
+ else
+ {
+ double weight;
+
+ // If coverage weighting is not used, the weights still need to be
+ // averaged by the number of existing HRIRs.
+ count = hData->mIrCount;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
+ count -= hData->mFds[fi].mEvs[ei].mAzCount;
+ }
+ weight = 1.0 / count;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ weights[(fi * MAX_EV_COUNT) + ei] = weight;
+ }
+ }
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] = 0.0;
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ // Get the weight for this HRIR's contribution.
+ double weight = weights[(fi * MAX_EV_COUNT) + ei];
+
+ // Add this HRIR's weighted power average to the total.
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
+ }
+ }
+ }
+ // Finish the average calculation and keep it from being too small.
+ for(i = 0;i < m;i++)
+ dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON);
+ // Apply a limit to the magnitude range of the diffuse-field average
+ // if desired.
+ if(limit > 0.0)
+ LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
+ }
+}
+
+// Perform diffuse-field equalization on the magnitude responses of the HRIR
+// set using the given average response.
+static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
+{
+ uint ti, fi, ei, ai, i;
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(i = 0;i < m;i++)
+ azd->mIrs[ti][i] /= dfa[(ti * m) + i];
+ }
+ }
+ }
+ }
+}
+
+/* Perform minimum-phase reconstruction using the magnitude responses of the
+ * HRIR set. Work is delegated to this struct, which runs asynchronously on one
+ * or more threads (sharing the same reconstructor object).
+ */
+struct HrirReconstructor {
+ std::vector<double*> mIrs;
+ std::atomic<size_t> mCurrent;
+ std::atomic<size_t> mDone;
+ size_t mFftSize;
+ size_t mIrPoints;
+
+ void Worker()
+ {
+ auto h = std::vector<complex_d>(mFftSize);
+
+ while(1)
+ {
+ /* Load the current index to process. */
+ size_t idx{mCurrent.load()};
+ do {
+ /* If the index is at the end, we're done. */
+ if(idx >= mIrs.size())
+ return;
+ /* Otherwise, increment the current index atomically so other
+ * threads know to go to the next one. If this call fails, the
+ * current index was just changed by another thread and the new
+ * value is loaded into idx, which we'll recheck.
+ */
+ } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
+
+ /* Now do the reconstruction, and apply the inverse FFT to get the
+ * time-domain response.
+ */
+ MinimumPhase(mFftSize, mIrs[idx], h.data());
+ FftInverse(mFftSize, h.data());
+ for(size_t i{0u};i < mIrPoints;++i)
+ mIrs[idx][i] = h[i].real();
+
+ /* Increment the number of IRs done. */
+ mDone.fetch_add(1);
+ }
+ }
+};
+
+static void ReconstructHrirs(const HrirDataT *hData)
+{
+ const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
+
+ /* Count the number of IRs to process (excluding elevations that will be
+ * synthesized later).
+ */
+ size_t total{hData->mIrCount};
+ for(uint fi{0u};fi < hData->mFdCount;fi++)
+ {
+ for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
+ total -= hData->mFds[fi].mEvs[ei].mAzCount;
+ }
+ total *= channels;
+
+ /* Set up the reconstructor with the needed size info and pointers to the
+ * IRs to process.
+ */
+ HrirReconstructor reconstructor;
+ reconstructor.mIrs.reserve(total);
+ reconstructor.mCurrent.store(0, std::memory_order_relaxed);
+ reconstructor.mDone.store(0, std::memory_order_relaxed);
+ reconstructor.mFftSize = hData->mFftSize;
+ reconstructor.mIrPoints = hData->mIrPoints;
+ for(uint fi{0u};fi < hData->mFdCount;fi++)
+ {
+ const HrirFdT &field = hData->mFds[fi];
+ for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
+ {
+ const HrirEvT &elev = field.mEvs[ei];
+ for(uint ai{0u};ai < elev.mAzCount;ai++)
+ {
+ const HrirAzT &azd = elev.mAzs[ai];
+ for(uint ti{0u};ti < channels;ti++)
+ reconstructor.mIrs.push_back(azd.mIrs[ti]);
+ }
+ }
+ }
+
+ /* Launch two threads to work on reconstruction. */
+ std::thread thrd1{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
+ std::thread thrd2{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
+
+ /* Keep track of the number of IRs done, periodically reporting it. */
+ size_t count;
+ while((count=reconstructor.mDone.load()) != total)
+ {
+ size_t pcdone{count * 100 / total};
+
+ printf("\r%3zu%% done (%zu of %zu)", pcdone, count, total);
+ fflush(stdout);
+
+ std::this_thread::sleep_for(std::chrono::milliseconds{50});
+ }
+ size_t pcdone{count * 100 / total};
+ printf("\r%3zu%% done (%zu of %zu)\n", pcdone, count, total);
+
+ if(thrd2.joinable()) thrd2.join();
+ if(thrd1.joinable()) thrd1.join();
+}
+
+// Resamples the HRIRs for use at the given sampling rate.
+static void ResampleHrirs(const uint rate, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ uint n = hData->mIrPoints;
+ uint ti, fi, ei, ai;
+ ResamplerT rs;
+
+ ResamplerSetup(&rs, hData->mIrRate, rate);
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ for(ti = 0;ti < channels;ti++)
+ ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
+ }
+ }
+ }
+ hData->mIrRate = rate;
+}
+
+/* Given field and elevation indices and an azimuth, calculate the indices of
+ * the two HRIRs that bound the coordinate along with a factor for
+ * calculating the continuous HRIR using interpolation.
