diff options
Diffstat (limited to 'utils/makemhr/makemhr.cpp')
-rw-r--r-- | utils/makemhr/makemhr.cpp | 3855 |
1 files changed, 3855 insertions, 0 deletions
diff --git a/utils/makemhr/makemhr.cpp b/utils/makemhr/makemhr.cpp new file mode 100644 index 00000000..27b1d69d --- /dev/null +++ b/utils/makemhr/makemhr.cpp @@ -0,0 +1,3855 @@ +/* + * HRTF utility for producing and demonstrating the process of creating an + * OpenAL Soft compatible HRIR data set. + * + * Copyright (C) 2011-2019 Christopher Fitzgerald + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html + * + * -------------------------------------------------------------------------- + * + * A big thanks goes out to all those whose work done in the field of + * binaural sound synthesis using measured HRTFs makes this utility and the + * OpenAL Soft implementation possible. + * + * The algorithm for diffuse-field equalization was adapted from the work + * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of + * MIT Media Laboratory. It operates as follows: + * + * 1. Take the FFT of each HRIR and only keep the magnitude responses. + * 2. Calculate the diffuse-field power-average of all HRIRs weighted by + * their contribution to the total surface area covered by their + * measurement. This has since been modified to use coverage volume for + * multi-field HRIR data sets. + * 3. Take the diffuse-field average and limit its magnitude range. + * 4. Equalize the responses by using the inverse of the diffuse-field + * average. + * 5. Reconstruct the minimum-phase responses. + * 5. Zero the DC component. + * 6. IFFT the result and truncate to the desired-length minimum-phase FIR. + * + * The spherical head algorithm for calculating propagation delay was adapted + * from the paper: + * + * Modeling Interaural Time Difference Assuming a Spherical Head + * Joel David Miller + * Music 150, Musical Acoustics, Stanford University + * December 2, 2001 + * + * The formulae for calculating the Kaiser window metrics are from the + * the textbook: + * + * Discrete-Time Signal Processing + * Alan V. Oppenheim and Ronald W. Schafer + * Prentice-Hall Signal Processing Series + * 1999 + */ + +#include "config.h" + +#define _UNICODE +#include <cstdio> +#include <cstdlib> +#include <cstdarg> +#include <cstddef> +#include <cstring> +#include <climits> +#include <cstdint> +#include <cctype> +#include <cmath> +#ifdef HAVE_STRINGS_H +#include <strings.h> +#endif +#ifdef HAVE_GETOPT +#include <unistd.h> +#else +#include "getopt.h" +#endif + +#include <atomic> +#include <limits> +#include <vector> +#include <chrono> +#include <thread> +#include <complex> +#include <numeric> +#include <algorithm> +#include <functional> + +#include "mysofa.h" + +#include "win_main_utf8.h" + +namespace { + +using namespace std::placeholders; + +} // namespace + +#ifndef M_PI +#define M_PI (3.14159265358979323846) +#endif + + +// The epsilon used to maintain signal stability. +#define EPSILON (1e-9) + +// Constants for accessing the token reader's ring buffer. +#define TR_RING_BITS (16) +#define TR_RING_SIZE (1 << TR_RING_BITS) +#define TR_RING_MASK (TR_RING_SIZE - 1) + +// The token reader's load interval in bytes. +#define TR_LOAD_SIZE (TR_RING_SIZE >> 2) + +// The maximum identifier length used when processing the data set +// definition. +#define MAX_IDENT_LEN (16) + +// The maximum path length used when processing filenames. +#define MAX_PATH_LEN (256) + +// The limits for the sample 'rate' metric in the data set definition and for +// resampling. +#define MIN_RATE (32000) +#define MAX_RATE (96000) + +// The limits for the HRIR 'points' metric in the data set definition. +#define MIN_POINTS (16) +#define MAX_POINTS (8192) + +// The limit to the number of 'distances' listed in the data set definition. +#define MAX_FD_COUNT (16) + +// The limits to the number of 'azimuths' listed in the data set definition. +#define MIN_EV_COUNT (5) +#define MAX_EV_COUNT (128) + +// The limits for each of the 'azimuths' listed in the data set definition. +#define MIN_AZ_COUNT (1) +#define MAX_AZ_COUNT (128) + +// The limits for the listener's head 'radius' in the data set definition. +#define MIN_RADIUS (0.05) +#define MAX_RADIUS (0.15) + +// The limits for the 'distance' from source to listener for each field in +// the definition file. +#define MIN_DISTANCE (0.05) +#define MAX_DISTANCE (2.50) + +// The maximum number of channels that can be addressed for a WAVE file +// source listed in the data set definition. +#define MAX_WAVE_CHANNELS (65535) + +// The limits to the byte size for a binary source listed in the definition +// file. +#define MIN_BIN_SIZE (2) +#define MAX_BIN_SIZE (4) + +// The minimum number of significant bits for binary sources listed in the +// data set definition. The maximum is calculated from the byte size. +#define MIN_BIN_BITS (16) + +// The limits to the number of significant bits for an ASCII source listed in +// the data set definition. +#define MIN_ASCII_BITS (16) +#define MAX_ASCII_BITS (32) + +// The limits to the FFT window size override on the command line. +#define MIN_FFTSIZE (65536) +#define MAX_FFTSIZE (131072) + +// The limits to the equalization range limit on the command line. +#define MIN_LIMIT (2.0) +#define MAX_LIMIT (120.0) + +// The limits to the truncation window size on the command line. +#define MIN_TRUNCSIZE (16) +#define MAX_TRUNCSIZE (512) + +// The limits to the custom head radius on the command line. +#define MIN_CUSTOM_RADIUS (0.05) +#define MAX_CUSTOM_RADIUS (0.15) + +// The truncation window size must be a multiple of the below value to allow +// for vectorized convolution. +#define MOD_TRUNCSIZE (8) + +// The defaults for the command line options. +#define DEFAULT_FFTSIZE (65536) +#define DEFAULT_EQUALIZE (1) +#define DEFAULT_SURFACE (1) +#define DEFAULT_LIMIT (24.0) +#define DEFAULT_TRUNCSIZE (32) +#define DEFAULT_HEAD_MODEL (HM_DATASET) +#define DEFAULT_CUSTOM_RADIUS (0.0) + +// The four-character-codes for RIFF/RIFX WAVE file chunks. +#define FOURCC_RIFF (0x46464952) // 'RIFF' +#define FOURCC_RIFX (0x58464952) // 'RIFX' +#define FOURCC_WAVE (0x45564157) // 'WAVE' +#define FOURCC_FMT (0x20746D66) // 'fmt ' +#define FOURCC_DATA (0x61746164) // 'data' +#define FOURCC_LIST (0x5453494C) // 'LIST' +#define FOURCC_WAVL (0x6C766177) // 'wavl' +#define FOURCC_SLNT (0x746E6C73) // 'slnt' + +// The supported wave formats. +#define WAVE_FORMAT_PCM (0x0001) +#define WAVE_FORMAT_IEEE_FLOAT (0x0003) +#define WAVE_FORMAT_EXTENSIBLE (0xFFFE) + +// The maximum propagation delay value supported by OpenAL Soft. +#define MAX_HRTD (63.0) + +// The OpenAL Soft HRTF format marker. It stands for minimum-phase head +// response protocol 02. +#define MHR_FORMAT ("MinPHR02") + +// Sample and channel type enum values. +enum SampleTypeT { + ST_S16 = 0, + ST_S24 = 1 +}; + +// Certain iterations rely on these integer enum values. +enum ChannelTypeT { + CT_NONE = -1, + CT_MONO = 0, + CT_STEREO = 1 +}; + +// Byte order for the serialization routines. +enum ByteOrderT { + BO_NONE, + BO_LITTLE, + BO_BIG +}; + +// Source format for the references listed in the data set definition. +enum SourceFormatT { + SF_NONE, + SF_ASCII, // ASCII text file. + SF_BIN_LE, // Little-endian binary file. + SF_BIN_BE, // Big-endian binary file. + SF_WAVE, // RIFF/RIFX WAVE file. + SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file. +}; + +// Element types for the references listed in the data set definition. +enum ElementTypeT { + ET_NONE, + ET_INT, // Integer elements. + ET_FP // Floating-point elements. +}; + +// Head model used for calculating the impulse delays. +enum HeadModelT { + HM_NONE, + HM_DATASET, // Measure the onset from the dataset. + HM_SPHERE // Calculate the onset using a spherical head model. +}; + +/* Unsigned integer type. */ +using uint = unsigned int; + +/* Complex double type. */ +using complex_d = std::complex<double>; + +/* Channel index enums. Mono uses LeftChannel only. */ +enum ChannelIndex : uint { + LeftChannel = 0u, + RightChannel = 1u +}; + + +// Token reader state for parsing the data set definition. +struct TokenReaderT { + FILE *mFile; + const char *mName; + uint mLine; + uint mColumn; + char mRing[TR_RING_SIZE]; + size_t mIn; + size_t mOut; +}; + +// Source reference state used when loading sources. +struct SourceRefT { + SourceFormatT mFormat; + ElementTypeT mType; + uint mSize; + int mBits; + uint mChannel; + double mAzimuth; + double mElevation; + double mRadius; + uint mSkip; + uint mOffset; + char mPath[MAX_PATH_LEN+1]; +}; + +// Structured HRIR storage for stereo azimuth pairs, elevations, and fields. +struct HrirAzT { + double mAzimuth{0.0}; + uint mIndex{0u}; + double mDelays[2]{0.0, 0.0}; + double *mIrs[2]{nullptr, nullptr}; +}; + +struct HrirEvT { + double mElevation{0.0}; + uint mIrCount{0u}; + uint mAzCount{0u}; + HrirAzT *mAzs{nullptr}; +}; + +struct HrirFdT { + double mDistance{0.0}; + uint mIrCount{0u}; + uint mEvCount{0u}; + uint mEvStart{0u}; + HrirEvT *mEvs{nullptr}; +}; + +// The HRIR metrics and data set used when loading, processing, and storing +// the resulting HRTF. +struct HrirDataT { + uint mIrRate{0u}; + SampleTypeT mSampleType{ST_S24}; + ChannelTypeT mChannelType{CT_NONE}; + uint mIrPoints{0u}; + uint mFftSize{0u}; + uint mIrSize{0u}; + double mRadius{0.0}; + uint mIrCount{0u}; + uint mFdCount{0u}; + + std::vector<double> mHrirsBase; + std::vector<HrirEvT> mEvsBase; + std::vector<HrirAzT> mAzsBase; + + std::vector<HrirFdT> mFds; +}; + +// The resampler metrics and FIR filter. +struct ResamplerT { + uint mP, mQ, mM, mL; + std::vector<double> mF; +}; + + +/***************************** + *** Token reader routines *** + *****************************/ + +/* Whitespace is not significant. It can process tokens as identifiers, numbers + * (integer and floating-point), strings, and operators. Strings must be + * encapsulated by double-quotes and cannot span multiple lines. + */ + +// Setup the reader on the given file. The filename can be NULL if no error +// output is desired. +static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr) +{ + const char *name = nullptr; + + if(filename) + { + const char *slash = strrchr(filename, '/'); + if(slash) + { + const char *bslash = strrchr(slash+1, '\\'); + if(bslash) name = bslash+1; + else name = slash+1; + } + else + { + const char *bslash = strrchr(filename, '\\'); + if(bslash) name = bslash+1; + else name = filename; + } + } + + tr->mFile = fp; + tr->mName = name; + tr->mLine = 1; + tr->mColumn = 1; + tr->mIn = 0; + tr->mOut = 0; +} + +// Prime the reader's ring buffer, and return a result indicating that there +// is text to process. +static int TrLoad(TokenReaderT *tr) +{ + size_t toLoad, in, count; + + toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut); + if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile)) + { + // Load TR_LOAD_SIZE (or less if at the end of the file) per read. + toLoad = TR_LOAD_SIZE; + in = tr->mIn&TR_RING_MASK; + count = TR_RING_SIZE - in; + if(count < toLoad) + { + tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile); + tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile); + } + else + tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile); + + if(tr->mOut >= TR_RING_SIZE) + { + tr->mOut -= TR_RING_SIZE; + tr->mIn -= TR_RING_SIZE; + } + } + if(tr->mIn > tr->mOut) + return 1; + return 0; +} + +// Error display routine. Only displays when the base name is not