| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
This reduces the output volume when the mixed samples extend outside of -1,+1,
to prevent excessive clipping. It can reduce the volume by -80dB in 50ms, and
increase it by +80dB in 1s (it will not go below -80dB or above 0dB).
|
|
|
|
|
|
|
|
| |
Clang does not allow using C11's atomic_load on const _Atomic variables.
Previously it just disabled use of C11 atomics if atomic_load didn't work on a
const _Atomic variable, but I think I'd prefer to have Clang use C11 atomics
for the added features (more explicit memory ordering) even if it means a few
instances of breaking const.
|
| |
|
| |
|
| |
|
|
|
|
| |
Also move its declaration and rename it for consistency.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This improves fading between HRIRs as sources pan around. In particular, it
improves the issue with individual coefficients having various rounding errors
in the stepping values, as well as issues with interpolating delay values.
It does this by doing two mixing passes for each source. First using the last
coefficients that fade to silence, and then again using the new coefficients
that fade from silence. When added together, it creates a linear fade from one
to the other. Additionally, the gain is applied separately so the individual
coefficients don't step with rounding errors. Although this does increase CPU
cost since it's doing two mixes per source, each mix is a bit cheaper now since
the stepping is simplified to a single gain value, and the overall quality is
improved.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NFC filters currently only work when rendering to ambisonic buffers, which
includes HQ rendering and ambisonic output. There are two new config options:
'decoder/nfc' (default on) enables or disables use of NFC filters globally, and
'decoder/nfc-ref-delay' (default 0) specifies the reference delay parameter for
NFC-HOA rendering with ambisonic output (a value of 0 disables NFC).
Currently, NFC filters rely on having an appropriate value set for
AL_METERS_PER_UNIT to get the correct scaling. HQ rendering uses the averaged
speaker distances as a control/reference, and currently doesn't correct for
individual speaker distances (if the speakers are all equidistant, this is
fine, otherwise per-speaker correction should be done as well).
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This has a couple behavioral changes. First and biggest is that querying
AL_BUFFERS_PROCESSED from a source will always return all buffers processed
when in an AL_STOPPED state. Previously all buffers would be set as processed
when first becoming stopped, but newly queued buffers would *not* be indicated
as processed. That old behavior was not compliant with the spec, which
unequivocally states "On a source in the AL_STOPPED state, all buffers are
processed."
Secondly, querying AL_BUFFER on an AL_STREAMING source will now always return
0. Previously it would return the current "active" buffer in the queue, but
there's no basis for that in the spec.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change allows pair-wise panning to mostly go through the normal ambisonic
panning methods, with one special-case. First, a term is added to the stereo
decoder matrix's X coefficient so that a centered sound is reduced by -3dB on
each output channel. Panning in front creates a similar gain response to the
typical
L = sqrt(1-pan)
R = sqrt(pan)
for pan = [0,1]. Panning behind the listener can reduce (up to) an additional
-10dB, creating a audible difference between front and back sounds as if
simulating head obstruction.
Secondly, as a special-case, the source positions are warped when calculating
the ambisonic coefficients so that full left panning is reached at -30 degrees
and full right at +30 degrees. This is to retain the expected 60-degree stereo
width. This warping does not apply to B-Format buffer input, although it
otherwise has the same gain responses.
|
|
|
|
| |
Also rename the 'paired' value to 'panpot', and make it the default.
|
| |
|
| |
|
|
|
|
|
| |
The voices are still all allocated in one chunk to avoid memory fragmentation.
But they're accessed as an array of pointers since the size isn't static.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This places the Send[] array at the end of the struct, making it easier to
handle dynamically.
|
|
|
|
|
|
| |
ALsourceProps' Send[] array is placed at the end of the struct, and given an
indeterminate size. Extra space is allocated at the end of each struct given
the number of auxiliary sends set for the device.
|
|
|
|
|
| |
Since it's modified by the mixer when playback is ended, a plain struct member
isn't safe.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
Unsigned 32-bit offsets actually have some potential overhead on 64-bit targets
for pointer/array accesses due to rules on integer wrapping. No idea how much
impact it has in practice, but it's nice to be correct about it.
|
|
|
|
|
|
| |
This should improve positional quality for relatively low cost. Full HRTF
rendering still only uses first-order since the only use of the dry buffer
there is for first-order content (B-Format buffers, effects).
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
It still fades between HRIRs when it changes, but now it selects the nearest
one instead of blending the nearest four. Due to the minimum-phase nature of
the HRIRs, interpolating between delays lead to some oddities which are
exasperated by the fading (and the fading is needed to avoid clicks and pops,
and smooth out changes).
|
| |
|
|
|
|
|
|
|
|
|
| |
Designed for apps that either don't change the listener's AL_GAIN, or don't
allow the listener's AL_GAIN to go above 1. This allows the volume to still be
increased further than such apps may allow, if users find it too quiet.
Be aware that increasing this can easily cause clipping. The gain limit
reported by AL_GAIN_LIMIT_SOFT is also affected by this.
|
| |
|