aboutsummaryrefslogtreecommitdiffstats
path: root/Alc/solaris.c
Commit message (Collapse)AuthorAgeFilesLines
* Get rid of the device timer stuffChris Robinson2010-11-211-9/+2
|
* Be a bit more verbose when a device fails to openChris Robinson2010-08-011-2/+1
|
* Store the time precision with the deviceChris Robinson2010-07-251-0/+2
|
* Add a backend callback to get the device timeChris Robinson2010-07-241-1/+7
| | | | | The method should monotonically count the number of nanoseconds the device has active contexts
* Update device naming to be more apparent about the device being usedChris Robinson2010-05-311-1/+1
|
* Add a function to get the frame size from a formatChris Robinson2010-05-241-2/+1
|
* Don't needlessly expose a variable for the backendsChris Robinson2010-05-121-1/+1
|
* Fix some typos with the solaris backendChris Robinson2010-01-121-1/+1
|
* Cleanup OSS/Solaris loop a bitChris Robinson2010-01-101-3/+3
|
* Hide OSS and Solaris devices if their files can't be stat'dChris Robinson2010-01-091-1/+8
|
* Use a channel-map to specify the output device channel orderChris Robinson2009-12-021-0/+2
|
* Add an option for real-time priority mixingChris Robinson2009-12-011-0/+2
| | | | Default to disable for now, as a safety precaution
* Reset the kill flag after the thread has stoppedChris Robinson2009-11-291-0/+2
|
* EINTR is not a fatal write errorChris Robinson2009-10-191-1/+1
|
* Fix OSS and Solaris playback loop checkChris Robinson2009-10-171-1/+1
|
* Return imediately if trying to set an unknown formatChris Robinson2009-09-211-1/+2
|
* Store the number of periods in the device instead of the buffer sizeChris Robinson2009-09-161-2/+2
| | | | Also keep all the fields in sync
* Remove unnecessary parameters, and rename methodsChris Robinson2009-09-161-6/+4
|
* Pass the device to aluMixDataChris Robinson2009-09-151-4/+1
|
* Pass the frame count to aluMixDataChris Robinson2009-09-151-1/+5
|
* Start Solaris playback when a context is readyChris Robinson2009-09-121-33/+35
|
* Remove unnecessary vars and rework device name checksChris Robinson2009-08-271-8/+5
|
* Rebuild device lists when retrieving themChris Robinson2009-08-271-3/+8
|
* Store a copy of the device name in the deviceChris Robinson2009-08-271-3/+3
|
* Store copies of the device names in the individual backendsChris Robinson2009-08-271-2/+2
|
* Add a method to deinitialize backendsChris Robinson2009-08-261-0/+4
|
* Support disconnect for OSS and SolarisChris Robinson2009-08-261-21/+23
|
* Fix the Solaris backendChris Robinson2009-08-161-3/+27
|
* Add a Solaris playback backendChris Robinson2008-09-071-0/+258
d='n511' href='#n511'>511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * OpenAL cross platform audio library
 * Copyright (C) 1999-2007 by authors.
 * This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the
 *  Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 *  Boston, MA  02111-1307, USA.
 * Or go to http://www.gnu.org/copyleft/lgpl.html
 */

#include "config.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>

#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"


struct ChanMap {
    enum Channel channel;
    ALfloat angle;
};

/* Cone scalar */
ALfloat ConeScale = 0.5f;

/* Localized Z scalar for mono sources */
ALfloat ZScale = 1.0f;


static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
{
    ALfloat temp[4] = {
        vector[0], vector[1], vector[2], w
    };

    vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
    vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
    vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
}


ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
{
    static const struct ChanMap MonoMap[1] = { { FRONT_CENTER, 0.0f } };
    static const struct ChanMap StereoMap[2] = {
        { FRONT_LEFT, -30.0f * F_PI/180.0f },
        { FRONT_RIGHT, 30.0f * F_PI/180.0f }
    };
    static const struct ChanMap RearMap[2] = {
        { BACK_LEFT, -150.0f * F_PI/180.0f },
        { BACK_RIGHT, 150.0f * F_PI/180.0f }
    };
    static const struct ChanMap QuadMap[4] = {
        { FRONT_LEFT, -45.0f * F_PI/180.0f },
        { FRONT_RIGHT, 45.0f * F_PI/180.0f },
        { BACK_LEFT, -135.0f * F_PI/180.0f },
        { BACK_RIGHT, 135.0f * F_PI/180.0f }
    };
    static const struct ChanMap X51Map[6] = {
        { FRONT_LEFT, -30.0f * F_PI/180.0f },
        { FRONT_RIGHT, 30.0f * F_PI/180.0f },
        { FRONT_CENTER, 0.0f * F_PI/180.0f },
        { LFE, 0.0f },
        { BACK_LEFT, -110.0f * F_PI/180.0f },
        { BACK_RIGHT, 110.0f * F_PI/180.0f }
    };
    static const struct ChanMap X61Map[7] = {
        { FRONT_LEFT,  -30.0f * F_PI/180.0f },
        { FRONT_RIGHT,  30.0f * F_PI/180.0f },
        { FRONT_CENTER,  0.0f * F_PI/180.0f },
        { LFE, 0.0f },
        { BACK_CENTER, 180.0f * F_PI/180.0f },
        { SIDE_LEFT,   -90.0f * F_PI/180.0f },
        { SIDE_RIGHT,   90.0f * F_PI/180.0f }
    };
    static const struct ChanMap X71Map[8] = {
        { FRONT_LEFT, -30.0f * F_PI/180.0f },
        { FRONT_RIGHT, 30.0f * F_PI/180.0f },
        { FRONT_CENTER, 0.0f * F_PI/180.0f },
        { LFE, 0.0f },
        { BACK_LEFT, -150.0f * F_PI/180.0f },
        { BACK_RIGHT, 150.0f * F_PI/180.0f },
        { SIDE_LEFT,  -90.0f * F_PI/180.0f },
        { SIDE_RIGHT,  90.0f * F_PI/180.0f }
    };

    ALCdevice *Device = ALContext->Device;
    ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
    ALbufferlistitem *BufferListItem;
    enum DevFmtChannels DevChans;
    enum FmtChannels Channels;
    ALfloat (*SrcMatrix)[MAXCHANNELS];
    ALfloat DryGain, DryGainHF;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALint NumSends, Frequency;
    const ALfloat *ChannelGain;
    const struct ChanMap *chans = NULL;
    enum Resampler Resampler;
    ALint num_channels = 0;
    ALboolean DirectChannels;
    ALfloat Pitch;
    ALfloat cw;
    ALuint pos;
    ALint i, c;

    /* Get device properties */
    DevChans  = Device->FmtChans;
    NumSends  = Device->NumAuxSends;
    Frequency = Device->Frequency;

    /* Get listener properties */
    ListenerGain = ALContext->Listener.Gain;

    /* Get source properties */
    SourceVolume    = ALSource->flGain;
    MinVolume       = ALSource->flMinGain;
    MaxVolume       = ALSource->flMaxGain;
    Pitch           = ALSource->flPitch;
    Resampler       = ALSource->Resampler;
    DirectChannels  = ALSource->DirectChannels;

    /* Calculate the stepping value */
    Channels = FmtMono;
    BufferListItem = ALSource->queue;
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
                              ALSource->NumChannels;
            maxstep -= ResamplerPadding[Resampler] +
                       ResamplerPrePadding[Resampler] + 1;
            maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);

            Pitch = Pitch * ALBuffer->Frequency / Frequency;
            if(Pitch > (ALfloat)maxstep)
                ALSource->Params.Step = maxstep<<FRACTIONBITS;
            else
            {
                ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
                if(ALSource->Params.Step == 0)
                    ALSource->Params.Step = 1;
            }

            Channels = ALBuffer->FmtChannels;
            break;
        }
        BufferListItem = BufferListItem->next;
    }
    if(!DirectChannels && Device->Hrtf)
        ALSource->Params.DoMix = SelectHrtfMixer((ALSource->Params.Step==FRACTIONONE) ?
                                                 PointResampler : Resampler);
    else
        ALSource->Params.DoMix = SelectMixer((ALSource->Params.Step==FRACTIONONE) ?
                                             PointResampler : Resampler);

    /* Calculate gains */
    DryGain  = clampf(SourceVolume, MinVolume, MaxVolume);
    DryGain *= ALSource->DirectGain;
    DryGainHF = ALSource->DirectGainHF;
    for(i = 0;i < NumSends;i++)
    {
        WetGain[i]  = clampf(SourceVolume, MinVolume, MaxVolume);
        WetGain[i] *= ALSource->Send[i].WetGain;
        WetGainHF[i] = ALSource->Send[i].WetGainHF;
    }