+ */
+static void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af)
+{
+ double f{(2.0*M_PI + az) * field.mEvs[ei].mAzCount / (2.0*M_PI)};
+ uint i{static_cast<uint>(f) % field.mEvs[ei].mAzCount};
+
+ f -= std::floor(f);
+ *a0 = i;
+ *a1 = (i + 1) % field.mEvs[ei].mAzCount;
+ *af = f;
+}
+
+/* Synthesize any missing onset timings at the bottom elevations of each field.
+ * This just mirrors some top elevations for the bottom, and blends the
+ * remaining elevations (not an accurate model).
+ */
+static void SynthesizeOnsets(HrirDataT *hData)
+{
+ const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
+
+ auto proc_field = [channels](HrirFdT &field) -> void
+ {
+ /* Get the starting elevation from the measurements, and use it as the
+ * upper elevation limit for what needs to be calculated.
+ */
+ const uint upperElevReal{field.mEvStart};
+ if(upperElevReal <= 0) return;
+
+ /* Get the lowest half of the missing elevations' delays by mirroring
+ * the top elevation delays. The responses are on a spherical grid
+ * centered between the ears, so these should align.
+ */
+ uint ei{};
+ if(channels > 1)
+ {
+ /* Take the polar opposite position of the desired measurement and
+ * swap the ears.
+ */
+ field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[1];
+ field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
+ for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
+ {
+ const uint topElev{field.mEvCount-ei-1};
+
+ for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
+ {
+ uint a0, a1;
+ double af;
+
+ /* Rotate this current azimuth by a half-circle, and lookup
+ * the mirrored elevation to find the indices for the polar
+ * opposite position (may need blending).
+ */
+ const double az{field.mEvs[ei].mAzs[ai].mAzimuth + M_PI};
+ CalcAzIndices(field, topElev, az, &a0, &a1, &af);
+
+ /* Blend the delays, and again, swap the ears. */
+ field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
+ field.mEvs[topElev].mAzs[a0].mDelays[1],
+ field.mEvs[topElev].mAzs[a1].mDelays[1], af);
+ field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp(
+ field.mEvs[topElev].mAzs[a0].mDelays[0],
+ field.mEvs[topElev].mAzs[a1].mDelays[0], af);
+ }
+ }
+ }
+ else
+ {
+ field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
+ for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
+ {
+ const uint topElev{field.mEvCount-ei-1};
+
+ for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
+ {
+ uint a0, a1;
+ double af;
+
+ /* For mono data sets, mirror the azimuth front<->back
+ * since the other ear is a mirror of what we have (e.g.
+ * the left ear's back-left is simulated with the right
+ * ear's front-right, which uses the left ear's front-left
+ * measurement).
+ */
+ double az{field.mEvs[ei].mAzs[ai].mAzimuth};
+ if(az <= M_PI) az = M_PI - az;
+ else az = (M_PI*2.0)-az + M_PI;
+ CalcAzIndices(field, topElev, az, &a0, &a1, &af);
+
+ field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
+ field.mEvs[topElev].mAzs[a0].mDelays[0],
+ field.mEvs[topElev].mAzs[a1].mDelays[0], af);
+ }
+ }
+ }
+ /* Record the lowest elevation filled in with the mirrored top. */
+ const uint lowerElevFake{ei-1u};
+
+ /* Fill in the remaining delays using bilinear interpolation. This
+ * helps smooth the transition back to the real delays.
+ */
+ for(;ei < upperElevReal;++ei)
+ {
+ const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) /
+ (field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)};
+
+ for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
+ {
+ uint a0, a1, a2, a3;
+ double af0, af1;
+
+ double az{field.mEvs[ei].mAzs[ai].mAzimuth};
+ CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0);
+ CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1);
+ double blend[4]{
+ (1.0-ef) * (1.0-af0),
+ (1.0-ef) * ( af0),
+ ( ef) * (1.0-af1),
+ ( ef) * ( af1)
+ };
+
+ for(uint ti{0u};ti < channels;ti++)
+ {
+ field.mEvs[ei].mAzs[ai].mDelays[ti] =
+ field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] +
+ field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] +
+ field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] +
+ field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3];
+ }
+ }
+ }
+ };
+ std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
+}
+
+/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
+ * field. Right now this just blends the lowest elevation HRIRs together and
+ * applies some attenuation and high frequency damping. It is a simple, if
+ * inaccurate model.
+ */
+static void SynthesizeHrirs(HrirDataT *hData)
+{
+ const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
+ const uint irSize{hData->mIrPoints};
+ const double beta{3.5e-6 * hData->mIrRate};
+
+ auto proc_field = [channels,irSize,beta](HrirFdT &field) -> void
+ {
+ const uint oi{field.mEvStart};
+ if(oi <= 0) return;
+
+ for(uint ti{0u};ti < channels;ti++)
+ {
+ for(uint i{0u};i < irSize;i++)
+ field.mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
+ /* Blend the lowest defined elevation's responses for an average
+ * -90 degree elevation response.
+ */
+ double blend_count{0.0};
+ for(uint ai{0u};ai < field.mEvs[oi].mAzCount;ai++)
+ {
+ /* Only include the left responses for the left ear, and the
+ * right responses for the right ear. This removes the cross-
+ * talk that shouldn't exist for the -90 degree elevation
+ * response (and would be mistimed anyway). NOTE: Azimuth goes
+ * from 0...2pi rather than -pi...+pi (0 in front, clockwise).