NULL. +static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr) +{ + if(!tr->mName) + return; + fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column); + vfprintf(stderr, format, argPtr); +} + +// Used to display an error at a saved line/column. +static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...) +{ + va_list argPtr; + + va_start(argPtr, format); + TrErrorVA(tr, line, column, format, argPtr); + va_end(argPtr); +} + +// Used to display an error at the current line/column. +static void TrError(const TokenReaderT *tr, const char *format, ...) +{ + va_list argPtr; + + va_start(argPtr, format); + TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr); + va_end(argPtr); +} + +// Skips to the next line. +static void TrSkipLine(TokenReaderT *tr) +{ + char ch; + + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + break; + } + tr->mColumn ++; + } +} + +// Skips to the next token. +static int TrSkipWhitespace(TokenReaderT *tr) +{ + while(TrLoad(tr)) + { + char ch{tr->mRing[tr->mOut&TR_RING_MASK]}; + if(isspace(ch)) + { + tr->mOut++; + if(ch == '\n') + { + tr->mLine++; + tr->mColumn = 1; + } + else + tr->mColumn++; + } + else if(ch == '#') + TrSkipLine(tr); + else + return 1; + } + return 0; +} + +// Get the line and/or column of the next token (or the end of input). +static void TrIndication(TokenReaderT *tr, uint *line, uint *column) +{ + TrSkipWhitespace(tr); + if(line) *line = tr->mLine; + if(column) *column = tr->mColumn; +} + +// Checks to see if a token is (likely to be) an identifier. It does not +// display any errors and will not proceed to the next token. +static int TrIsIdent(TokenReaderT *tr) +{ + if(!TrSkipWhitespace(tr)) + return 0; + char ch{tr->mRing[tr->mOut&TR_RING_MASK]}; + return ch == '_' || isalpha(ch); +} + + +// Checks to see if a token is the given operator. It does not display any +// errors and will not proceed to the next token. +static int TrIsOperator(TokenReaderT *tr, const char *op) +{ + size_t out, len; + char ch; + + if(!TrSkipWhitespace(tr)) + return 0; + out = tr->mOut; + len = 0; + while(op[len] != '\0' && out < tr->mIn) + { + ch = tr->mRing[out&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + out++; + } + if(op[len] == '\0') + return 1; + return 0; +} + +/* The TrRead*() routines obtain the value of a matching token type. They + * display type, form, and boundary errors and will proceed to the next + * token. + */ + +// Reads and validates an identifier token. +static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '_' || isalpha(ch)) + { + len = 0; + do { + if(len < maxLen) + ident[len] = ch; + len++; + tr->mOut++; + if(!TrLoad(tr)) + break; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + } while(ch == '_' || isdigit(ch) || isalpha(ch)); + + tr->mColumn += len; + if(len < maxLen) + { + ident[len] = '\0'; + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n"); + return 0; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n"); + return 0; +} + +// Reads and validates (including bounds) an integer token. +static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Integer is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtol(temp, nullptr, 10); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n"); + return 0; +} + +// Reads and validates (including bounds) a float token. +static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) +{ + uint col, digis, len; + char ch, temp[64+1]; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '+' || ch == '-') + { + temp[len] = ch; + len++; + tr->mOut++; + } + + digis = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(ch == '.') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + if(digis > 0) + { + if(ch == 'E' || ch == 'e') + { + if(len < 64) + temp[len] = ch; + len++; + digis = 0; + tr->mOut++; + if(ch == '+' || ch == '-') + { + if(len < 64) + temp[len] = ch; + len++; + tr->mOut++; + } + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(!isdigit(ch)) break; + if(len < 64) + temp[len] = ch; + len++; + digis++; + tr->mOut++; + } + } + tr->mColumn += len; + if(digis > 0 && ch != '.' && !isalpha(ch)) + { + if(len > 64) + { + TrErrorAt(tr, tr->mLine, col, "Float is too long."); + return 0; + } + temp[len] = '\0'; + *value = strtod(temp, nullptr); + if(*value < loBound || *value > hiBound) + { + TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); + return 0; + } + return 1; + } + } + else + tr->mColumn += len; + } + TrErrorAt(tr, tr->mLine, col, "Expected a float.\n"); + return 0; +} + +// Reads and validates a string token. +static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch == '\"') + { + tr->mOut++; + len = 0; + while(TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + tr->mOut++; + if(ch == '\"') + break; + if(ch == '\n') + { + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n"); + return 0; + } + if(len < maxLen) + text[len] = ch; + len++; + } + if(ch != '\"') + { + tr->mColumn += 1 + len; + TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n"); + return 0; + } + tr->mColumn += 2 + len; + if(len > maxLen) + { + TrErrorAt(tr, tr->mLine, col, "String is too long.\n"); + return 0; + } + text[len] = '\0'; + return 1; + } + } + TrErrorAt(tr, tr->mLine, col, "Expected a string.\n"); + return 0; +} + +// Reads and validates the given operator. +static int TrReadOperator(TokenReaderT *tr, const char *op) +{ + uint col, len; + char ch; + + col = tr->mColumn; + if(TrSkipWhitespace(tr)) + { + col = tr->mColumn; + len = 0; + while(op[len] != '\0' && TrLoad(tr)) + { + ch = tr->mRing[tr->mOut&TR_RING_MASK]; + if(ch != op[len]) break; + len++; + tr->mOut++; + } + tr->mColumn += len; + if(op[len] == '\0') + return 1; + } + TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op); + return 0; +} + +/* Performs a string substitution. Any case-insensitive occurrences of the + * pattern string are replaced with the replacement string. The result is + * truncated if necessary. + */ +static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out) +{ + size_t inLen, patLen, repLen; + size_t si, di; + int truncated; + + inLen = strlen(in); + patLen = strlen(pat); + repLen = strlen(rep); + si = 0; + di = 0; + truncated = 0; + while(si < inLen && di < maxLen) + { + if(patLen <= inLen-si) + { + if(strncasecmp(&in[si], pat, patLen) == 0) + { + if(repLen > maxLen-di) + { + repLen = maxLen - di; + truncated = 1; + } + strncpy(&out[di], rep, repLen); + si += patLen; + di += repLen; + } + } + out[di] = in[si]; + si++; + di++; + } + if(si < inLen) + truncated = 1; + out[di] = '\0'; + return !truncated; +} + + +/********************* + *** Math routines *** + *********************/ + +// Simple clamp routine. +static double Clamp(const double val, const double lower, const double upper) +{ + return std::min(std::max(val, lower), upper); +} + +// Performs linear interpolation. +static double Lerp(const double a, const double b, const double f) +{ + return a + f * (b - a); +} + +static inline uint dither_rng(uint *seed) +{ + *seed = *seed * 96314165 + 907633515; + return *seed; +} + +// Performs a triangular probability density function dither. The input samples +// should be normalized (-1 to +1). +static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale, + const int count, const int step, uint *seed) +{ + static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max(); + + for(int i{0};i < count;i++) + { + uint prn0{dither_rng(seed)}; + uint prn1{dither_rng(seed)}; + out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE)); + } +} + +/* Fast Fourier transform routines. The number of points must be a power of + * two. + */ + +// Performs bit-reversal ordering. +static void FftArrange(const uint n, complex_d *inout) +{ + // Handle in-place arrangement. + uint rk{0u}; + for(uint k{0u};k < n;k++) + { + if(rk > k) + std::swap(inout[rk], inout[k]); + + uint m{n}; + while(rk&(m >>= 1)) + rk &= ~m; + rk |= m; + } +} + +// Performs the summation. +static void FftSummation(const int n, const double s, complex_d *cplx) +{ + double pi; + int m, m2; + int i, k, mk; + + pi = s * M_PI; + for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1) + { + // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) + double sm = sin(0.5 * pi / m); + auto v = complex_d{-2.0*sm*sm, -sin(pi / m)}; + auto w = complex_d{1.0, 0.0}; + for(i = 0;i < m;i++) + { + for(k = i;k < n;k += m2) + { + mk = k + m; + auto t = w * cplx[mk]; + cplx[mk] = cplx[k] - t; + cplx[k] = cplx[k] + t; + } + w += v*w; + } + } +} + +// Performs a forward FFT. +static void FftForward(const uint n, complex_d *inout) +{ + FftArrange(n, inout); + FftSummation(n, 1.0, inout); +} + +// Performs an inverse FFT. +static void FftInverse(const uint n, complex_d *inout) +{ + FftArrange(n, inout); + FftSummation(n, -1.0, inout); + double f{1.0 / n}; + for(uint i{0};i < n;i++) + inout[i] *= f; +} + +/* Calculate the complex helical sequence (or discrete-time analytical signal) + * of the given input using the Hilbert transform. Given the natural logarithm + * of a signal's magnitude response, the imaginary components can be used as + * the angles for minimum-phase reconstruction. + */ +static void Hilbert(const uint n, complex_d *inout) +{ + uint i; + + // Handle in-place operation. + for(i = 0;i < n;i++) + inout[i].imag(0.0); + + FftInverse(n, inout); + for(i = 1;i < (n+1)/2;i++) + inout[i] *= 2.0; + /* Increment i if n is even. */ + i += (n&1)^1; + for(;i < n;i++) + inout[i] = complex_d{0.0, 0.0}; + FftForward(n, inout); +} + +/* Calculate the magnitude response of the given input. This is used in + * place of phase decomposition, since the phase residuals are discarded for + * minimum phase reconstruction. The mirrored half of the response is also + * discarded. + */ +static void MagnitudeResponse(const uint n, const complex_d *in, double *out) +{ + const uint m = 1 + (n / 2); + uint i; + for(i = 0;i < m;i++) + out[i] = std::max(std::abs(in[i]), EPSILON); +} + +/* Apply a range limit (in dB) to the given magnitude response. This is used + * to adjust the effects of the diffuse-field average on the equalization + * process. + */ +static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out) +{ + double halfLim; + uint i, lower, upper; + double ave; + + halfLim = limit / 2.0; + // Convert the response to dB. + for(i = 0;i < m;i++) + out[i] = 20.0 * std::log10(in[i]); + // Use six octaves to calculate the average magnitude of the signal. + lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1; + upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1; + ave = 0.0; + for(i = lower;i <= upper;i++) + ave += out[i]; + ave /= upper - lower + 1; + // Keep the response within range of the average magnitude. + for(i = 0;i < m;i++) + out[i] = Clamp(out[i], ave - halfLim, ave + halfLim); + // Convert the response back to linear magnitude. + for(i = 0;i < m;i++) + out[i] = std::pow(10.0, out[i] / 20.0); +} + +/* Reconstructs the minimum-phase component for the given magnitude response + * of a signal. This is equivalent to phase recomposition, sans the missing + * residuals (which were discarded). The mirrored half of the response is + * reconstructed. + */ +static void MinimumPhase(const uint n, const double *in, complex_d *out) +{ + const uint m = 1 + (n / 2); + std::vector<double> mags(n); + + uint i; + for(i = 0;i < m;i++) + { + mags[i] = std::max(EPSILON, in[i]); + out[i] = complex_d{std::log(mags[i]), 0.0}; + } + for(;i < n;i++) + { + mags[i] = mags[n - i]; + out[i] = out[n - i]; + } + Hilbert(n, out); + // Remove any DC offset the filter has. + mags[0] = EPSILON; + for(i = 0;i < n;i++) + { + auto a = std::exp(complex_d{0.0, out[i].imag()}); + out[i] = complex_d{mags[i], 0.0} * a; + } +} + + +/*************************** + *** Resampler functions *** + ***************************/ + +/* This is the normalized cardinal sine (sinc) function. + * + * sinc(x) = { 1, x = 0 + * { sin(pi x) / (pi x), otherwise. + */ +static double Sinc(const double x) +{ + if(std::abs(x) < EPSILON) + return 1.0; + return std::sin(M_PI * x) / (M_PI * x); +} + +/* The zero-order modified Bessel function of the first kind, used for the + * Kaiser window. + * + * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) + * = sum_{k=0}^inf ((x / 2)^k / k!)