    SrcMatrix = ALSource->Params.DryGains;
    for(i = 0;i < MAXCHANNELS;i++)
    {
        for(c = 0;c < MAXCHANNELS;c++)
            SrcMatrix[i][c] = 0.0f;
    }
    switch(Channels)
    {
    case FmtMono:
        chans = MonoMap;
        num_channels = 1;
        break;
    case FmtStereo:
        if(!DirectChannels && (Device->Flags&DEVICE_DUPLICATE_STEREO))
        {
            DryGain *= aluSqrt(2.0f/4.0f);
            for(c = 0;c < 2;c++)
            {
                pos = aluCart2LUTpos(aluCos(RearMap[c].angle),
                                     aluSin(RearMap[c].angle));
                ChannelGain = Device->PanningLUT[pos];

                for(i = 0;i < (ALint)Device->NumChan;i++)
                {
                    enum Channel chan = Device->Speaker2Chan[i];
                    SrcMatrix[c][chan] += DryGain * ListenerGain *
                                          ChannelGain[chan];
                }
            }
        }
        chans = StereoMap;
        num_channels = 2;
        break;

    case FmtRear:
        chans = RearMap;
        num_channels = 2;
        break;

    case FmtQuad:
        chans = QuadMap;
        num_channels = 4;
        break;

    case FmtX51:
        chans = X51Map;
        num_channels = 6;
        break;

    case FmtX61:
        chans = X61Map;
        num_channels = 7;
        break;

    case FmtX71:
        chans = X71Map;
        num_channels = 8;
        break;
    }

    if(DirectChannels != AL_FALSE)
    {
        for(c = 0;c < num_channels;c++)
            SrcMatrix[c][chans[c].channel] += DryGain * ListenerGain;
    }
    else if(Device->Hrtf)
    {
        for(c = 0;c < num_channels;c++)
        {
            if(chans[c].channel == LFE)
            {
                /* Skip LFE */
                ALSource->Params.HrtfDelay[c][0] = 0;
                ALSource->Params.HrtfDelay[c][1] = 0;
                for(i = 0;i < HRIR_LENGTH;i++)
                {
                    ALSource->Params.HrtfCoeffs[c][i][0] = 0.0f;
                    ALSource->Params.HrtfCoeffs[c][i][1] = 0.0f;
                }
            }
            else
            {
                /* Get the static HRIR coefficients and delays for this
                 * channel. */
                GetLerpedHrtfCoeffs(Device->Hrtf,
                                    0.0f, F_PI/180.0f * chans[c].angle,
                                    DryGain*ListenerGain,
                                    ALSource->Params.HrtfCoeffs[c],
                                    ALSource->Params.HrtfDelay[c]);
            }
            ALSource->HrtfCounter = 0;
        }
    }
    else
    {
        for(c = 0;c < num_channels;c++)
        {
            if(chans[c].channel == LFE) /* Special-case LFE */
            {
                SrcMatrix[c][LFE] += DryGain * ListenerGain;
                continue;
            }
            pos = aluCart2LUTpos(aluCos(chans[c].angle), aluSin(chans[c].angle));
            ChannelGain = Device->PanningLUT[pos];

            for(i = 0;i < (ALint)Device->NumChan;i++)
            {
                enum Channel chan = Device->Speaker2Chan[i];
                SrcMatrix[c][chan] += DryGain * ListenerGain *
                                      ChannelGain[chan];
            }
        }
    }
    for(i = 0;i < NumSends;i++)
    {
        ALeffectslot *Slot = ALSource->Send[i].Slot;

        if(!Slot && i == 0)
            Slot = Device->DefaultSlot;
        if(Slot && Slot->effect.type == AL_EFFECT_NULL)
            Slot = NULL;
        ALSource->Params.Send[i].Slot = Slot;
        ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain;
    }

    /* Update filter coefficients. Calculations based on the I3DL2
     * spec. */
    cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);

    /* We use two chained one-pole filters, so we need to take the
     * square root of the squared gain, which is the same as the base
     * gain. */
    ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
    for(i = 0;i < NumSends;i++)
    {
        /* We use a one-pole filter, so we need to take the squared gain */
        ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
        ALSource->Params.Send[i].iirFilter.coeff = a;
    }
}

ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
{
    const ALCdevice *Device = ALContext->Device;
    ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
    ALfloat Direction[3],Position[3],SourceToListener[3];
    ALfloat Velocity[3],ListenerVel[3];
    ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
    ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
    ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound;
    ALfloat AirAbsorptionFactor;
    ALfloat RoomAirAbsorption[MAX_SENDS];
    ALbufferlistitem *BufferListItem;
    ALfloat Attenuation, EffectiveDist;
    ALfloat RoomAttenuation[MAX_SENDS];
    ALfloat MetersPerUnit;
    ALfloat RoomRolloffBase;
    ALfloat RoomRolloff[MAX_SENDS];
    ALfloat DecayDistance[MAX_SENDS];
    ALfloat DryGain;
    ALfloat DryGainHF;
    ALboolean DryGainHFAuto;
    ALfloat WetGain[MAX_SENDS];
    ALfloat WetGainHF[MAX_SENDS];
    ALboolean WetGainAuto;
    ALboolean WetGainHFAuto;
    enum Resampler Resampler;
    ALfloat Pitch;
    ALuint Frequency;
    ALint NumSends;
    ALfloat cw;
    ALint i;