+ */
+ if(std::abs(field.mEvs[oi].mAzs[ai].mAzimuth) < EPSILON ||
+ (ti == LeftChannel && field.mEvs[oi].mAzs[ai].mAzimuth > M_PI-EPSILON) ||
+ (ti == RightChannel && field.mEvs[oi].mAzs[ai].mAzimuth < M_PI+EPSILON))
+ {
+ for(uint i{0u};i < irSize;i++)
+ field.mEvs[0].mAzs[0].mIrs[ti][i] += field.mEvs[oi].mAzs[ai].mIrs[ti][i];
+ blend_count += 1.0;
+ }
+ }
+ if(blend_count > 0.0)
+ {
+ for(uint i{0u};i < irSize;i++)
+ field.mEvs[0].mAzs[0].mIrs[ti][i] /= blend_count;
+ }
+
+ for(uint ei{1u};ei < field.mEvStart;ei++)
+ {
+ const double of{static_cast<double>(ei) / field.mEvStart};
+ const double b{(1.0 - of) * beta};
+ for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
+ {
+ uint a0, a1;
+ double af;
+
+ CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
+ double lp[4]{};
+ for(uint i{0u};i < irSize;i++)
+ {
+ /* Blend the two defined HRIRs closest to this azimuth,
+ * then blend that with the synthesized -90 elevation.
+ */
+ const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
+ field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)};
+ const double s0{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)};
+ /* Apply a low-pass to simulate body occlusion. */
+ lp[0] = Lerp(s0, lp[0], b);
+ lp[1] = Lerp(lp[0], lp[1], b);
+ lp[2] = Lerp(lp[1], lp[2], b);
+ lp[3] = Lerp(lp[2], lp[3], b);
+ field.mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
+ }
+ }
+ }
+ const double b{beta};
+ double lp[4]{};
+ for(uint i{0u};i < irSize;i++)
+ {
+ const double s0{field.mEvs[0].mAzs[0].mIrs[ti][i]};
+ lp[0] = Lerp(s0, lp[0], b);
+ lp[1] = Lerp(lp[0], lp[1], b);
+ lp[2] = Lerp(lp[1], lp[2], b);
+ lp[3] = Lerp(lp[2], lp[3], b);
+ field.mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
+ }
+ }
+ field.mEvStart = 0;
+ };
+ std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
+}
+
+// The following routines assume a full set of HRIRs for all elevations.
+
+// Normalize the HRIR set and slightly attenuate the result.
+static void NormalizeHrirs(HrirDataT *hData)
+{
+ const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
+ const uint irSize{hData->mIrPoints};
+
+ /* Find the maximum amplitude and RMS out of all the IRs. */
+ struct LevelPair { double amp, rms; };
+ auto proc0_field = [channels,irSize](const LevelPair levels, const HrirFdT &field) -> LevelPair
+ {
+ auto proc_elev = [channels,irSize](const LevelPair levels, const HrirEvT &elev) -> LevelPair
+ {
+ auto proc_azi = [channels,irSize](const LevelPair levels, const HrirAzT &azi) -> LevelPair
+ {
+ auto proc_channel = [irSize](const LevelPair levels, const double *ir) -> LevelPair
+ {
+ /* Calculate the peak amplitude and RMS of this IR. */
+ auto current = std::accumulate(ir, ir+irSize, LevelPair{0.0, 0.0},
+ [](const LevelPair current, const double impulse) -> LevelPair
+ {
+ return LevelPair{std::max(std::abs(impulse), current.amp),
+ current.rms + impulse*impulse};
+ });
+ current.rms = std::sqrt(current.rms / irSize);
+
+ /* Accumulate levels by taking the maximum amplitude and RMS. */
+ return LevelPair{std::max(current.amp, levels.amp),
+ std::max(current.rms, levels.rms)};
+ };
+ return std::accumulate(azi.mIrs, azi.mIrs+channels, levels, proc_channel);
+ };
+ return std::accumulate(elev.mAzs, elev.mAzs+elev.mAzCount, levels, proc_azi);
+ };
+ return std::accumulate(field.mEvs, field.mEvs+field.mEvCount, levels, proc_elev);
+ };
+ const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount,
+ LevelPair{0.0, 0.0}, proc0_field);
+
+ /* Normalize using the maximum RMS of the HRIRs. The RMS measure for the
+ * non-filtered signal is of an impulse with equal length (to the filter):
+ *
+ * rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n)
+ * = sqrt(1 / n)
+ *
+ * This helps keep a more consistent volume between the non-filtered signal
+ * and various data sets.
+ */
+ double factor{std::sqrt(1.0 / irSize) / maxlev.rms};
+
+ /* Also ensure the samples themselves won't clip. */
+ factor = std::min(factor, 0.99/maxlev.amp);
+
+ /* Now scale all IRs by the given factor. */
+ auto proc1_field = [channels,irSize,factor](HrirFdT &field) -> void
+ {
+ auto proc_elev = [channels,irSize,factor](HrirEvT &elev) -> void
+ {
+ auto proc_azi = [channels,irSize,factor](HrirAzT &azi) -> void
+ {
+ auto proc_channel = [irSize,factor](double *ir) -> void
+ {
+ std::transform(ir, ir+irSize, ir,
+ std::bind(std::multiplies<double>{}, _1, factor));
+ };
+ std::for_each(azi.mIrs, azi.mIrs+channels, proc_channel);
+ };
+ std::for_each(elev.mAzs, elev.mAzs+elev.mAzCount, proc_azi);
+ };
+ std::for_each(field.mEvs, field.mEvs+field.mEvCount, proc_elev);
+ };
+ std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc1_field);
+}
+
+// Calculate the left-ear time delay using a spherical head model.