^2 + */ +static double BesselI_0(const double x) +{ + double term, sum, x2, y, last_sum; + int k; + + // Start at k=1 since k=0 is trivial. + term = 1.0; + sum = 1.0; + x2 = x/2.0; + k = 1; + + // Let the integration converge until the term of the sum is no longer + // significant. + do { + y = x2 / k; + k++; + last_sum = sum; + term *= y * y; + sum += term; + } while(sum != last_sum); + return sum; +} + +/* Calculate a Kaiser window from the given beta value and a normalized k + * [-1, 1]. + * + * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 + * { 0, elsewhere. + * + * Where k can be calculated as: + * + * k = i / l, where -l <= i <= l. + * + * or: + * + * k = 2 i / M - 1, where 0 <= i <= M. + */ +static double Kaiser(const double b, const double k) +{ + if(!(k >= -1.0 && k <= 1.0)) + return 0.0; + return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b); +} + +// Calculates the greatest common divisor of a and b. +static uint Gcd(uint x, uint y) +{ + while(y > 0) + { + uint z{y}; + y = x % y; + x = z; + } + return x; +} + +/* Calculates the size (order) of the Kaiser window. Rejection is in dB and + * the transition width is normalized frequency (0.5 is nyquist). + * + * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21 + * { ceil(5.79 / 2 pi f_t), r <= 21. + * + */ +static uint CalcKaiserOrder(const double rejection, const double transition) +{ + double w_t = 2.0 * M_PI * transition; + if(rejection > 21.0) + return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t))); + return static_cast<uint>(std::ceil(5.79 / w_t)); +} + +// Calculates the beta value of the Kaiser window. Rejection is in dB. +static double CalcKaiserBeta(const double rejection) +{ + if(rejection > 50.0) + return 0.1102 * (rejection - 8.7); + if(rejection >= 21.0) + return (0.5842 * std::pow(rejection - 21.0, 0.4)) + + (0.07886 * (rejection - 21.0)); + return 0.0; +} + +/* Calculates a point on the Kaiser-windowed sinc filter for the given half- + * width, beta, gain, and cutoff. The point is specified in non-normalized + * samples, from 0 to M, where M = (2 l + 1). + * + * w(k) 2 p f_t sinc(2 f_t x) + * + * x -- centered sample index (i - l) + * k -- normalized and centered window index (x / l) + * w(k) -- window function (Kaiser) + * p -- gain compensation factor when sampling + * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) + */ +static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i) +{ + return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l)); +} + +/* This is a polyphase sinc-filtered resampler. + * + * Upsample Downsample + * + * p/q = 3/2 p/q = 3/5 + * + * M-+-+-+-> M-+-+-+-> + * -------------------+ ---------------------+ + * p s * f f f f|f| | p s * f f f f f | + * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| | + * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 | + * s * f|f|f f f | s * f f|f|f f | + * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 | + * --------+=+--------+ 0 * |0|0 0 0 0 | + * d . d .|d|. d . d ----------+=+--------+ + * d . . . .|d|. . . . + * q-> + * q-+-+-+-> + * + * P_f(i,j) = q i mod p + pj + * P_s(i,j) = floor(q i / p) - j + * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} { + * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M + * { 0, P_f(i,j) >= M. } + */ + +// Calculate the resampling metrics and build the Kaiser-windowed sinc filter +// that's used to cut frequencies above the destination nyquist. +static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate) +{ + double cutoff, width, beta; + uint gcd, l; + int i; + + gcd = Gcd(srcRate, dstRate); + rs->mP = dstRate / gcd; + rs->mQ = srcRate / gcd; + /* The cutoff is adjusted by half the transition width, so the transition + * ends before the nyquist (0.5). Both are scaled by the downsampling + * factor. + */ + if(rs->mP > rs->mQ) + { + cutoff = 0.475 / rs->mP; + width = 0.05 / rs->mP; + } + else + { + cutoff = 0.475 / rs->mQ; + width = 0.05 / rs->mQ; + } + // A rejection of -180 dB is used for the stop band. Round up when + // calculating the left offset to avoid increasing the transition width. + l = (CalcKaiserOrder(180.0, width)+1) / 2; + beta = CalcKaiserBeta(180.0); + rs->mM = l*2 + 1; + rs->mL = l; + rs->mF.resize(rs->mM); + for(i = 0;i < (static_cast<int>(rs->mM));i++) + rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i); +} + +// Perform the upsample-filter-downsample resampling operation using a +// polyphase filter implementation. +static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out) +{ + const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL; + std::vector<double> workspace; + const double *f = rs->mF.data(); + uint j_f, j_s; + double *work; + uint i; + + if(outN == 0) + return; + + // Handle in-place operation. + if(in == out) + { + workspace.resize(outN); + work = workspace.data(); + } + else + work = out; + // Resample the input. + for(i = 0;i < outN;i++) + { + double r = 0.0; + // Input starts at l to compensate for the filter delay. This will + // drop any build-up from the first half of the filter. + j_f = (l + (q * i)) % p; + j_s = (l + (q * i)) / p; + while(j_f < m) + { + // Only take input when 0 <= j_s < inN. This single unsigned + // comparison catches both cases. + if(j_s < inN) + r += f[j_f] * in[j_s]; + j_f += p; + j_s--; + } + work[i] = r; + } + // Clean up after in-place operation. + if(work != out) + { + for(i = 0;i < outN;i++) + out[i] = work[i]; + } +} + +/************************* + *** File source input *** + *************************/ + +// Read a binary value of the specified byte order and byte size from a file, +// storing it as a 32-bit unsigned integer. +static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out) +{ + uint8_t in[4]; + uint32_t accum; + uint i; + + if(fread(in, 1, bytes, fp) != bytes) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[bytes - i - 1]; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; +} + +// Read a binary value of the specified byte order from a file, storing it as +// a 64-bit unsigned integer. +static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out) +{ + uint8_t in[8]; + uint64_t accum; + uint i; + + if(fread(in, 1, 8, fp) != 8) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); + return 0; + } + accum = 0ULL; + switch(order) + { + case BO_LITTLE: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[8 - i - 1]; + break; + case BO_BIG: + for(i = 0;i < 8;i++) + accum = (accum<<8) | in[i]; + break; + default: + break; + } + *out = accum; + return 1; +} + +/* Read a binary value of the specified type, byte order, and byte size from + * a file, converting it to a double. For integer types, the significant + * bits are used to normalize the result. The sign of bits determines + * whether they are padded toward the MSB (negative) or LSB (positive). + * Floating-point types are not normalized. + */ +static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) +{ + union { + uint32_t ui; + int32_t i; + float f; + } v4; + union { + uint64_t ui; + double f; + } v8; + + *out = 0.0; + if(bytes > 4) + { + if(!ReadBin8(fp, filename, order, &v8.ui)) + return 0; + if(type == ET_FP) + *out = v8.f; + } + else + { + if(!ReadBin4(fp, filename, order, bytes, &v4.ui)) + return 0; + if(type == ET_FP) + *out = v4.f; + else + { + if(bits > 0) + v4.ui >>= (8*bytes) - (static_cast<uint>(bits)); + else + v4.ui &= (0xFFFFFFFF >> (32+bits)); + + if(v4.ui&static_cast<uint>(1<<(std::abs(bits)-1))) + v4.ui |= (0xFFFFFFFF << std::abs(bits)); + *out = v4.i / static_cast<double>(1<<(std::abs(bits)-1)); + } + } + return 1; +} + +/* Read an ascii value of the specified type from a file, converting it to a + * double. For integer types, the significant bits are used to normalize the + * result. The sign of the bits should always be positive. This also skips + * up to one separator character before the element itself. + */ +static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out) +{ + if(TrIsOperator(tr, ",")) + TrReadOperator(tr, ","); + else if(TrIsOperator(tr, ":")) + TrReadOperator(tr, ":"); + else if(TrIsOperator(tr, ";")) + TrReadOperator(tr, ";"); + else if(TrIsOperator(tr, "|")) + TrReadOperator(tr, "|"); + + if(type == ET_FP) + { + if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(), + std::numeric_limits<double>::infinity(), out)) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); + return 0; + } + } + else + { + int v; + if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename); + return 0; + } + *out = v / static_cast<double>((1<<(bits-1))-1); + } + return 1; +} + +// Read the RIFF/RIFX WAVE format chunk from a file, validating it against +// the source parameters and data set metrics. +static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src) +{ + uint32_t fourCC, chunkSize; + uint32_t format, channels, rate, dummy, block, size, bits; + + chunkSize = 0; + do { + if(chunkSize > 0) + fseek(fp, static_cast<long>(chunkSize), SEEK_CUR); + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + } while(fourCC != FOURCC_FMT); + if(!ReadBin4(fp, src->mPath, order, 2, &format) || + !ReadBin4(fp, src->mPath, order, 2, &channels) || + !ReadBin4(fp, src->mPath, order, 4, &rate) || + !ReadBin4(fp, src->mPath, order, 4, &dummy) || + !ReadBin4(fp, src->mPath, order, 2, &block)) + return 0; + block /= channels; + if(chunkSize > 14) + { + if(!ReadBin4(fp, src->mPath, order, 2, &size)) + return 0; + size /= 8; + if(block > size) + size = block; + } + else + size = block; + if(format == WAVE_FORMAT_EXTENSIBLE) + { + fseek(fp, 2, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &bits)) + return 0; + if(bits == 0) + bits = 8 * size; + fseek(fp, 4, SEEK_CUR); + if(!ReadBin4(fp, src->mPath, order, 2, &format)) + return 0; + fseek(fp, static_cast<long>(chunkSize - 26), SEEK_CUR); + } + else + { + bits = 8 * size; + if(chunkSize > 14) + fseek(fp, static_cast<long>(chunkSize - 16), SEEK_CUR); + else + fseek(fp, static_cast<long>(chunkSize - 14), SEEK_CUR); + } + if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) + { + fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath); + return 0; + } + if(src->mChannel >= channels) + { + fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(rate != hrirRate) + { + fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(format == WAVE_FORMAT_PCM) + { + if(size < 2 || size > 4) + { + fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + if(bits < 16 || bits > (8*size)) + { + fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_INT; + } + else + { + if(size != 4 && size != 8) + { + fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath); + return 0; + } + src->mType = ET_FP; + } + src->mSize = size; + src->mBits = static_cast<int>(bits); + src->mSkip = channels; + return 1; +} + +// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. +static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + int pre, post, skip; + uint i; + + pre = static_cast<int>(src->mSize * src->mChannel); + post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1)); + skip = 0; + for(i = 0;i < n;i++) + { + skip += pre; + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + skip = post; + } + if(skip > 0) + fseek(fp, skip, SEEK_CUR); + return 1; +} + +// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to +// doubles. +static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint32_t fourCC, chunkSize, listSize, count; + uint block, skip, offset, i; + double lastSample; + + for(;;) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + + if(fourCC == FOURCC_DATA) + { + block = src->mSize * src->mSkip; + count = chunkSize / block; + if(count < (src->mOffset + n)) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath); + return 0; + } + fseek(fp, static_cast<long>(src->mOffset * block), SEEK_CUR); + if(!ReadWaveData(fp, src, order, n, &hrir[0])) + return 0; + return 1; + } + else if(fourCC == FOURCC_LIST) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + chunkSize -= 4; + if(fourCC == FOURCC_WAVL) + break; + } + if(chunkSize > 0) + fseek(fp, static_cast<long>(chunkSize), SEEK_CUR); + } + listSize = chunkSize; + block = src->mSize * src->mSkip; + skip = src->mOffset; + offset = 0; + lastSample = 0.0; + while(offset < n && listSize > 8) + { + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, order, 4, &chunkSize)) + return 0; + listSize -= 8 + chunkSize; + if(fourCC == FOURCC_DATA) + { + count = chunkSize / block; + if(count > skip) + { + fseek(fp, static_cast<long>(skip * block), SEEK_CUR); + chunkSize -= skip * block; + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + if(!ReadWaveData(fp, src, order, count, &hrir[offset])) + return 0; + chunkSize -= count * block; + offset += count; + lastSample = hrir[offset - 1]; + } + else + { + skip -= count; + count = 0; + } + } + else if(fourCC == FOURCC_SLNT) + { + if(!ReadBin4(fp, src->mPath, order, 4, &count)) + return 0; + chunkSize -= 4; + if(count > skip) + { + count -= skip; + skip = 0; + if(count > (n - offset)) + count = n - offset; + for(i = 0; i < count; i ++) + hrir[offset + i] = lastSample; + offset += count; + } + else + { + skip -= count; + count = 0; + } + } + if(chunkSize > 0) + fseek(fp, static_cast<long>(chunkSize), SEEK_CUR); + } + if(offset < n) + { + fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath); + return 0; + } + return 1; +} + +// Load a source HRIR from an ASCII text file containing a list of elements +// separated by whitespace or common list operators (',', ';', ':', '|'). +static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir) +{ + TokenReaderT tr; + uint i, j; + double dummy; + + TrSetup(fp, nullptr, &tr); + for(i = 0;i < src->mOffset;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy)) + return 0; + } + for(i = 0;i < n;i++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &hrir[i])) + return 0; + for(j = 0;j < src->mSkip;j++) + { + if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy)) + return 0; + } + } + return 1; +} + +// Load a source HRIR from a binary file. +static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir) +{ + uint i; + + fseek(fp, static_cast<long>(src->mOffset), SEEK_SET); + for(i = 0;i < n;i++) + { + if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) + return 0; + if(src->mSkip > 0) + fseek(fp, static_cast<long>(src->mSkip), SEEK_CUR); + } + return 1; +} + +// Load a source HRIR from a RIFF/RIFX WAVE file. +static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + uint32_t fourCC, dummy; + ByteOrderT order; + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) || + !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy)) + return 0; + if(fourCC == FOURCC_RIFF) + order = BO_LITTLE; + else if(fourCC == FOURCC_RIFX) + order = BO_BIG; + else + { + fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath); + return 0; + } + + if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC)) + return 0; + if(fourCC != FOURCC_WAVE) + { + fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath); + return 0; + } + if(!ReadWaveFormat(fp, order, hrirRate, src)) + return 0; + if(!ReadWaveList(fp, src, order, n, hrir)) + return 0; + return 1; +} + +// Load a Spatially Oriented Format for Accoustics (SOFA) file. +static struct MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n) +{ + struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)}; + if(sofa) return sofa; + + sofa = static_cast<MYSOFA_EASY*>(calloc(1, sizeof(*sofa))); + if(sofa == nullptr) + { + fprintf(stderr, "\nError: Out of memory.\n"); + return nullptr; + } + sofa->lookup = nullptr; + sofa->neighborhood = nullptr; + + int err; + sofa->hrtf = mysofa_load(src->mPath, &err); + if(!sofa->hrtf) + { + mysofa_close(sofa); + fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath); + return nullptr; + } + err = mysofa_check(sofa->hrtf); + if(err != MYSOFA_OK) +/* NOTE: Some valid SOFA files are failing this check. + { + mysofa_close(sofa); + fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath); + return nullptr; + }*/ + fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath); + if((src->mOffset + n) > sofa->hrtf->N) + { + mysofa_close(sofa); + fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath); + return nullptr; + } + if(src->mChannel >= sofa->hrtf->R) + { + mysofa_close(sofa); + fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath); + return nullptr; + } + mysofa_tocartesian(sofa->hrtf); + sofa->lookup = mysofa_lookup_init(sofa->hrtf); + if(sofa->lookup == nullptr) + { + mysofa_close(sofa); + fprintf(stderr, "\nError: Out of memory.\n"); + return nullptr; + } + return mysofa_cache_store(sofa, src->mPath, (float)hrirRate); +} + +// Copies the HRIR data from a particular SOFA measurement. +static void ExtractSofaHrir(const struct MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir) +{ + for(uint i{0u};i < n;i++) + hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i]; +} + +// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA) +// file. +static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + struct MYSOFA_EASY *sofa; + float target[3]; + int nearest; + float *coords; + + sofa = LoadSofaFile(src, hrirRate, n); + if(sofa == nullptr) + return 0; + + /* NOTE: At some point it may be benficial or necessary to consider the + various coordinate systems, listener/source orientations, and + direciontal vectors defined in the SOFA file. + */ + target[0] = src->mAzimuth; + target[1] = src->mElevation; + target[2] = src->mRadius; + mysofa_s2c(target); + + nearest = mysofa_lookup(sofa->lookup, target); + if(nearest < 0) + { + fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath); + return 0; + } + + coords = &sofa->hrtf->SourcePosition.values[3 * nearest]; + if(std::fabs(coords[0] - target[0]) > 0.001 || std::fabs(coords[1] - target[1]) > 0.001 || std::fabs(coords[2] - target[2]) > 0.001) + { + fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath); + target[0] = coords[0]; + target[1] = coords[1]; + target[2] = coords[2]; + mysofa_c2s(target); + fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]); + return 0; + } + + ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir); + + return 1; +} + +// Load a source HRIR from a supported file type. +static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir) +{ + FILE *fp{nullptr}; + if(src->mFormat != SF_SOFA) + { + if(src->mFormat == SF_ASCII) + fp = fopen(src->mPath, "r"); + else + fp = fopen(src->mPath, "rb"); + if(fp == nullptr) + { + fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath); + return 0; + } + } + int result; + switch(src->mFormat) + { + case SF_ASCII: + result = LoadAsciiSource(fp, src, n, hrir); + break; + case SF_BIN_LE: + result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir); + break; + case SF_BIN_BE: + result = LoadBinarySource(fp, src, BO_BIG, n, hrir); + break; + case SF_WAVE: + result = LoadWaveSource(fp, src, hrirRate, n, hrir); + break; + case SF_SOFA: + result = LoadSofaSource(src, hrirRate, n, hrir); + break; + default: + result = 0; + } + if(fp) fclose(fp); + return result; +} + + +/*************************** + *** File storage output *** + ***************************/ + +// Write an ASCII string to a file. +static int WriteAscii(const char *out, FILE *fp, const char *filename) +{ + size_t len; + + len = strlen(out); + if(fwrite(out, 1, len, fp) != len) + { + fclose(fp); + fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Write a binary value of the given byte order and byte size to a file, +// loading it from a 32-bit unsigned integer. +static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32_t in, FILE *fp, const char *filename) +{ + uint8_t out[4]; + uint i; + + switch(order) + { + case BO_LITTLE: + for(i = 0;i < bytes;i++) + out[i] = (in>>(i*8)) & 0x000000FF; + break; + case BO_BIG: + for(i = 0;i < bytes;i++) + out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF; + break; + default: + break; + } + if(fwrite(out, 1, bytes, fp) != bytes) + { + fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename); + return 0; + } + return 1; +} + +// Store the OpenAL Soft HRTF data set. +static int StoreMhr(const HrirDataT *hData, const char *filename) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + FILE *fp; + uint fi, ei, ai, i; + uint dither_seed = 22222; + + if((fp=fopen(filename, "wb")) == nullptr) + { + fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename); + return 0; + } + if(!WriteAscii(MHR_FORMAT, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 4, hData->mIrRate, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mSampleType), fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mChannelType), fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, hData->mIrPoints, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, hData->mFdCount, fp, filename)) + return 0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance)); + if(!WriteBin4(BO_LITTLE, 2, fdist, fp, filename)) + return 0; + if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvCount, fp, filename)) + return 0; + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + if(!WriteBin4(BO_LITTLE, 1, hData->mFds[fi].mEvs[ei].mAzCount, fp, filename)) + return 0; + } + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + const double scale = (hData->mSampleType == ST_S16) ? 32767.0 : + ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0); + const int bps = (hData->mSampleType == ST_S16) ? 2 : + ((hData->mSampleType == ST_S24) ? 