    DryGainHF = 1.0f;
    for(i = 0;i < MAX_SENDS;i++)
        WetGainHF[i] = 1.0f;

    //Get context properties
    DopplerFactor   = ALContext->DopplerFactor * ALSource->DopplerFactor;
    DopplerVelocity = ALContext->DopplerVelocity;
    SpeedOfSound    = ALContext->flSpeedOfSound;
    NumSends        = Device->NumAuxSends;
    Frequency       = Device->Frequency;

    //Get listener properties
    ListenerGain   = ALContext->Listener.Gain;
    MetersPerUnit  = ALContext->Listener.MetersPerUnit;
    ListenerVel[0] = ALContext->Listener.Velocity[0];
    ListenerVel[1] = ALContext->Listener.Velocity[1];
    ListenerVel[2] = ALContext->Listener.Velocity[2];

    //Get source properties
    SourceVolume   = ALSource->flGain;
    MinVolume      = ALSource->flMinGain;
    MaxVolume      = ALSource->flMaxGain;
    Pitch          = ALSource->flPitch;
    Resampler      = ALSource->Resampler;
    Position[0]    = ALSource->vPosition[0];
    Position[1]    = ALSource->vPosition[1];
    Position[2]    = ALSource->vPosition[2];
    Direction[0]   = ALSource->vOrientation[0];
    Direction[1]   = ALSource->vOrientation[1];
    Direction[2]   = ALSource->vOrientation[2];
    Velocity[0]    = ALSource->vVelocity[0];
    Velocity[1]    = ALSource->vVelocity[1];
    Velocity[2]    = ALSource->vVelocity[2];
    MinDist        = ALSource->flRefDistance;
    MaxDist        = ALSource->flMaxDistance;
    Rolloff        = ALSource->flRollOffFactor;
    InnerAngle     = ALSource->flInnerAngle * ConeScale;
    OuterAngle     = ALSource->flOuterAngle * ConeScale;
    AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
    DryGainHFAuto   = ALSource->DryGainHFAuto;
    WetGainAuto     = ALSource->WetGainAuto;
    WetGainHFAuto   = ALSource->WetGainHFAuto;
    RoomRolloffBase = ALSource->RoomRolloffFactor;
    for(i = 0;i < NumSends;i++)
    {
        ALeffectslot *Slot = ALSource->Send[i].Slot;

        if(!Slot && i == 0)
            Slot = Device->DefaultSlot;
        if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
        {
            Slot = NULL;
            RoomRolloff[i] = 0.0f;
            DecayDistance[i] = 0.0f;
            RoomAirAbsorption[i] = 1.0f;
        }
        else if(Slot->AuxSendAuto)
        {
            RoomRolloff[i] = RoomRolloffBase;
            if(IsReverbEffect(Slot->effect.type))
            {
                RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
                DecayDistance[i] = Slot->effect.Reverb.DecayTime *
                                   SPEEDOFSOUNDMETRESPERSEC;
                RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
            }
            else
            {
                DecayDistance[i] = 0.0f;
                RoomAirAbsorption[i] = 1.0f;
            }
        }
        else
        {
            /* If the slot's auxiliary send auto is off, the data sent to the
             * effect slot is the same as the dry path, sans filter effects */
            RoomRolloff[i] = Rolloff;
            DecayDistance[i] = 0.0f;
            RoomAirAbsorption[i] = AIRABSORBGAINHF;
        }

        ALSource->Params.Send[i].Slot = Slot;
    }

    //1. Translate Listener to origin (convert to head relative)
    if(ALSource->bHeadRelative == AL_FALSE)
    {
        ALfloat Matrix[4][4];
        for(i = 0;i < 4;i++)
        {
            ALint i2;
            for(i2 = 0;i2 < 4;i2++)
                Matrix[i][i2] = ALContext->Listener.Matrix[i][i2];
        }

        /* Translate position */
        Position[0] -= ALContext->Listener.Position[0];
        Position[1] -= ALContext->Listener.Position[1];
        Position[2] -= ALContext->Listener.Position[2];

        /* Transform source vectors into listener space */
        aluMatrixVector(Position, 1.0f, Matrix);
        aluMatrixVector(Direction, 0.0f, Matrix);
        aluMatrixVector(Velocity, 0.0f, Matrix);
    }
    else
    {
        ListenerVel[0] = 0.0f;
        ListenerVel[1] = 0.0f;
        ListenerVel[2] = 0.0f;
    }

    SourceToListener[0] = -Position[0];
    SourceToListener[1] = -Position[1];
    SourceToListener[2] = -Position[2];
    aluNormalize(SourceToListener);
    aluNormalize(Direction);