+static double CalcLTD(const double ev, const double az, const double rad, const double dist)
+{
+ double azp, dlp, l, al;
+
+ azp = std::asin(std::cos(ev) * std::sin(az));
+ dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
+ l = std::sqrt((dist*dist) - (rad*rad));
+ al = (0.5 * M_PI) + azp;
+ if(dlp > l)
+ dlp = l + (rad * (al - std::acos(rad / dist)));
+ return dlp / 343.3;
+}
+
+// Calculate the effective head-related time delays for each minimum-phase
+// HRIR. This is done per-field since distance delay is ignored.
+static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ double customRatio{radius / hData->mRadius};
+ uint ti, fi, ei, ai;
+
+ if(model == HM_SPHERE)
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
+
+ for(ai = 0;ai < evd->mAzCount;ai++)
+ {
+ HrirAzT *azd = &evd->mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
+ }
+ }
+ }
+ }
+ else if(customRatio != 1.0)
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
+
+ for(ai = 0;ai < evd->mAzCount;ai++)
+ {
+ HrirAzT *azd = &evd->mAzs[ai];
+ for(ti = 0;ti < channels;ti++)
+ azd->mDelays[ti] *= customRatio;
+ }
+ }
+ }
+ }
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ double minHrtd{std::numeric_limits<double>::infinity()};
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ for(ti = 0;ti < channels;ti++)
+ minHrtd = std::min(azd->mDelays[ti], minHrtd);
+ }
+ }
+
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
+ }
+ }
+ }
+}
+
+// Allocate and configure dynamic HRIR structures.
+static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
+{
+ uint evTotal = 0, azTotal = 0, fi, ei, ai;
+
+ for(fi = 0;fi < fdCount;fi++)
+ {
+ evTotal += evCounts[fi];
+ for(ei = 0;ei < evCounts[fi];ei++)
+ azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
+ }
+ if(!fdCount || !evTotal || !azTotal)
+ return 0;
+
+ hData->mEvsBase.resize(evTotal);
+ hData->mAzsBase.resize(azTotal);
+ hData->mFds.resize(fdCount);
+ hData->mIrCount = azTotal;
+ hData->mFdCount = fdCount;
+ evTotal = 0;
+ azTotal = 0;
+ for(fi = 0;fi < fdCount;fi++)
+ {
+ hData->mFds[fi].mDistance = distances[fi];
+ hData->mFds[fi].mEvCount = evCounts[fi];
+ hData->mFds[fi].mEvStart = 0;
+ hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal];
+ evTotal += evCounts[fi];
+ for(ei = 0;ei < evCounts[fi];ei++)
+ {
+ uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
+
+ hData->mFds[fi].mIrCount += azCount;
+ hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
+ hData->mFds[fi].mEvs[ei].mIrCount += azCount;
+ hData->mFds[fi].mEvs[ei].mAzCount = azCount;
+ hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal];
+ for(ai = 0;ai < azCount;ai++)
+ {
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr;
+ hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr;
+ }
+ azTotal += azCount;
+ }
+ }
+ return 1;
+}
+
+// Match the channel type from a given identifier.
+static ChannelTypeT MatchChannelType(const char *ident)
+{
+ if(strcasecmp(ident, "mono") == 0)
+ return CT_MONO;
+ if(strcasecmp(ident, "stereo") == 0)
+ return CT_STEREO;
+ return CT_NONE;
+}
+
+// Process the data set definition to read and validate the data set metrics.