3 : 0); + + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + double out[2 * MAX_TRUNCSIZE]; + + TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed); + if(hData->mChannelType == CT_STEREO) + TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed); + for(i = 0;i < (channels * n);i++) + { + int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale)); + if(!WriteBin4(BO_LITTLE, bps, static_cast<uint32_t>(v), fp, filename)) + return 0; + } + } + } + } + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai]; + int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD)); + + if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename)) + return 0; + if(hData->mChannelType == CT_STEREO) + { + v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD)); + + if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename)) + return 0; + } + } + } + } + fclose(fp); + return 1; +} + + +/*********************** + *** HRTF processing *** + ***********************/ + +// Calculate the onset time of an HRIR and average it with any existing +// timing for its field, elevation, azimuth, and ear. +static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset) +{ + std::vector<double> upsampled(10 * n); + { + ResamplerT rs; + ResamplerSetup(&rs, rate, 10 * rate); + ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data()); + } + + double mag{0.0}; + for(uint i{0u};i < 10*n;i++) + mag = std::max(std::abs(upsampled[i]), mag); + + mag *= 0.15; + uint i{0u}; + for(;i < 10*n;i++) + { + if(std::abs(upsampled[i]) >= mag) + break; + } + return Lerp(onset, static_cast<double>(i) / (10*rate), f); +} + +// Calculate the magnitude response of an HRIR and average it with any +// existing responses for its field, elevation, azimuth, and ear. +static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag) +{ + uint m = 1 + (n / 2), i; + std::vector<complex_d> h(n); + std::vector<double> r(n); + + for(i = 0;i < points;i++) + h[i] = complex_d{hrir[i], 0.0}; + for(;i < n;i++) + h[i] = complex_d{0.0, 0.0}; + FftForward(n, h.data()); + MagnitudeResponse(n, h.data(), r.data()); + for(i = 0;i < m;i++) + mag[i] = Lerp(mag[i], r[i], f); +} + +/* Balances the maximum HRIR magnitudes of multi-field data sets by + * independently normalizing each field in relation to the overall maximum. + * This is done to ignore distance attenuation. + */ +static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m) +{ + double maxMags[MAX_FD_COUNT]; + uint fi, ei, ai, ti, i; + + double maxMag{0.0}; + for(fi = 0;fi < hData->mFdCount;fi++) + { + maxMags[fi] = 0.0; + + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]); + } + } + } + + maxMag = std::max(maxMags[fi], maxMag); + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + maxMags[fi] /= maxMag; + + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + azd->mIrs[ti][i] /= maxMags[fi]; + } + } + } + } +} + +/* Calculate the contribution of each HRIR to the diffuse-field average based + * on its coverage volume. All volumes are centered at the spherical HRIR + * coordinates and measured by extruded solid angle. + */ +static void CalculateDfWeights(const HrirDataT *hData, double *weights) +{ + double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv; + double solidAngle, solidVolume; + uint fi, ei; + + sum = 0.0; + // The head radius acts as the limit for the inner radius. + innerRa = hData->mRadius; + for(fi = 0;fi < hData->mFdCount;fi++) + { + // Each volume ends half way between progressive field measurements. + if((fi + 1) < hData->mFdCount) + outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance); + // The final volume has its limit extended to some practical value. + // This is done to emphasize the far-field responses in the average. + else + outerRa = 10.0f; + + evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1); + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + // For each elevation, calculate the upper and lower limits of + // the patch band. + ev = hData->mFds[fi].mEvs[ei].mElevation; + lowerEv = std::max(-M_PI / 2.0, ev - evs); + upperEv = std::min(M_PI / 2.0, ev + evs); + // Calculate the surface area of the patch band. + solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv)); + // Then the volume of the extruded patch band. + solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0; + // Each weight is the volume of one extruded patch. + weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount; + // Sum the total coverage volume of the HRIRs for all fields. + sum += solidAngle; + } + + innerRa = outerRa; + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + // Normalize the weights given the total surface coverage for all + // fields. + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] /= sum; + } +} + +/* Calculate the diffuse-field average from the given magnitude responses of + * the HRIR set. Weighting can be applied to compensate for the varying + * coverage of each HRIR. The final average can then be limited by the + * specified magnitude range (in positive dB; 0.0 to skip). + */ +static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa) +{ + std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT); + uint count, ti, fi, ei, i, ai; + + if(weighted) + { + // Use coverage weighting to calculate the average. + CalculateDfWeights(hData, weights.data()); + } + else + { + double weight; + + // If coverage weighting is not used, the weights still need to be + // averaged by the number of existing HRIRs. + count = hData->mIrCount; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++) + count -= hData->mFds[fi].mEvs[ei].mAzCount; + } + weight = 1.0 / count; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + weights[(fi * MAX_EV_COUNT) + ei] = weight; + } + } + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = 0.0; + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + // Get the weight for this HRIR's contribution. + double weight = weights[(fi * MAX_EV_COUNT) + ei]; + + // Add this HRIR's weighted power average to the total. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i]; + } + } + } + // Finish the average calculation and keep it from being too small. + for(i = 0;i < m;i++) + dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON); + // Apply a limit to the magnitude range of the diffuse-field average + // if desired. + if(limit > 0.0) + LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]); + } +} + +// Perform diffuse-field equalization on the magnitude responses of the HRIR +// set using the given average response. +static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData) +{ + uint ti, fi, ei, ai, i; + + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + { + for(i = 0;i < m;i++) + azd->mIrs[ti][i] /= dfa[(ti * m) + i]; + } + } + } + } +} + +/* Perform minimum-phase reconstruction using the magnitude responses of the + * HRIR set. Work is delegated to this struct, which runs asynchronously on one + * or more threads (sharing the same reconstructor object). + */ +struct HrirReconstructor { + std::vector<double*> mIrs; + std::atomic<size_t> mCurrent; + std::atomic<size_t> mDone; + size_t mFftSize; + size_t mIrPoints; + + void Worker() + { + auto h = std::vector<complex_d>(mFftSize); + + while(1) + { + /* Load the current index to process. */ + size_t idx{mCurrent.load()}; + do { + /* If the index is at the end, we're done. */ + if(idx >= mIrs.size()) + return; + /* Otherwise, increment the current index atomically so other + * threads know to go to the next one. If this call fails, the + * current index was just changed by another thread and the new + * value is loaded into idx, which we'll recheck. + */ + } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed)); + + /* Now do the reconstruction, and apply the inverse FFT to get the + * time-domain response. + */ + MinimumPhase(mFftSize, mIrs[idx], h.data()); + FftInverse(mFftSize, h.data()); + for(size_t i{0u};i < mIrPoints;++i) + mIrs[idx][i] = h[i].real(); + + /* Increment the number of IRs done. */ + mDone.fetch_add(1); + } + } +}; + +static void ReconstructHrirs(const HrirDataT *hData) +{ + const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; + + /* Count the number of IRs to process (excluding elevations that will be + * synthesized later). + */ + size_t total{hData->mIrCount}; + for(uint fi{0u};fi < hData->mFdCount;fi++) + { + for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++) + total -= hData->mFds[fi].mEvs[ei].mAzCount; + } + total *= channels; + + /* Set up the reconstructor with the needed size info and pointers to the + * IRs to process. + */ + HrirReconstructor reconstructor; + reconstructor.mIrs.reserve(total); + reconstructor.mCurrent.store(0, std::memory_order_relaxed); + reconstructor.mDone.store(0, std::memory_order_relaxed); + reconstructor.mFftSize = hData->mFftSize; + reconstructor.mIrPoints = hData->mIrPoints; + for(uint fi{0u};fi < hData->mFdCount;fi++) + { + const HrirFdT &field = hData->mFds[fi]; + for(uint ei{field.mEvStart};ei < field.mEvCount;ei++) + { + const HrirEvT &elev = field.mEvs[ei]; + for(uint ai{0u};ai < elev.mAzCount;ai++) + { + const HrirAzT &azd = elev.mAzs[ai]; + for(uint ti{0u};ti < channels;ti++) + reconstructor.mIrs.push_back(azd.mIrs[ti]); + } + } + } + + /* Launch two threads to work on reconstruction. */ + std::thread thrd1{std::mem_fn(&HrirReconstructor::Worker), &reconstructor}; + std::thread thrd2{std::mem_fn(&HrirReconstructor::Worker), &reconstructor}; + + /* Keep track of the number of IRs done, periodically reporting it. */ + size_t count; + while((count=reconstructor.mDone.load()) != total) + { + size_t pcdone{count * 100 / total}; + + printf("\r%3zu%% done (%zu of %zu)", pcdone, count, total); + fflush(stdout); + + std::this_thread::sleep_for(std::chrono::milliseconds{50}); + } + size_t pcdone{count * 100 / total}; + printf("\r%3zu%% done (%zu of %zu)\n", pcdone, count, total); + + if(thrd2.joinable()) thrd2.join(); + if(thrd1.joinable()) thrd1.join(); +} + +// Resamples the HRIRs for use at the given sampling rate. +static void ResampleHrirs(const uint rate, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + uint n = hData->mIrPoints; + uint ti, fi, ei, ai; + ResamplerT rs; + + ResamplerSetup(&rs, hData->mIrRate, rate); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + for(ti = 0;ti < channels;ti++) + ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]); + } + } + } + hData->mIrRate = rate; +} + +/* Given field and elevation indices and an azimuth, calculate the indices of + * the two HRIRs that bound the coordinate along with a factor for + * calculating the continuous HRIR using interpolation. + */ +static void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af) +{ + double f{(2.0*M_PI + az) * field.mEvs[ei].mAzCount / (2.0*M_PI)}; + uint i{static_cast<uint>(f) % field.mEvs[ei].mAzCount}; + + f -= std::floor(f); + *a0 = i; + *a1 = (i + 1) % field.mEvs[ei].mAzCount; + *af = f; +} + +/* Synthesize any missing onset timings at the bottom elevations of each field. + * This just mirrors some top elevations for the bottom, and blends the + * remaining elevations (not an accurate model). + */ +static void SynthesizeOnsets(HrirDataT *hData) +{ + const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; + + auto proc_field = [channels](HrirFdT &field) -> void + { + /* Get the starting elevation from the measurements, and use it as the + * upper elevation limit for what needs to be calculated. + */ + const uint upperElevReal{field.mEvStart}; + if(upperElevReal <= 0) return; + + /* Get the lowest half of the missing elevations' delays by mirroring + * the top elevation delays. The responses are on a spherical grid + * centered between the ears, so these should align. + */ + uint ei{}; + if(channels > 1) + { + /* Take the polar opposite position of the desired measurement and + * swap the ears. + */ + field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[1]; + field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0]; + for(ei = 1u;ei < (upperElevReal+1)/2;++ei) + { + const uint topElev{field.mEvCount-ei-1}; + + for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++) + { + uint a0, a1; + double af; + + /* Rotate