| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
This helps the stability of transforms to local space for sources that are at
or near the listener. With a single-precision matrix, even FLT_EPSILON might
not be enough to detect matching positions.
|
|
|
|
|
|
|
|
| |
This is essentially a 12-point sinc resampler, unless it's resampling to a rate
higher than the output, at which point it will vary between 12 and 24 points
and do anti-aliasing to avoid/reduce frequencies going over nyquist.
Code provided by Christopher Fitzgerald.
|
|
|
|
| |
Also better handle the peaking filter gain.
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
This helps avoid different results when looping is toggled within a couple
samples of the loop point, or when a processed buffer is removed while the
source is only a couple samples into the next buffer.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
Note that this is the multiple above the device sample rate, rather than the
source property limit. It could theoretically be increased to 511 by testing
against UINT_MAX instead of INT_MAX, since the increment and positions are
using unsigned integers. I'm just being paranoid about overflows.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The sound localization with virtual channel mixing was just too poor, so while
it's more costly to do per-source HRTF mixing, it's unavoidable if you want
good localization.
This is only partially reverted because having the virtual channel is still
beneficial, particularly with B-Format rendering and effect mixing which
otherwise skip HRTF processing. As before, the number of virtual channels can
potentially be customized, specifying more or less channels depending on the
system's needs.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new method mixes sources normally into a 14-channel buffer with the
channels placed all around the listener. HRTF is then applied to the channels
given their positions and written to a 2-channel buffer, which gets written out
to the device.
This method has the benefit that HRTF processing becomes more scalable. The
costly HRTF filters are applied to the 14-channel buffer after the mix is done,
turning it into a post-process with a fixed overhead. Mixing sources is done
with normal non-HRTF methods, so increasing the number of playing sources only
incurs normal mixing costs.
Another benefit is that it improves B-Format playback since the soundfield gets
mixed into speakers covering all three dimensions, which then get filtered
based on their locations.
The main downside to this is that the spatial resolution of the HRTF dataset
does not play a big role anymore. However, the hope is that with ambisonics-
based panning, the perceptual position of panned sounds will still be good. It
is also an option to increase the number of virtual channels for systems that
can handle it, or maybe even decrease it for weaker systems.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Currently missing the AL_ORIENTATION source property. Gain stepping also does
not work.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For mono sources, third-order ambisonics is utilized to generate panning gains.
The general idea is that a panned mono sound can be encoded into b-format
ambisonics as:
w[i] = sample[i] * 0.7071;
x[i] = sample[i] * dir[0];
y[i] = sample[i] * dir[1];
...
and subsequently rendered using:
output[chan][i] = w[i] * w_coeffs[chan] +
x[i] * x_coeffs[chan] +
y[i] * y_coeffs[chan] +
...;
By reordering the math, channel gains can be generated by doing:
gain[chan] = 0.7071 * w_coeffs[chan] +
dir[0] * x_coeffs[chan] +
dir[1] * y_coeffs[chan] +
...;
which then get applied as normal:
output[chan][i] = sample[i] * gain[chan];
One of the reasons to use ambisonics for panning is that it provides arguably
better reproduction for sounds emanating from between two speakers. As well,
this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or
8-channel cube speaker configuration by simply providing the necessary
coefficients (this will need some work since some methods still use angle-based
panpot, particularly multi-channel sources).
Unfortunately, the math to reliably generate the coefficients for a given
speaker configuration is too costly to do at run-time. They have to be pre-
generated based on a pre-specified speaker arangement, which means the config
options for tweaking speaker angles are no longer supportable. Eventually I
hope to provide config options for custom coefficients, which can either be
generated and written in manually, or via alsoft-config from user-specified
speaker positions.
The current default set of coefficients were generated using the MATLAB scripts
(compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at
https://bitbucket.org/ambidecodertoolbox/adt/
|
| |
|
|
|
|
| |
Also only access the activesource's source field once per update.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Both resampling and filtering now avoid copying samples when they no-op.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|