+static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
+{
+ int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
+ int hasDistance = 0, hasAzimuths = 0;
+ char ident[MAX_IDENT_LEN+1];
+ uint line, col;
+ double fpVal;
+ uint points;
+ int intVal;
+ double distances[MAX_FD_COUNT];
+ uint fdCount = 0;
+ uint evCounts[MAX_FD_COUNT];
+ std::vector<uint> azCounts(MAX_FD_COUNT * MAX_EV_COUNT);
+
+ TrIndication(tr, &line, &col);
+ while(TrIsIdent(tr))
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ if(strcasecmp(ident, "rate") == 0)
+ {
+ if(hasRate)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+ if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
+ return 0;
+ hData->mIrRate = static_cast<uint>(intVal);
+ hasRate = 1;
+ }
+ else if(strcasecmp(ident, "type") == 0)
+ {
+ char type[MAX_IDENT_LEN+1];
+
+ if(hasType)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
+ return 0;
+ hData->mChannelType = MatchChannelType(type);
+ if(hData->mChannelType == CT_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a channel type.\n");
+ return 0;
+ }
+ hasType = 1;
+ }
+ else if(strcasecmp(ident, "points") == 0)
+ {
+ if(hasPoints)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
+ return 0;
+ points = static_cast<uint>(intVal);
+ if(fftSize > 0 && points > fftSize)
+ {
+ TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
+ return 0;
+ }
+ if(points < truncSize)
+ {
+ TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
+ return 0;
+ }
+ hData->mIrPoints = points;
+ if(fftSize <= 0)
+ {
+ hData->mFftSize = DEFAULT_FFTSIZE;
+ hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
+ }
+ else
+ {
+ hData->mFftSize = fftSize;
+ hData->mIrSize = 1 + (fftSize / 2);
+ if(points > hData->mIrSize)
+ hData->mIrSize = points;
+ }
+ hasPoints = 1;
+ }
+ else if(strcasecmp(ident, "radius") == 0)
+ {
+ if(hasRadius)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+ if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
+ return 0;
+ hData->mRadius = fpVal;
+ hasRadius = 1;
+ }
+ else if(strcasecmp(ident, "distance") == 0)
+ {
+ uint count = 0;
+
+ if(hasDistance)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+
+ for(;;)
+ {
+ if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
+ return 0;
+ if(count > 0 && fpVal <= distances[count - 1])
+ {
+ TrError(tr, "Distances are not ascending.\n");
+ return 0;
+ }
+ distances[count++] = fpVal;
+ if(!TrIsOperator(tr, ","))
+ break;
+ if(count >= MAX_FD_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
+ return 0;
+ }
+ TrReadOperator(tr, ",");
+ }
+ if(fdCount != 0 && count != fdCount)
+ {
+ TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
+ return 0;
+ }
+ fdCount = count;
+ hasDistance = 1;
+ }
+ else if(strcasecmp(ident, "azimuths") == 0)
+ {
+ uint count = 0;
+
+ if(hasAzimuths)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+
+ evCounts[0] = 0;
+ for(;;)
+ {
+ if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
+ return 0;
+ azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast<uint>(intVal);
+ if(TrIsOperator(tr, ","))
+ {
+ if(evCounts[count] >= MAX_EV_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
+ return 0;
+ }
+ TrReadOperator(tr, ",");
+ }
+ else
+ {
+ if(evCounts[count] < MIN_EV_COUNT)
+ {
+ TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
+ return 0;
+ }
+ if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
+ {
+ TrError(tr, "Poles are not singular for field %d.\n", count - 1);
+ return 0;
+ }
+ count++;
+ if(!TrIsOperator(tr, ";"))
+ break;
+
+ if(count >= MAX_FD_COUNT)
+ {
+ TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
+ return 0;
+ }
+ evCounts[count] = 0;
+ TrReadOperator(tr, ";");
+ }
+ }
+ if(fdCount != 0 && count != fdCount)
+ {
+ TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
+ return 0;
+ }
+ fdCount = count;
+ hasAzimuths = 1;
+ }
+ else
+ {
+ TrErrorAt(tr, line, col, "Expected a metric name.\n");
+ return 0;
+ }
+ TrSkipWhitespace(tr);
+ }
+ if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
+ {
+ TrErrorAt(tr, line, col, "Expected a metric name.\n");
+ return 0;
+ }
+ if(distances[0] < hData->mRadius)
+ {
+ TrError(tr, "Distance cannot start below head radius.\n");
+ return 0;
+ }
+ if(hData->mChannelType == CT_NONE)
+ hData->mChannelType = CT_MONO;
+ if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData))
+ {
+ fprintf(stderr, "Error: Out of memory.\n");
+ exit(-1);
+ }
+ return 1;
+}
+
+// Parse an index triplet from the data set definition.
+static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
+{
+ int intVal;
+
+ if(hData->mFdCount > 1)
+ {
+ if(!TrReadInt(tr, 0, static_cast<int>(hData->mFdCount) - 1, &intVal))
+ return 0;
+ *fi = static_cast<uint>(intVal);
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ }
+ else
+ {
+ *fi = 0;
+ }
+ if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvCount) - 1, &intVal))
+ return 0;
+ *ei = static_cast<uint>(intVal);
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal))
+ return 0;
+ *ai = static_cast<uint>(intVal);
+ return 1;
+}
+
+// Match the source format from a given identifier.
+static SourceFormatT MatchSourceFormat(const char *ident)
+{
+ if(strcasecmp(ident, "ascii") == 0)
+ return SF_ASCII;
+ if(strcasecmp(ident, "bin_le") == 0)
+ return SF_BIN_LE;
+ if(strcasecmp(ident, "bin_be") == 0)
+ return SF_BIN_BE;
+ if(strcasecmp(ident, "wave") == 0)
+ return SF_WAVE;
+ if(strcasecmp(ident, "sofa") == 0)
+ return SF_SOFA;
+ return SF_NONE;
+}
+
+// Match the source element type from a given identifier.
+static ElementTypeT MatchElementType(const char *ident)
+{
+ if(strcasecmp(ident, "int") == 0)
+ return ET_INT;
+ if(strcasecmp(ident, "fp") == 0)
+ return ET_FP;
+ return ET_NONE;
+}
+
+// Parse and validate a source reference from the data set definition.