this current azimuth by a half-circle, and lookup + * the mirrored elevation to find the indices for the polar + * opposite position (may need blending). + */ + const double az{field.mEvs[ei].mAzs[ai].mAzimuth + M_PI}; + CalcAzIndices(field, topElev, az, &a0, &a1, &af); + + /* Blend the delays, and again, swap the ears. */ + field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp( + field.mEvs[topElev].mAzs[a0].mDelays[1], + field.mEvs[topElev].mAzs[a1].mDelays[1], af); + field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp( + field.mEvs[topElev].mAzs[a0].mDelays[0], + field.mEvs[topElev].mAzs[a1].mDelays[0], af); + } + } + } + else + { + field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0]; + for(ei = 1u;ei < (upperElevReal+1)/2;++ei) + { + const uint topElev{field.mEvCount-ei-1}; + + for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++) + { + uint a0, a1; + double af; + + /* For mono data sets, mirror the azimuth front<->back + * since the other ear is a mirror of what we have (e.g. + * the left ear's back-left is simulated with the right + * ear's front-right, which uses the left ear's front-left + * measurement). + */ + double az{field.mEvs[ei].mAzs[ai].mAzimuth}; + if(az <= M_PI) az = M_PI - az; + else az = (M_PI*2.0)-az + M_PI; + CalcAzIndices(field, topElev, az, &a0, &a1, &af); + + field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp( + field.mEvs[topElev].mAzs[a0].mDelays[0], + field.mEvs[topElev].mAzs[a1].mDelays[0], af); + } + } + } + /* Record the lowest elevation filled in with the mirrored top. */ + const uint lowerElevFake{ei-1u}; + + /* Fill in the remaining delays using bilinear interpolation. This + * helps smooth the transition back to the real delays. + */ + for(;ei < upperElevReal;++ei) + { + const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) / + (field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)}; + + for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++) + { + uint a0, a1, a2, a3; + double af0, af1; + + double az{field.mEvs[ei].mAzs[ai].mAzimuth}; + CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0); + CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1); + double blend[4]{ + (1.0-ef) * (1.0-af0), + (1.0-ef) * ( af0), + ( ef) * (1.0-af1), + ( ef) * ( af1) + }; + + for(uint ti{0u};ti < channels;ti++) + { + field.mEvs[ei].mAzs[ai].mDelays[ti] = + field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] + + field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] + + field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] + + field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3]; + } + } + } + }; + std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field); +} + +/* Attempt to synthesize any missing HRIRs at the bottom elevations of each + * field. Right now this just blends the lowest elevation HRIRs together and + * applies some attenuation and high frequency damping. It is a simple, if + * inaccurate model. + */ +static void SynthesizeHrirs(HrirDataT *hData) +{ + const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; + const uint irSize{hData->mIrPoints}; + const double beta{3.5e-6 * hData->mIrRate}; + + auto proc_field = [channels,irSize,beta](HrirFdT &field) -> void + { + const uint oi{field.mEvStart}; + if(oi <= 0) return; + + for(uint ti{0u};ti < channels;ti++) + { + for(uint i{0u};i < irSize;i++) + field.mEvs[0].mAzs[0].mIrs[ti][i] = 0.0; + /* Blend the lowest defined elevation's responses for an average + * -90 degree elevation response. + */ + double blend_count{0.0}; + for(uint ai{0u};ai < field.mEvs[oi].mAzCount;ai++) + { + /* Only include the left responses for the left ear, and the + * right responses for the right ear. This removes the cross- + * talk that shouldn't exist for the -90 degree elevation + * response (and would be mistimed anyway). NOTE: Azimuth goes + * from 0...2pi rather than -pi...+pi (0 in front, clockwise). + */ + if(std::abs(field.mEvs[oi].mAzs[ai].mAzimuth) < EPSILON || + (ti == LeftChannel && field.mEvs[oi].mAzs[ai].mAzimuth > M_PI-EPSILON) || + (ti == RightChannel && field.mEvs[oi].mAzs[ai].mAzimuth < M_PI+EPSILON)) + { + for(uint i{0u};i < irSize;i++) + field.mEvs[0].mAzs[0].mIrs[ti][i] += field.mEvs[oi].mAzs[ai].mIrs[ti][i]; + blend_count += 1.0; + } + } + if(blend_count > 0.0) + { + for(uint i{0u};i < irSize;i++) + field.mEvs[0].mAzs[0].mIrs[ti][i] /= blend_count; + } + + for(uint ei{1u};ei < field.mEvStart;ei++) + { + const double of{static_cast<double>(ei) / field.mEvStart}; + const double b{(1.0 - of) * beta}; + for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++) + { + uint a0, a1; + double af; + + CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af); + double lp[4]{}; + for(uint i{0u};i < irSize;i++) + { + /* Blend the two defined HRIRs closest to this azimuth, + * then blend that with the synthesized -90 elevation. + */ + const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i], + field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)}; + const double s0{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)}; + /* Apply a low-pass to simulate body occlusion. */ + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + field.mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3]; + } + } + } + const double b{beta}; + double lp[4]{}; + for(uint i{0u};i < irSize;i++) + { + const double s0{field.mEvs[0].mAzs[0].mIrs[ti][i]}; + lp[0] = Lerp(s0, lp[0], b); + lp[1] = Lerp(lp[0], lp[1], b); + lp[2] = Lerp(lp[1], lp[2], b); + lp[3] = Lerp(lp[2], lp[3], b); + field.mEvs[0].mAzs[0].mIrs[ti][i] = lp[3]; + } + } + field.mEvStart = 0; + }; + std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field); +} + +// The following routines assume a full set of HRIRs for all elevations. + +// Normalize the HRIR set and slightly attenuate the result. +static void NormalizeHrirs(HrirDataT *hData) +{ + const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; + const uint irSize{hData->mIrPoints}; + + /* Find the maximum amplitude and RMS out of all the IRs. */ + struct LevelPair { double amp, rms; }; + auto proc0_field = [channels,irSize](const LevelPair levels, const HrirFdT &field) -> LevelPair + { + auto proc_elev = [channels,irSize](const LevelPair levels, const HrirEvT &elev) -> LevelPair + { + auto proc_azi = [channels,irSize](const LevelPair levels, const HrirAzT &azi) -> LevelPair + { + auto proc_channel = [irSize](const LevelPair levels, const double *ir) -> LevelPair + { + /* Calculate the peak amplitude and RMS of this IR. */ + auto current = std::accumulate(ir, ir+irSize, LevelPair{0.0, 0.0}, + [](const LevelPair current, const double impulse) -> LevelPair + { + return LevelPair{std::max(std::abs(impulse), current.amp), + current.rms + impulse*impulse}; + }); + current.rms = std::sqrt(current.rms / irSize); + + /* Accumulate levels by taking the maximum amplitude and RMS. */ + return LevelPair{std::max(current.amp, levels.amp), + std::max(current.rms, levels.rms)}; + }; + return std::accumulate(azi.mIrs, azi.mIrs+channels, levels, proc_channel); + }; + return std::accumulate(elev.mAzs, elev.mAzs+elev.mAzCount, levels, proc_azi); + }; + return std::accumulate(field.mEvs, field.mEvs+field.mEvCount, levels, proc_elev); + }; + const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, + LevelPair{0.0, 0.0}, proc0_field); + + /* Normalize using the maximum RMS of the HRIRs. The RMS measure for the + * non-filtered signal is of an impulse with equal length (to the filter): + * + * rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n) + * = sqrt(1 / n) + * + * This helps keep a more consistent volume between the non-filtered signal + * and various data sets. + */ + double factor{std::sqrt(1.0 / irSize) / maxlev.rms}; + + /* Also ensure the samples themselves won't clip. */ + factor = std::min(factor, 0.99/maxlev.amp); + + /* Now scale all IRs by the given factor. */ + auto proc1_field = [channels,irSize,factor](HrirFdT &field) -> void + { + auto proc_elev = [channels,irSize,factor](HrirEvT &elev) -> void + { + auto proc_azi = [channels,irSize,factor](HrirAzT &azi) -> void + { + auto proc_channel = [irSize,factor](double *ir) -> void + { + std::transform(ir, ir+irSize, ir, + std::bind(std::multiplies<double>{}, _1, factor)); + }; + std::for_each(azi.mIrs, azi.mIrs+channels, proc_channel); + }; + std::for_each(elev.mAzs, elev.mAzs+elev.mAzCount, proc_azi); + }; + std::for_each(field.mEvs, field.mEvs+field.mEvCount, proc_elev); + }; + std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc1_field); +} + +// Calculate the left-ear time delay using a spherical head model. +static double CalcLTD(const double ev, const double az, const double rad, const double dist) +{ + double azp, dlp, l, al; + + azp = std::asin(std::cos(ev) * std::sin(az)); + dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp))); + l = std::sqrt((dist*dist) - (rad*rad)); + al = (0.5 * M_PI) + azp; + if(dlp > l) + dlp = l + (rad * (al - std::acos(rad / dist))); + return dlp / 343.3; +} + +// Calculate the effective head-related time delays for each minimum-phase +// HRIR. This is done per-field since distance delay is ignored. +static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + double customRatio{radius / hData->mRadius}; + uint ti, fi, ei, ai; + + if(model == HM_SPHERE) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + HrirEvT *evd = &hData->mFds[fi].mEvs[ei]; + + for(ai = 0;ai < evd->mAzCount;ai++) + { + HrirAzT *azd = &evd->mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance); + } + } + } + } + else if(customRatio != 1.0) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + HrirEvT *evd = &hData->mFds[fi].mEvs[ei]; + + for(ai = 0;ai < evd->mAzCount;ai++) + { + HrirAzT *azd = &evd->mAzs[ai]; + for(ti = 0;ti < channels;ti++) + azd->mDelays[ti] *= customRatio; + } + } + } + } + + for(fi = 0;fi < hData->mFdCount;fi++) + { + double minHrtd{std::numeric_limits<double>::infinity()}; + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + for(ti = 0;ti < channels;ti++) + minHrtd = std::min(azd->mDelays[ti], minHrtd); + } + } + + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ti = 0;ti < channels;ti++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd; + } + } + } +} + +// Allocate and configure dynamic HRIR structures. +static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData) +{ + uint evTotal = 0, azTotal = 0, fi, ei, ai; + + for(fi = 0;fi < fdCount;fi++) + { + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + azTotal += azCounts[(fi * MAX_EV_COUNT) + ei]; + } + if(!fdCount || !evTotal || !azTotal) + return 0; + + hData->mEvsBase.resize(evTotal); + hData->mAzsBase.resize(azTotal); + hData->mFds.resize(fdCount); + hData->mIrCount = azTotal; + hData->mFdCount = fdCount; + evTotal = 0; + azTotal = 0; + for(fi = 0;fi < fdCount;fi++) + { + hData->mFds[fi].mDistance = distances[fi]; + hData->mFds[fi].mEvCount = evCounts[fi]; + hData->mFds[fi].mEvStart = 0; + hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal]; + evTotal += evCounts[fi]; + for(ei = 0;ei < evCounts[fi];ei++) + { + uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei]; + + hData->mFds[fi].