    //2. Calculate distance attenuation
    Distance = aluSqrt(aluDotproduct(Position, Position));
    ClampedDist = Distance;

    Attenuation = 1.0f;
    for(i = 0;i < NumSends;i++)
        RoomAttenuation[i] = 1.0f;
    switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
                                            ALContext->DistanceModel)
    {
        case InverseDistanceClamped:
            ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case InverseDistance:
            if(MinDist > 0.0f)
            {
                if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
                    Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
                for(i = 0;i < NumSends;i++)
                {
                    if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
                        RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
                }
            }
            break;

        case LinearDistanceClamped:
            ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case LinearDistance:
            if(MaxDist != MinDist)
            {
                Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
                Attenuation = maxf(Attenuation, 0.0f);
                for(i = 0;i < NumSends;i++)
                {
                    RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
                    RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
                }
            }
            break;

        case ExponentDistanceClamped:
            ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
            if(MaxDist < MinDist)
                break;
            //fall-through
        case ExponentDistance:
            if(ClampedDist > 0.0f && MinDist > 0.0f)
            {
                Attenuation = aluPow(ClampedDist/MinDist, -Rolloff);
                for(i = 0;i < NumSends;i++)
                    RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]);
            }
            break;

        case DisableDistance:
            break;
    }

    // Source Gain + Attenuation
    DryGain = SourceVolume * Attenuation;
    for(i = 0;i < NumSends;i++)
        WetGain[i] = SourceVolume * RoomAttenuation[i];

    // Distance-based air absorption
    EffectiveDist = 0.0f;
    if(MinDist > 0.0f && Attenuation < 1.0f)
        EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit;
    if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f)
    {
        DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*EffectiveDist);
        for(i = 0;i < NumSends;i++)
            WetGainHF[i] *= aluPow(RoomAirAbsorption[i],
                                   AirAbsorptionFactor*EffectiveDist);
    }

    if(WetGainAuto)
    {
        /* Apply a decay-time transformation to the wet path, based on the
         * attenuation of the dry path.
         *
         * Using the approximate (effective) source to listener distance, the
         * initial decay of the reverb effect is calculated and applied to the
         * wet path.
         */
        for(i = 0;i < NumSends;i++)
        {
            if(DecayDistance[i] > 0.0f)
                WetGain[i] *= aluPow(0.001f /* -60dB */,
                                     EffectiveDist / DecayDistance[i]);
        }
    }

    /* Calculate directional soundcones */
    Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0f/F_PI);
    if(Angle >= InnerAngle && Angle <= OuterAngle)
    {
        ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
        ConeVolume = lerp(1.0f, ALSource->flOuterGain, scale);
        ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
    }
    else if(Angle > OuterAngle)
    {
        ConeVolume = ALSource->flOuterGain;
        ConeHF = ALSource->OuterGainHF;
    }
    else
    {
        ConeVolume = 1.0f;
        ConeHF = 1.0f;
    }

    DryGain *= ConeVolume;
    if(WetGainAuto)
    {
        for(i = 0;i < NumSends;i++)
            WetGain[i] *= ConeVolume;
    }
    if(DryGainHFAuto)
        DryGainHF *= ConeHF;
    if(WetGainHFAuto)
    {
        for(i = 0;i < NumSends;i++)
            WetGainHF[i] *= ConeHF;
    }

    // Clamp to Min/Max Gain
    DryGain = clampf(DryGain, MinVolume, MaxVolume);
    for(i = 0;i < NumSends;i++)
        WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);

    // Apply filter gains and filters
    DryGain   *= ALSource->DirectGain * ListenerGain;
    DryGainHF *= ALSource->DirectGainHF;
    for(i = 0;i < NumSends;i++)
    {
        WetGain[i]   *= ALSource->Send[i].WetGain * ListenerGain;
        WetGainHF[i] *= ALSource->Send[i].WetGainHF;
    }

    // Calculate Velocity
    if(DopplerFactor != 0.0f)
    {
        ALfloat VSS, VLS;
        ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) /
                              DopplerFactor;

        VSS = aluDotproduct(Velocity, SourceToListener);
        if(VSS >= MaxVelocity)
            VSS = (MaxVelocity - 1.0f);
        else if(VSS <= -MaxVelocity)
            VSS = -MaxVelocity + 1.0f;

        VLS = aluDotproduct(ListenerVel, SourceToListener);
        if(VLS >= MaxVelocity)
            VLS = (MaxVelocity - 1.0f);
        else if(VLS <= -MaxVelocity)
            VLS = -MaxVelocity + 1.0f;

        Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) /
                 ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS));
    }