+static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
+{
+ char ident[MAX_IDENT_LEN+1];
+ uint line, col;
+ double fpVal;
+ int intVal;
+
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ src->mFormat = MatchSourceFormat(ident);
+ if(src->mFormat == SF_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a source format.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "("))
+ return 0;
+ if(src->mFormat == SF_SOFA)
+ {
+ if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
+ return 0;
+ src->mRadius = fpVal;
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadFloat(tr, -90.0, 90.0, &fpVal))
+ return 0;
+ src->mElevation = fpVal;
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadFloat(tr, -360.0, 360.0, &fpVal))
+ return 0;
+ src->mAzimuth = fpVal;
+ if(!TrReadOperator(tr, ":"))
+ return 0;
+ if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
+ return 0;
+ src->mType = ET_NONE;
+ src->mSize = 0;
+ src->mBits = 0;
+ src->mChannel = (uint)intVal;
+ src->mSkip = 0;
+ }
+ else if(src->mFormat == SF_WAVE)
+ {
+ if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
+ return 0;
+ src->mType = ET_NONE;
+ src->mSize = 0;
+ src->mBits = 0;
+ src->mChannel = static_cast<uint>(intVal);
+ src->mSkip = 0;
+ }
+ else
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ src->mType = MatchElementType(ident);
+ if(src->mType == ET_NONE)
+ {
+ TrErrorAt(tr, line, col, "Expected a source element type.\n");
+ return 0;
+ }
+ if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
+ {
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(src->mType == ET_INT)
+ {
+ if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
+ return 0;
+ src->mSize = static_cast<uint>(intVal);
+ if(!TrIsOperator(tr, ","))
+ src->mBits = static_cast<int>(8*src->mSize);
+ else
+ {
+ TrReadOperator(tr, ",");
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
+ return 0;
+ if(std::abs(intVal) < MIN_BIN_BITS || static_cast<uint>(std::abs(intVal)) > (8*src->mSize))
+ {
+ TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
+ return 0;
+ }
+ src->mBits = intVal;
+ }
+ }
+ else
+ {
+ TrIndication(tr, &line, &col);
+ if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
+ return 0;
+ if(intVal != 4 && intVal != 8)
+ {
+ TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
+ return 0;
+ }
+ src->mSize = static_cast<uint>(intVal);
+ src->mBits = 0;
+ }
+ }
+ else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
+ {
+ if(!TrReadOperator(tr, ","))
+ return 0;
+ if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
+ return 0;
+ src->mSize = 0;
+ src->mBits = intVal;
+ }
+ else
+ {
+ src->mSize = 0;
+ src->mBits = 0;
+ }
+
+ if(!TrIsOperator(tr, ";"))
+ src->mSkip = 0;
+ else
+ {
+ TrReadOperator(tr, ";");
+ if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
+ return 0;
+ src->mSkip = static_cast<uint>(intVal);
+ }
+ }
+ if(!TrReadOperator(tr, ")"))
+ return 0;
+ if(TrIsOperator(tr, "@"))
+ {
+ TrReadOperator(tr, "@");
+ if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
+ return 0;
+ src->mOffset = static_cast<uint>(intVal);
+ }
+ else
+ src->mOffset = 0;
+ if(!TrReadOperator(tr, ":"))
+ return 0;
+ if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
+ return 0;
+ return 1;
+}
+
+// Parse and validate a SOFA source reference from the data set definition.
+static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src)
+{
+ char ident[MAX_IDENT_LEN+1];
+ uint line, col;
+ int intVal;
+
+ TrIndication(tr, &line, &col);
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ src->mFormat = MatchSourceFormat(ident);
+ if(src->mFormat != SF_SOFA)
+ {
+ TrErrorAt(tr, line, col, "Expected the SOFA source format.\n");
+ return 0;
+ }
+
+ src->mType = ET_NONE;
+ src->mSize = 0;
+ src->mBits = 0;
+ src->mChannel = 0;
+ src->mSkip = 0;
+
+ if(TrIsOperator(tr, "@"))
+ {
+ TrReadOperator(tr, "@");
+ if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
+ return 0;
+ src->mOffset = (uint)intVal;
+ }
+ else
+ src->mOffset = 0;
+ if(!TrReadOperator(tr, ":"))
+ return 0;
+ if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
+ return 0;
+ return 1;
+}
+
+// Match the target ear (index) from a given identifier.
+static int MatchTargetEar(const char *ident)
+{
+ if(strcasecmp(ident, "left") == 0)
+ return 0;
+ if(strcasecmp(ident, "right") == 0)
+ return 1;
+ return -1;
+}
+
+// Process the list of sources in the data set definition.