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1); + hData->mFds[fi].mEvs[ei].mIrCount += azCount; + hData->mFds[fi].mEvs[ei].mAzCount = azCount; + hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal]; + for(ai = 0;ai < azCount;ai++) + { + hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr; + hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr; + } + azTotal += azCount; + } + } + return 1; +} + +// Match the channel type from a given identifier. +static ChannelTypeT MatchChannelType(const char *ident) +{ + if(strcasecmp(ident, "mono") == 0) + return CT_MONO; + if(strcasecmp(ident, "stereo") == 0) + return CT_STEREO; + return CT_NONE; +} + +// Process the data set definition to read and validate the data set metrics. +static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData) +{ + int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; + int hasDistance = 0, hasAzimuths = 0; + char ident[MAX_IDENT_LEN+1]; + uint line, col; + double fpVal; + uint points; + int intVal; + double distances[MAX_FD_COUNT]; + uint fdCount = 0; + uint evCounts[MAX_FD_COUNT]; + std::vector<uint> azCounts(MAX_FD_COUNT * MAX_EV_COUNT); + + TrIndication(tr, &line, &col); + while(TrIsIdent(tr)) + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + if(strcasecmp(ident, "rate") == 0) + { + if(hasRate) + { + TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) + return 0; + hData->mIrRate = static_cast<uint>(intVal); + hasRate = 1; + } + else if(strcasecmp(ident, "type") == 0) + { + char type[MAX_IDENT_LEN+1]; + + if(hasType) + { + TrErrorAt(tr, line, col, "Redefinition of 'type'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) + return 0; + hData->mChannelType = MatchChannelType(type); + if(hData->mChannelType == CT_NONE) + { + TrErrorAt(tr, line, col, "Expected a channel type.\n"); + return 0; + } + hasType = 1; + } + else if(strcasecmp(ident, "points") == 0) + { + if(hasPoints) + { + TrErrorAt(tr, line, col, "Redefinition of 'points'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) + return 0; + points = static_cast<uint>(intVal); + if(fftSize > 0 && points > fftSize) + { + TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n"); + return 0; + } + if(points < truncSize) + { + TrErrorAt(tr, line, col, "Value is below the truncation size.\n"); + return 0; + } + hData->mIrPoints = points; + if(fftSize <= 0) + { + hData->mFftSize = DEFAULT_FFTSIZE; + hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2); + } + else + { + hData->mFftSize = fftSize; + hData->mIrSize = 1 + (fftSize / 2); + if(points > hData->mIrSize) + hData->mIrSize = points; + } + hasPoints = 1; + } + else if(strcasecmp(ident, "radius") == 0) + { + if(hasRadius) + { + TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal)) + return 0; + hData->mRadius = fpVal; + hasRadius = 1; + } + else if(strcasecmp(ident, "distance") == 0) + { + uint count = 0; + + if(hasDistance) + { + TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + + for(;;) + { + if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) + return 0; + if(count > 0 && fpVal <= distances[count - 1]) + { + TrError(tr, "Distances are not ascending.\n"); + return 0; + } + distances[count++] = fpVal; + if(!TrIsOperator(tr, ",")) + break; + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT); + return 0; + } + TrReadOperator(tr, ","); + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + return 0; + } + fdCount = count; + hasDistance = 1; + } + else if(strcasecmp(ident, "azimuths") == 0) + { + uint count = 0; + + if(hasAzimuths) + { + TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + + evCounts[0] = 0; + for(;;) + { + if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) + return 0; + azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast<uint>(intVal); + if(TrIsOperator(tr, ",")) + { + if(evCounts[count] >= MAX_EV_COUNT) + { + TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); + return 0; + } + TrReadOperator(tr, ","); + } + else + { + if(evCounts[count] < MIN_EV_COUNT) + { + TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); + return 0; + } + if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1) + { + TrError(tr, "Poles are not singular for field %d.\n", count - 1); + return 0; + } + count++; + if(!TrIsOperator(tr, ";")) + break; + + if(count >= MAX_FD_COUNT) + { + TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT); + return 0; + } + evCounts[count] = 0; + TrReadOperator(tr, ";"); + } + } + if(fdCount != 0 && count != fdCount) + { + TrError(tr, "Did not match the specified number of %d fields.\n", fdCount); + return 0; + } + fdCount = count; + hasAzimuths = 1; + } + else + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + return 0; + } + TrSkipWhitespace(tr); + } + if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) + { + TrErrorAt(tr, line, col, "Expected a metric name.\n"); + return 0; + } + if(distances[0] < hData->mRadius) + { + TrError(tr, "Distance cannot start below head radius.\n"); + return 0; + } + if(hData->mChannelType == CT_NONE) + hData->mChannelType = CT_MONO; + if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData)) + { + fprintf(stderr, "Error: Out of memory.\n"); + exit(-1); + } + return 1; +} + +// Parse an index triplet from the data set definition. +static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai) +{ + int intVal; + + if(hData->mFdCount > 1) + { + if(!TrReadInt(tr, 0, static_cast<int>(hData->mFdCount) - 1, &intVal)) + return 0; + *fi = static_cast<uint>(intVal); + if(!TrReadOperator(tr, ",")) + return 0; + } + else + { + *fi = 0; + } + if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvCount) - 1, &intVal)) + return 0; + *ei = static_cast<uint>(intVal); + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal)) + return 0; + *ai = static_cast<uint>(intVal); + return 1; +} + +// Match the source format from a given identifier. +static SourceFormatT MatchSourceFormat(const char *ident) +{ + if(strcasecmp(ident, "ascii") == 0) + return SF_ASCII; + if(strcasecmp(ident, "bin_le") == 0) + return SF_BIN_LE; + if(strcasecmp(ident, "bin_be") == 0) + return SF_BIN_BE; + if(strcasecmp(ident, "wave") == 0) + return SF_WAVE; + if(strcasecmp(ident, "sofa") == 0) + return SF_SOFA; + return SF_NONE; +} + +// Match the source element type from a given identifier. +static ElementTypeT MatchElementType(const char *ident) +{ + if(strcasecmp(ident, "int") == 0) + return ET_INT; + if(strcasecmp(ident, "fp") == 0) + return ET_FP; + return ET_NONE; +} + +// Parse and validate a source reference from the data set definition. +static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src) +{ + char ident[MAX_IDENT_LEN+1]; + uint line, col; + double fpVal; + int intVal; + + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mFormat = MatchSourceFormat(ident); + if(src->mFormat == SF_NONE) + { + TrErrorAt(tr, line, col, "Expected a source format.\n"); + return 0; + } + if(!TrReadOperator(tr, "(")) + return 0; + if(src->mFormat == SF_SOFA) + { + if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) + return 0; + src->mRadius = fpVal; + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadFloat(tr, -90.0, 90.0, &fpVal)) + return 0; + src->mElevation = fpVal; + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadFloat(tr, -360.0, 360.0, &fpVal)) + return 0; + src->mAzimuth = fpVal; + if(!TrReadOperator(tr, ":")) + return 0; + if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) + return 0; + src->mType = ET_NONE; + src->mSize = 0; + src->mBits = 0; + src->mChannel = (uint)intVal; + src->mSkip = 0; + } + else if(src->mFormat == SF_WAVE) + { + if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal)) + return 0; + src->mType = ET_NONE; + src->mSize = 0; + src->mBits = 0; + src->mChannel = static_cast<uint>(intVal); + src->mSkip = 0; + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mType = MatchElementType(ident); + if(src->mType == ET_NONE) + { + TrErrorAt(tr, line, col, "Expected a source element type.\n"); + return 0; + } + if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(src->mType == ET_INT) + { + if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal)) + return 0; + src->mSize = static_cast<uint>(intVal); + if(!TrIsOperator(tr, ",")) + src->mBits = static_cast<int>(8*src->mSize); + else + { + TrReadOperator(tr, ","); + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(std::abs(intVal) < MIN_BIN_BITS || static_cast<uint>(std::abs(intVal)) > (8*src->mSize)) + { + TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize); + return 0; + } + src->mBits = intVal; + } + } + else + { + TrIndication(tr, &line, &col); + if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) + return 0; + if(intVal != 4 && intVal != 8) + { + TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n"); + return 0; + } + src->mSize = static_cast<uint>(intVal); + src->mBits = 0; + } + } + else if(src->mFormat == SF_ASCII && src->mType == ET_INT) + { + if(!TrReadOperator(tr, ",")) + return 0; + if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal)) + return 0; + src->mSize = 0; + src->mBits = intVal; + } + else + { + src->mSize = 0; + src->mBits = 0; + } + + if(!TrIsOperator(tr, ";")) + src->mSkip = 0; + else + { + TrReadOperator(tr, ";"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mSkip = static_cast<uint>(intVal); + } + } + if(!TrReadOperator(tr, ")")) + return 0; + if(TrIsOperator(tr, "@")) + { + TrReadOperator(tr, "@"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mOffset = static_cast<uint>(intVal); + } + else + src->mOffset = 0; + if(!TrReadOperator(tr, ":")) + return 0; + if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) + return 0; + return 1; +} + +// Parse and validate a SOFA source reference from the data set definition. +static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src) +{ + char ident[MAX_IDENT_LEN+1]; + uint line, col; + int intVal; + + TrIndication(tr, &line, &col); + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + src->mFormat = MatchSourceFormat(ident); + if(src->mFormat != SF_SOFA) + { + TrErrorAt(tr, line, col, "Expected the SOFA source format.\n"); + return 0; + } + + src->mType = ET_NONE; + src->mSize = 0; + src->mBits = 0; + src->mChannel = 0; + src->mSkip = 0; + + if(TrIsOperator(tr, "@")) + { + TrReadOperator(tr, "@"); + if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) + return 0; + src->mOffset = (uint)intVal; + } + else + src->mOffset = 0; + if(!TrReadOperator(tr, ":")) + return 0; + if(!TrReadString(tr, MAX_PATH_LEN, src->mPath)) + return 0; + return 1; +} + +// Match the target ear (index) from a given identifier. +static int MatchTargetEar(const char *ident) +{ + if(strcasecmp(ident, "left") == 0) + return 0; + if(strcasecmp(ident, "right") == 0) + return 1; + return -1; +} + +// Process the list of sources in the data set definition. +static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData) +{ + uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1; + hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize); + double *hrirs = hData->mHrirsBase.data(); + std::vector<double> hrir(hData->mIrPoints); + uint line, col, fi, ei, ai, ti; + int count; + + printf("Loading sources..."); + fflush(stdout); + count = 0; + while(TrIsOperator(tr, "[")) + { + double factor[2]{ 1.0, 1.0 }; + + TrIndication(tr, &line, &col); + TrReadOperator(tr, "["); + + if(TrIsOperator(tr, "*")) + { + SourceRefT src; + struct MYSOFA_EASY *sofa; + uint si; + + TrReadOperator(tr, "*"); + if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "=")) + return 0; + + TrIndication(tr, &line, &col); + if(!ReadSofaRef(tr, &src)) + return 0; + + if(hData->mChannelType == CT_STEREO) + { + char type[MAX_IDENT_LEN+1]; + ChannelTypeT channelType; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) + return 0; + + channelType = MatchChannelType(type); + + switch(channelType) + { + case CT_NONE: + TrErrorAt(tr, line, col, "Expected a channel type.