    BufferListItem = ALSource->queue;
    while(BufferListItem != NULL)
    {
        ALbuffer *ALBuffer;
        if((ALBuffer=BufferListItem->buffer) != NULL)
        {
            ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
                              ALSource->NumChannels;
            maxstep -= ResamplerPadding[Resampler] +
                       ResamplerPrePadding[Resampler] + 1;
            maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);

            Pitch = Pitch * ALBuffer->Frequency / Frequency;
            if(Pitch > (ALfloat)maxstep)
                ALSource->Params.Step = maxstep<<FRACTIONBITS;
            else
            {
                ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
                if(ALSource->Params.Step == 0)
                    ALSource->Params.Step = 1;
            }

            break;
        }
        BufferListItem = BufferListItem->next;
    }
    if(Device->Hrtf)
        ALSource->Params.DoMix = SelectHrtfMixer((ALSource->Params.Step==FRACTIONONE) ?
                                                 PointResampler : Resampler);
    else
        ALSource->Params.DoMix = SelectMixer((ALSource->Params.Step==FRACTIONONE) ?
                                             PointResampler : Resampler);

    if(Device->Hrtf)
    {
        // Use a binaural HRTF algorithm for stereo headphone playback
        ALfloat delta, ev = 0.0f, az = 0.0f;

        if(Distance > 0.0f)
        {
            ALfloat invlen = 1.0f/Distance;
            Position[0] *= invlen;
            Position[1] *= invlen;
            Position[2] *= invlen;

            // Calculate elevation and azimuth only when the source is not at
            // the listener.  This prevents +0 and -0 Z from producing
            // inconsistent panning.
            ev = aluAsin(Position[1]);
            az = aluAtan2(Position[0], -Position[2]*ZScale);
        }

        // Check to see if the HRIR is already moving.
        if(ALSource->HrtfMoving)
        {
            // Calculate the normalized HRTF transition factor (delta).
            delta = CalcHrtfDelta(ALSource->Params.HrtfGain, DryGain,
                                  ALSource->Params.HrtfDir, Position);
            // If the delta is large enough, get the moving HRIR target
            // coefficients, target delays, steppping values, and counter.
            if(delta > 0.001f)
            {
                ALSource->HrtfCounter = GetMovingHrtfCoeffs(Device->Hrtf,
                                          ev, az, DryGain, delta,
                                          ALSource->HrtfCounter,
                                          ALSource->Params.HrtfCoeffs[0],
                                          ALSource->Params.HrtfDelay[0],
                                          ALSource->Params.HrtfCoeffStep,
                                          ALSource->Params.HrtfDelayStep);
                ALSource->Params.HrtfGain = DryGain;
                ALSource->Params.HrtfDir[0] = Position[0];
                ALSource->Params.HrtfDir[1] = Position[1];
                ALSource->Params.HrtfDir[2] = Position[2];
            }
        }
        else
        {
            // Get the initial (static) HRIR coefficients and delays.
            GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
                                ALSource->Params.HrtfCoeffs[0],
                                ALSource->Params.HrtfDelay[0]);
            ALSource->HrtfCounter = 0;
            ALSource->Params.HrtfGain = DryGain;
            ALSource->Params.HrtfDir[0] = Position[0];
            ALSource->Params.HrtfDir[1] = Position[1];
            ALSource->Params.HrtfDir[2] = Position[2];
        }
    }
    else
    {
        // Use energy-preserving panning algorithm for multi-speaker playback
        ALfloat DirGain, AmbientGain;
        const ALfloat *ChannelGain;
        ALfloat length;
        ALint pos;

        length = maxf(Distance, MinDist);
        if(length > 0.0f)
        {
            ALfloat invlen = 1.0f/length;
            Position[0] *= invlen;
            Position[1] *= invlen;
            Position[2] *= invlen;
        }

        pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]);
        ChannelGain = Device->PanningLUT[pos];

        DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
        // elevation adjustment for directional gain. this sucks, but
        // has low complexity
        AmbientGain = aluSqrt(1.0f/Device->NumChan);
        for(i = 0;i < MAXCHANNELS;i++)
        {
            ALuint i2;
            for(i2 = 0;i2 < MAXCHANNELS;i2++)
                ALSource->Params.DryGains[i][i2] = 0.0f;
        }
        for(i = 0;i < (ALint)Device->NumChan;i++)
        {
            enum Channel chan = Device->Speaker2Chan[i];
            ALfloat gain = lerp(AmbientGain, ChannelGain[chan], DirGain);
            ALSource->Params.DryGains[0][chan] = DryGain * gain;
        }
    }
    for(i = 0;i < NumSends;i++)
        ALSource->Params.Send[i].WetGain = WetGain[i];

    /* Update filter coefficients. */
    cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);

    ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
    for(i = 0;i < NumSends;i++)
    {
        ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
        ALSource->Params.Send[i].iirFilter.coeff = a;
    }
}


static __inline ALfloat aluF2F(ALfloat val)
{ return val; }
static __inline ALint aluF2I(ALfloat val)
{
    if(val > 1.0f) return 2147483647;
    if(val < -1.0f) return -2147483647-1;
    return fastf2i(val*2147483647.0);
}
static __inline ALuint aluF2UI(ALfloat val)
{ return aluF2I(val)+2147483648u; }
static __inline ALshort aluF2S(ALfloat val)
{ return aluF2I(val)>>16; }
static __inline ALushort aluF2US(ALfloat val)
{ return aluF2S(val)+32768; }
static __inline ALbyte aluF2B(ALfloat val)
{ return aluF2I(val)>>24; }
static __inline ALubyte aluF2UB(ALfloat val)
{ return aluF2B(val)+128; }

#define DECL_TEMPLATE(T, N, func)                                             \
static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer,            \
                            ALuint SamplesToDo)                               \
{                                                                             \
    ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer;           \
    const enum Channel *ChanMap = device->DevChannels;                        \
    ALuint i, j;                                                              \
                                                                              \
    for(i = 0;i < SamplesToDo;i++)                                            \
    {                                                                         \
        for(j = 0;j < N;j++)                                                  \
            *(buffer++) = func(DryBuffer[i][ChanMap[j]]);                     \
    }                                                                         \
}

DECL_TEMPLATE(ALfloat, 1, aluF2F)
DECL_TEMPLATE(ALfloat, 4, aluF2F)
DECL_TEMPLATE(ALfloat, 6, aluF2F)
DECL_TEMPLATE(ALfloat, 7, aluF2F)
DECL_TEMPLATE(ALfloat, 8, aluF2F)

DECL_TEMPLATE(ALuint, 1, aluF2UI)
DECL_TEMPLATE(ALuint, 4, aluF2UI)
DECL_TEMPLATE(ALuint, 6, aluF2UI)
DECL_TEMPLATE(ALuint, 7, aluF2UI)
DECL_TEMPLATE(ALuint, 8, aluF2UI)

DECL_TEMPLATE(ALint, 1, aluF2I)
DECL_TEMPLATE(ALint, 4, aluF2I)
DECL_TEMPLATE(ALint, 6, aluF2I)
DECL_TEMPLATE(ALint, 7, aluF2I)
DECL_TEMPLATE(ALint, 8, aluF2I)

DECL_TEMPLATE(ALushort, 1, aluF2US)
DECL_TEMPLATE(ALushort, 4, aluF2US)
DECL_TEMPLATE(ALushort, 6, aluF2US)
DECL_TEMPLATE(ALushort, 7, aluF2US)
DECL_TEMPLATE(ALushort, 8, aluF2US)

DECL_TEMPLATE(ALshort, 1, aluF2S)
DECL_TEMPLATE(ALshort, 4, aluF2S)
DECL_TEMPLATE(ALshort, 6, aluF2S)
DECL_TEMPLATE(ALshort, 7, aluF2S)
DECL_TEMPLATE(ALshort, 8, aluF2S)

DECL_TEMPLATE(ALubyte, 1, aluF2UB)
DECL_TEMPLATE(ALubyte, 4, aluF2UB)
DECL_TEMPLATE(ALubyte, 6, aluF2UB)
DECL_TEMPLATE(ALubyte, 7, aluF2UB)
DECL_TEMPLATE(ALubyte, 8, aluF2UB)

DECL_TEMPLATE(ALbyte, 1, aluF2B)
DECL_TEMPLATE(ALbyte, 4, aluF2B)
DECL_TEMPLATE(ALbyte, 6, aluF2B)
DECL_TEMPLATE(ALbyte, 7, aluF2B)
DECL_TEMPLATE(ALbyte, 8, aluF2B)

#undef DECL_TEMPLATE

#define DECL_TEMPLATE(T, N, func)                                             \
static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer,            \
                            ALuint SamplesToDo)                               \
{                                                                             \
    ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer;           \
    const enum Channel *ChanMap = device->DevChannels;                        \
    ALuint i, j;                                                              \
                                                                              \
    if(device->Bs2b)                                                          \
    {                                                                         \
        for(i = 0;i < SamplesToDo;i++)                                        \
        {                                                                     \
            float samples[2];                                                 \
            samples[0] = DryBuffer[i][ChanMap[0]];                            \
            samples[1] = DryBuffer[i][ChanMap[1]];                            \
            bs2b_cross_feed(device->Bs2b, samples);                           \
            *(buffer++) = func(samples[0]);                                   \
            *(buffer++) = func(samples[1]);                                   \
        }                                                                     \
    }                                                                         \
    else                                                                      \
    {                                                                         \
        for(i = 0;i < SamplesToDo;i++)                                        \
        {                                                                     \
            for(j = 0;j < N;j++)                                              \
                *(buffer++) = func(DryBuffer[i][ChanMap[j]]);                 \
        }                                                                     \
    }                                                                         \
}