+static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
+{
+ uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
+ hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
+ double *hrirs = hData->mHrirsBase.data();
+ std::vector<double> hrir(hData->mIrPoints);
+ uint line, col, fi, ei, ai, ti;
+ int count;
+
+ printf("Loading sources...");
+ fflush(stdout);
+ count = 0;
+ while(TrIsOperator(tr, "["))
+ {
+ double factor[2]{ 1.0, 1.0 };
+
+ TrIndication(tr, &line, &col);
+ TrReadOperator(tr, "[");
+
+ if(TrIsOperator(tr, "*"))
+ {
+ SourceRefT src;
+ struct MYSOFA_EASY *sofa;
+ uint si;
+
+ TrReadOperator(tr, "*");
+ if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "="))
+ return 0;
+
+ TrIndication(tr, &line, &col);
+ if(!ReadSofaRef(tr, &src))
+ return 0;
+
+ if(hData->mChannelType == CT_STEREO)
+ {
+ char type[MAX_IDENT_LEN+1];
+ ChannelTypeT channelType;
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
+ return 0;
+
+ channelType = MatchChannelType(type);
+
+ switch(channelType)
+ {
+ case CT_NONE:
+ TrErrorAt(tr, line, col, "Expected a channel type.\n");
+ return 0;
+ case CT_MONO:
+ src.mChannel = 0;
+ break;
+ case CT_STEREO:
+ src.mChannel = 1;
+ break;
+ }
+ }
+ else
+ {
+ char type[MAX_IDENT_LEN+1];
+ ChannelTypeT channelType;
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
+ return 0;
+
+ channelType = MatchChannelType(type);
+ if(channelType != CT_MONO)
+ {
+ TrErrorAt(tr, line, col, "Expected a mono channel type.\n");
+ return 0;
+ }
+ src.mChannel = 0;
+ }
+
+ sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints);
+ if(!sofa) return 0;
+
+ for(si = 0;si < sofa->hrtf->M;si++)
+ {
+ printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M);
+ fflush(stdout);
+
+ float aer[3] = {
+ sofa->hrtf->SourcePosition.values[3*si],
+ sofa->hrtf->SourcePosition.values[3*si + 1],
+ sofa->hrtf->SourcePosition.values[3*si + 2]
+ };
+ mysofa_c2s(aer);
+
+ if(std::fabs(aer[1]) >= 89.999f)
+ aer[0] = 0.0f;
+ else
+ aer[0] = std::fmod(360.0f - aer[0], 360.0f);
+
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ double delta = aer[2] - hData->mFds[fi].mDistance;
+ if(std::abs(delta) < 0.001)
+ break;
+ }
+ if(fi >= hData->mFdCount)
+ continue;
+
+ double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0};
+ ei = (int)std::round(ef);
+ ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1);
+ if(std::abs(ef) >= 0.1)
+ continue;
+
+ double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f};
+ ai = (int)std::round(af);
+ af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount;
+ ai = ai % hData->mFds[fi].mEvs[ei].mAzCount;
+ if(std::abs(af) >= 0.1)
+ continue;
+
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] != nullptr)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai);
+ return 0;
+ }
+
+ ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data());
+ azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex];
+ if(model == HM_DATASET)
+ azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]);
+ AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]);
+
+ if(src.mChannel == 1)
+ {
+ ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data());
+ azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)];
+ if(model == HM_DATASET)
+ azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]);
+ AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]);
+ }
+
+ // TODO: Since some SOFA files contain minimum phase HRIRs,
+ // it would be beneficial to check for per-measurement delays
+ // (when available) to reconstruct the HRTDs.
+ }
+
+ continue;
+ }
+
+ if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
+ return 0;
+ if(!TrReadOperator(tr, "]"))
+ return 0;
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] != nullptr)
+ {
+ TrErrorAt(tr, line, col, "Redefinition of source.\n");
+ return 0;
+ }
+ if(!TrReadOperator(tr, "="))
+ return 0;
+
+ for(;;)
+ {
+ SourceRefT src;
+ uint ti = 0;
+
+ if(!ReadSourceRef(tr, &src))
+ return 0;
+
+ // TODO: Would be nice to display 'x of y files', but that would
+ // require preparing the source refs first to get a total count
+ // before loading them.
+ ++count;
+ printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
+ fflush(stdout);
+
+ if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data()))
+ return 0;
+
+ if(hData->mChannelType == CT_STEREO)
+ {
+ char ident[MAX_IDENT_LEN+1];
+
+ if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
+ return 0;
+ ti = MatchTargetEar(ident);
+ if(static_cast<int>(ti) < 0)
+ {
+ TrErrorAt(tr, line, col, "Expected a target ear.\n");
+ return 0;
+ }
+ }
+ azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
+ if(model == HM_DATASET)
+ azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]);
+ AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]);
+ factor[ti] += 1.0;
+ if(!TrIsOperator(tr, "+"))
+ break;
+ TrReadOperator(tr, "+");
+ }
+ if(hData->mChannelType == CT_STEREO)
+ {
+ if(azd->mIrs[0] == nullptr)
+ {
+ TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
+ return 0;
+ }
+ else if(azd->mIrs[1] == nullptr)
+ {
+ TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
+ return 0;
+ }
+ }
+ }
+ printf("\n");
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+ if(azd->mIrs[0] != nullptr)
+ break;
+ }
+ if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
+ break;
+ }
+ if(ei >= hData->mFds[fi].mEvCount)
+ {
+ TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
+ return 0;
+ }
+ hData->mFds[fi].mEvStart = ei;
+ for(;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ if(azd->mIrs[0] == nullptr)
+ {
+ TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
+ return 0;
+ }
+ }
+ }
+ }
+ for(ti = 0;ti < channels;ti++)
+ {
+ for(fi = 0;fi < hData->mFdCount;fi++)
+ {
+ for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
+ {
+ for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
+ {
+ HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
+
+ azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
+ }
+ }
+ }
+ }
+ if(!TrLoad(tr))
+ {
+ mysofa_cache_release_all();
+ return 1;
+ }
+
+ TrError(tr, "Errant data at end of source list.\n");
+ mysofa_cache_release_all();
+ return 0;
+}
+
+/* Parse the data set definition and process the source data, storing the
+ * resulting data set as desired. If the input name is NULL it will read
+ * from standard input.