\n"); + return 0; + case CT_MONO: + src.mChannel = 0; + break; + case CT_STEREO: + src.mChannel = 1; + break; + } + } + else + { + char type[MAX_IDENT_LEN+1]; + ChannelTypeT channelType; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, type)) + return 0; + + channelType = MatchChannelType(type); + if(channelType != CT_MONO) + { + TrErrorAt(tr, line, col, "Expected a mono channel type.\n"); + return 0; + } + src.mChannel = 0; + } + + sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints); + if(!sofa) return 0; + + for(si = 0;si < sofa->hrtf->M;si++) + { + printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M); + fflush(stdout); + + float aer[3] = { + sofa->hrtf->SourcePosition.values[3*si], + sofa->hrtf->SourcePosition.values[3*si + 1], + sofa->hrtf->SourcePosition.values[3*si + 2] + }; + mysofa_c2s(aer); + + if(std::fabs(aer[1]) >= 89.999f) + aer[0] = 0.0f; + else + aer[0] = std::fmod(360.0f - aer[0], 360.0f); + + for(fi = 0;fi < hData->mFdCount;fi++) + { + double delta = aer[2] - hData->mFds[fi].mDistance; + if(std::abs(delta) < 0.001) + break; + } + if(fi >= hData->mFdCount) + continue; + + double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0}; + ei = (int)std::round(ef); + ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1); + if(std::abs(ef) >= 0.1) + continue; + + double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f}; + ai = (int)std::round(af); + af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount; + ai = ai % hData->mFds[fi].mEvs[ei].mAzCount; + if(std::abs(af) >= 0.1) + continue; + + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != nullptr) + { + TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai); + return 0; + } + + ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data()); + azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex]; + if(model == HM_DATASET) + azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]); + AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]); + + if(src.mChannel == 1) + { + ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data()); + azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)]; + if(model == HM_DATASET) + azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]); + AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]); + } + + // TODO: Since some SOFA files contain minimum phase HRIRs, + // it would be beneficial to check for per-measurement delays + // (when available) to reconstruct the HRTDs. + } + + continue; + } + + if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) + return 0; + if(!TrReadOperator(tr, "]")) + return 0; + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] != nullptr) + { + TrErrorAt(tr, line, col, "Redefinition of source.\n"); + return 0; + } + if(!TrReadOperator(tr, "=")) + return 0; + + for(;;) + { + SourceRefT src; + uint ti = 0; + + if(!ReadSourceRef(tr, &src)) + return 0; + + // TODO: Would be nice to display 'x of y files', but that would + // require preparing the source refs first to get a total count + // before loading them. + ++count; + printf("\rLoading sources... %d file%s", count, (count==1)?"":"s"); + fflush(stdout); + + if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data())) + return 0; + + if(hData->mChannelType == CT_STEREO) + { + char ident[MAX_IDENT_LEN+1]; + + if(!TrReadIdent(tr, MAX_IDENT_LEN, ident)) + return 0; + ti = MatchTargetEar(ident); + if(static_cast<int>(ti) < 0) + { + TrErrorAt(tr, line, col, "Expected a target ear.\n"); + return 0; + } + } + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + if(model == HM_DATASET) + azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]); + AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]); + factor[ti] += 1.0; + if(!TrIsOperator(tr, "+")) + break; + TrReadOperator(tr, "+"); + } + if(hData->mChannelType == CT_STEREO) + { + if(azd->mIrs[0] == nullptr) + { + TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n"); + return 0; + } + else if(azd->mIrs[1] == nullptr) + { + TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n"); + return 0; + } + } + } + printf("\n"); + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + if(azd->mIrs[0] != nullptr) + break; + } + if(ai < hData->mFds[fi].mEvs[ei].mAzCount) + break; + } + if(ei >= hData->mFds[fi].mEvCount) + { + TrError(tr, "Missing source references [ %d, *, * ].\n", fi); + return 0; + } + hData->mFds[fi].mEvStart = ei; + for(;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + if(azd->mIrs[0] == nullptr) + { + TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai); + return 0; + } + } + } + } + for(ti = 0;ti < channels;ti++) + { + for(fi = 0;fi < hData->mFdCount;fi++) + { + for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++) + { + for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++) + { + HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; + + azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)]; + } + } + } + } + if(!TrLoad(tr)) + { + mysofa_cache_release_all(); + return 1; + } + + TrError(tr, "Errant data at end of source list.\n"); + mysofa_cache_release_all(); + return 0; +} + +/* Parse the data set definition and process the source data, storing the + * resulting data set as desired. If the input name is NULL it will read + * from standard input. + */ +static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName) +{ + char rateStr[8+1], expName[MAX_PATH_LEN]; + TokenReaderT tr; + HrirDataT hData; + FILE *fp; + int ret; + + fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin"); + if(inName != nullptr) + { + fp = fopen(inName, "r"); + if(fp == nullptr) + { + fprintf(stderr, "\nError: Could not open definition file '%s'\n", inName); + return 0; + } + TrSetup(fp, inName, &tr); + } + else + { + fp = stdin; + TrSetup(fp, "<stdin>", &tr); + } + if(!ProcessMetrics(&tr, fftSize, truncSize, &hData)) + { + if(inName != nullptr) + fclose(fp); + return 0; + } + if(!ProcessSources(model, &tr, &hData)) + { + if(inName) + fclose(fp); + return 0; + } + if(fp != stdin) + fclose(fp); + if(equalize) + { + uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1; + uint m = 1 + hData.mFftSize / 2; + std::vector<double> dfa(c * m); + + if(hData.mFdCount > 1) + { + fprintf(stdout, "Balancing field magnitudes...\n"); + BalanceFieldMagnitudes(&hData, c, m); + } + fprintf(stdout, "Calculating diffuse-field average...\n"); + CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data()); + fprintf(stdout, "Performing diffuse-field equalization...\n"); + DiffuseFieldEqualize(c, m, dfa.data(), &hData); + } + fprintf(stdout, "Performing minimum phase reconstruction...\n"); + ReconstructHrirs(&hData); + if(outRate != 0 && outRate != hData.mIrRate) + { + fprintf(stdout, "Resampling HRIRs...\n"); + ResampleHrirs(outRate, &hData); + } + fprintf(stdout, "Truncating minimum-phase HRIRs...\n"); + hData.mIrPoints = truncSize; + fprintf(stdout, "Synthesizing missing elevations...\n"); + if(model == HM_DATASET) + SynthesizeOnsets(&hData); + SynthesizeHrirs(&hData); + fprintf(stdout, "Normalizing final HRIRs...\n"); + NormalizeHrirs(&hData); + fprintf(stdout, "Calculating impulse delays...\n"); + CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData); + snprintf(rateStr, 8, "%u", hData.mIrRate); + StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName); + fprintf(stdout, "Creating MHR data set %s...\n", expName); + ret = StoreMhr(&hData, expName); + + return ret; +} + +static void PrintHelp(const char *argv0, FILE *ofile) +{ + fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0); + fprintf(ofile, "Options:\n"); + fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n"); + fprintf(ofile, " resample the HRIRs accordingly.\n"); + fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE); + fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off")); + fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off")); + fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n"); + fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT); + fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n"); + fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE); + fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n"); + fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere")); + fprintf(ofile, " -c <radius> Use a customized head radius measured to-ear in meters.\n"); + fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n"); + fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n"); + fprintf(ofile, " the data set sample rate.\n"); +} + +// Standard command line dispatch. +int main(int argc, char *argv[]) +{ + const char *inName = nullptr, *outName = nullptr; + uint outRate, fftSize; + int equalize, surface; + char *end = nullptr; + HeadModelT model; + uint truncSize; + double radius; + double limit; + int opt; + + GET_UNICODE_ARGS(&argc, &argv); + + if(argc < 2) + { + fprintf(stdout, "HRTF Processing and Composition Utility\n\n"); + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + } + + outName = "./oalsoft_hrtf_%r.mhr"; + outRate = 0; + fftSize = 0; + equalize = DEFAULT_EQUALIZE; + surface = DEFAULT_SURFACE; + limit = DEFAULT_LIMIT; + truncSize = DEFAULT_TRUNCSIZE; + model = DEFAULT_HEAD_MODEL; + radius = DEFAULT_CUSTOM_RADIUS; + + while((opt=getopt(argc, argv, "r:f:e:s:l:w:d:c:e:i:o:h")) != -1) + { + switch(opt) + { + case 'r': + outRate = strtoul(optarg, &end, 10); + if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE) + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE); + exit(EXIT_FAILURE); + } + break; + + case 'f': + fftSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE) + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'e': + if(strcmp(optarg, "on") == 0) + equalize = 1; + else if(strcmp(optarg, "off") == 0) + equalize = 0; + else + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 's': + if(strcmp(optarg, "on") == 0) + surface = 1; + else if(strcmp(optarg, "off") == 0) + surface = 0; + else + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'l': + if(strcmp(optarg, "none") == 0) + limit = 0.0; + else + { + limit = strtod(optarg, &end); + if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT) + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT); + exit(EXIT_FAILURE); + } + } + break; + + case 'w': + truncSize = strtoul(optarg, &end, 10); + if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE)) + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE); + exit(EXIT_FAILURE); + } + break; + + case 'd': + if(strcmp(optarg, "dataset") == 0) + model = HM_DATASET; + else if(strcmp(optarg, "sphere") == 0) + model = HM_SPHERE; + else + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt); + exit(EXIT_FAILURE); + } + break; + + case 'c': + radius = strtod(optarg, &end); + if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS) + { + fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS); + exit(EXIT_FAILURE); + } + break; + + case 'i': + inName = optarg; + break; + + case 'o': + outName = optarg; + break; + + case 'h': + PrintHelp(argv[0], stdout); + exit(EXIT_SUCCESS); + + default: /* '?' */ + PrintHelp(argv[0], stderr); + exit(EXIT_FAILURE); + } + } + + if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit, + truncSize, model, radius, outName)) + return -1; + fprintf(stdout, "Operation completed.\n"); + + return EXIT_SUCCESS; +} |