DECL_TEMPLATE(ALfloat, 2, aluF2F)
DECL_TEMPLATE(ALuint, 2, aluF2UI)
DECL_TEMPLATE(ALint, 2, aluF2I)
DECL_TEMPLATE(ALushort, 2, aluF2US)
DECL_TEMPLATE(ALshort, 2, aluF2S)
DECL_TEMPLATE(ALubyte, 2, aluF2UB)
DECL_TEMPLATE(ALbyte, 2, aluF2B)

#undef DECL_TEMPLATE

#define DECL_TEMPLATE(T)                                                      \
static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo)       \
{                                                                             \
    switch(device->FmtChans)                                                  \
    {                                                                         \
        case DevFmtMono:                                                      \
            Write_##T##_1(device, buffer, SamplesToDo);                       \
            break;                                                            \
        case DevFmtStereo:                                                    \
            Write_##T##_2(device, buffer, SamplesToDo);                       \
            break;                                                            \
        case DevFmtQuad:                                                      \
            Write_##T##_4(device, buffer, SamplesToDo);                       \
            break;                                                            \
        case DevFmtX51:                                                       \
        case DevFmtX51Side:                                                   \
            Write_##T##_6(device, buffer, SamplesToDo);                       \
            break;                                                            \
        case DevFmtX61:                                                       \
            Write_##T##_7(device, buffer, SamplesToDo);                       \
            break;                                                            \
        case DevFmtX71:                                                       \
            Write_##T##_8(device, buffer, SamplesToDo);                       \
            break;                                                            \
    }                                                                         \
}

DECL_TEMPLATE(ALfloat)
DECL_TEMPLATE(ALuint)
DECL_TEMPLATE(ALint)
DECL_TEMPLATE(ALushort)
DECL_TEMPLATE(ALshort)
DECL_TEMPLATE(ALubyte)
DECL_TEMPLATE(ALbyte)

#undef DECL_TEMPLATE

ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
    ALuint SamplesToDo;
    ALeffectslot **slot, **slot_end;
    ALsource **src, **src_end;
    ALCcontext *ctx;
    int fpuState;
    ALuint i, c;

    fpuState = SetMixerFPUMode();

    while(size > 0)
    {
        /* Setup variables */
        SamplesToDo = minu(size, BUFFERSIZE);

        /* Clear mixing buffer */
        memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat));

        LockDevice(device);
        ctx = device->ContextList;
        while(ctx)
        {
            ALenum DeferUpdates = ctx->DeferUpdates;
            ALenum UpdateSources = AL_FALSE;

            if(!DeferUpdates)
                UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);

            src = ctx->ActiveSources;
            src_end = src + ctx->ActiveSourceCount;
            while(src != src_end)
            {
                if((*src)->state != AL_PLAYING)
                {
                    --(ctx->ActiveSourceCount);
                    *src = *(--src_end);
                    continue;
                }

                if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
                                     UpdateSources))
                    ALsource_Update(*src, ctx);

                MixSource(*src, device, SamplesToDo);
                src++;
            }

            /* effect slot processing */
            slot = ctx->ActiveEffectSlots;
            slot_end = slot + ctx->ActiveEffectSlotCount;
            while(slot != slot_end)
            {
                for(c = 0;c < SamplesToDo;c++)
                {
                    (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
                    (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
                }
                (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
                (*slot)->PendingClicks[0] = 0.0f;

                if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
                    ALeffectState_Update((*slot)->EffectState, ctx, *slot);

                ALeffectState_Process((*slot)->EffectState, SamplesToDo,
                                      (*slot)->WetBuffer, device->DryBuffer);

                for(i = 0;i < SamplesToDo;i++)
                    (*slot)->WetBuffer[i] = 0.0f;

                slot++;
            }

            ctx = ctx->next;
        }

        slot = &device->DefaultSlot;
        if(*slot != NULL)
        {
            for(c = 0;c < SamplesToDo;c++)
            {
                (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
                (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
            }
            (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
            (*slot)->PendingClicks[0] = 0.0f;

            if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
                ALeffectState_Update((*slot)->EffectState, ctx, *slot);

            ALeffectState_Process((*slot)->EffectState, SamplesToDo,
                                  (*slot)->WetBuffer, device->DryBuffer);

            for(i = 0;i < SamplesToDo;i++)
                (*slot)->WetBuffer[i] = 0.0f;
        }
        UnlockDevice(device);