+ */
+static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
+{
+ char rateStr[8+1], expName[MAX_PATH_LEN];
+ TokenReaderT tr;
+ HrirDataT hData;
+ FILE *fp;
+ int ret;
+
+ fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
+ if(inName != nullptr)
+ {
+ fp = fopen(inName, "r");
+ if(fp == nullptr)
+ {
+ fprintf(stderr, "\nError: Could not open definition file '%s'\n", inName);
+ return 0;
+ }
+ TrSetup(fp, inName, &tr);
+ }
+ else
+ {
+ fp = stdin;
+ TrSetup(fp, "<stdin>", &tr);
+ }
+ if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
+ {
+ if(inName != nullptr)
+ fclose(fp);
+ return 0;
+ }
+ if(!ProcessSources(model, &tr, &hData))
+ {
+ if(inName)
+ fclose(fp);
+ return 0;
+ }
+ if(fp != stdin)
+ fclose(fp);
+ if(equalize)
+ {
+ uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
+ uint m = 1 + hData.mFftSize / 2;
+ std::vector<double> dfa(c * m);
+
+ if(hData.mFdCount > 1)
+ {
+ fprintf(stdout, "Balancing field magnitudes...\n");
+ BalanceFieldMagnitudes(&hData, c, m);
+ }
+ fprintf(stdout, "Calculating diffuse-field average...\n");
+ CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data());
+ fprintf(stdout, "Performing diffuse-field equalization...\n");
+ DiffuseFieldEqualize(c, m, dfa.data(), &hData);
+ }
+ fprintf(stdout, "Performing minimum phase reconstruction...\n");
+ ReconstructHrirs(&hData);
+ if(outRate != 0 && outRate != hData.mIrRate)
+ {
+ fprintf(stdout, "Resampling HRIRs...\n");
+ ResampleHrirs(outRate, &hData);
+ }
+ fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
+ hData.mIrPoints = truncSize;
+ fprintf(stdout, "Synthesizing missing elevations...\n");
+ if(model == HM_DATASET)
+ SynthesizeOnsets(&hData);
+ SynthesizeHrirs(&hData);
+ fprintf(stdout, "Normalizing final HRIRs...\n");
+ NormalizeHrirs(&hData);
+ fprintf(stdout, "Calculating impulse delays...\n");
+ CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
+ snprintf(rateStr, 8, "%u", hData.mIrRate);
+ StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
+ fprintf(stdout, "Creating MHR data set %s...\n", expName);
+ ret = StoreMhr(&hData, expName);
+
+ return ret;
+}
+
+static void PrintHelp(const char *argv0, FILE *ofile)
+{
+ fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
+ fprintf(ofile, "Options:\n");
+ fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
+ fprintf(ofile, " resample the HRIRs accordingly.\n");
+ fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
+ fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
+ fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
+ fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
+ fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
+ fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
+ fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
+ fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
+ fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
+ fprintf(ofile, " -c <radius> Use a customized head radius measured to-ear in meters.\n");
+ fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
+ fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
+ fprintf(ofile, " the data set sample rate.\n");
+}
+
+// Standard command line dispatch.
+int main(int argc, char *argv[])
+{
+ const char *inName = nullptr, *outName = nullptr;
+ uint outRate, fftSize;
+ int equalize, surface;
+ char *end = nullptr;
+ HeadModelT model;
+ uint truncSize;
+ double radius;
+ double limit;
+ int opt;
+
+ GET_UNICODE_ARGS(&argc, &argv);
+
+ if(argc < 2)
+ {
+ fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
+ PrintHelp(argv[0], stdout);
+ exit(EXIT_SUCCESS);
+ }
+
+ outName = "./oalsoft_hrtf_%r.mhr";
+ outRate = 0;
+ fftSize = 0;
+ equalize = DEFAULT_EQUALIZE;
+ surface = DEFAULT_SURFACE;
+ limit = DEFAULT_LIMIT;
+ truncSize = DEFAULT_TRUNCSIZE;
+ model = DEFAULT_HEAD_MODEL;
+ radius = DEFAULT_CUSTOM_RADIUS;
+
+ while((opt=getopt(argc, argv, "r:f:e:s:l:w:d:c:e:i:o:h")) != -1)
+ {
+ switch(opt)
+ {
+ case 'r':
+ outRate = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'f':
+ fftSize = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'e':
+ if(strcmp(optarg, "on") == 0)
+ equalize = 1;
+ else if(strcmp(optarg, "off") == 0)
+ equalize = 0;
+ else
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 's':
+ if(strcmp(optarg, "on") == 0)
+ surface = 1;
+ else if(strcmp(optarg, "off") == 0)
+ surface = 0;
+ else
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'l':
+ if(strcmp(optarg, "none") == 0)
+ limit = 0.0;
+ else
+ {
+ limit = strtod(optarg, &end);
+ if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
+ exit(EXIT_FAILURE);
+ }
+ }
+ break;
+
+ case 'w':
+ truncSize = strtoul(optarg, &end, 10);
+ if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'd':
+ if(strcmp(optarg, "dataset") == 0)
+ model = HM_DATASET;
+ else if(strcmp(optarg, "sphere") == 0)
+ model = HM_SPHERE;
+ else
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'c':
+ radius = strtod(optarg, &end);
+ if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
+ {
+ fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
+ exit(EXIT_FAILURE);
+ }
+ break;
+
+ case 'i':
+ inName = optarg;
+ break;
+
+ case 'o':
+ outName = optarg;
+ break;
+
+ case 'h':
+ PrintHelp(argv[0], stdout);
+ exit(EXIT_SUCCESS);
+
+ default: /* '?' */
+ PrintHelp(argv[0], stderr);
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
+ truncSize, model, radius, outName))
+ return -1;
+ fprintf(stdout, "Operation completed.\n");
+
+ return EXIT_SUCCESS;
+}