| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
|
|
|
| |
Otherwise it won't store the name in the device.
|
| |
|
| |
|
|
|
|
|
| |
Currently only applies to external files, rather than embedded datasets. Also,
HRTFs aren't unloaded after being loaded, until library shutdown.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NFC filters currently only work when rendering to ambisonic buffers, which
includes HQ rendering and ambisonic output. There are two new config options:
'decoder/nfc' (default on) enables or disables use of NFC filters globally, and
'decoder/nfc-ref-delay' (default 0) specifies the reference delay parameter for
NFC-HOA rendering with ambisonic output (a value of 0 disables NFC).
Currently, NFC filters rely on having an appropriate value set for
AL_METERS_PER_UNIT to get the correct scaling. HQ rendering uses the averaged
speaker distances as a control/reference, and currently doesn't correct for
individual speaker distances (if the speakers are all equidistant, this is
fine, otherwise per-speaker correction should be done as well).
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change allows pair-wise panning to mostly go through the normal ambisonic
panning methods, with one special-case. First, a term is added to the stereo
decoder matrix's X coefficient so that a centered sound is reduced by -3dB on
each output channel. Panning in front creates a similar gain response to the
typical
L = sqrt(1-pan)
R = sqrt(pan)
for pan = [0,1]. Panning behind the listener can reduce (up to) an additional
-10dB, creating a audible difference between front and back sounds as if
simulating head obstruction.
Secondly, as a special-case, the source positions are warped when calculating
the ambisonic coefficients so that full left panning is reached at -30 degrees
and full right at +30 degrees. This is to retain the expected 60-degree stereo
width. This warping does not apply to B-Format buffer input, although it
otherwise has the same gain responses.
|
|
|
|
| |
Also rename the 'paired' value to 'panpot', and make it the default.
|
| |
|
|
|
|
|
| |
It still requires a custom configuration to specify appropriate speaker
distances.
|
|
|
|
|
|
| |
Both 5.1 Side and Rear configurations use 'surround51' to look up the
appropriate decoder file. The decoder loader already handles mapping between
rear and side channels, so there's no need for separate options.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
This now takes advantage of the differences seen in generated decoder matrices
for first-order compared to second- and third-order, such that with the
appropriate frequency-dependent scaling applied to first-order content, the
result is identical with a higher-order decoder matrix compared to a first-
order matrix for the same layout.
|
| |
|
| |
|
|
|
|
| |
This also converts them to ACN/N3D format.
|
|
|
|
|
| |
This keeps the decoder matrices and coefficient mapping together for if it
changes in the future.
|
| |
|
| |
|
|
|
|
|
|
| |
Unsigned 32-bit offsets actually have some potential overhead on 64-bit targets
for pointer/array accesses due to rules on integer wrapping. No idea how much
impact it has in practice, but it's nice to be correct about it.
|
|
|
|
|
|
| |
This should improve positional quality for relatively low cost. Full HRTF
rendering still only uses first-order since the only use of the dry buffer
there is for first-order content (B-Format buffers, effects).
|
| |
|
|
|
|
|
| |
No idea if it was really gaining us anything, but removing it fixes a crash I
was getting with libs built with Clang.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Last time this attempted to average the HRIRs according to their contribution
to a given B-Format channel as if they were loudspeakers, as well as averaging
the HRIR delays. The latter part resulted in the loss of the ITD (inter-aural
time delay), a key component of HRTF.
This time, the HRIRs are averaged similar to above, except instead of averaging
the delays, they're applied to the resulting coefficients (for example, a delay
of 8 would apply the HRIR starting at the 8th sample of the target HRIR). This
does roughly double the IR length, as the largest delay is about 35 samples
while the filter is normally 32 samples. However, this is still smaller the
original data set IR (which was 256 samples), it also only needs to be applied
to 4 channels for first-order ambisonics, rather than the 8-channel cube. So
it's doing twice as much work per sample, but only working on half the number
of samples.
Additionally, since the resulting HRIRs no longer rely on an extra delay line,
a more efficient HRTF mixing function can be made that doesn't use one. Such a
function can also avoid the per-sample stepping parameters the original uses.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Currently incomplete, as second- and third-order output will not correctly
handle B-Format input buffers. A standalone up-sampler will be needed, similar
to the high-quality decoder.
Also, output is ACN ordering with SN3D normalization. A config option will
eventually be provided to change this if desired.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|