| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change allows pair-wise panning to mostly go through the normal ambisonic
panning methods, with one special-case. First, a term is added to the stereo
decoder matrix's X coefficient so that a centered sound is reduced by -3dB on
each output channel. Panning in front creates a similar gain response to the
typical
L = sqrt(1-pan)
R = sqrt(pan)
for pan = [0,1]. Panning behind the listener can reduce (up to) an additional
-10dB, creating a audible difference between front and back sounds as if
simulating head obstruction.
Secondly, as a special-case, the source positions are warped when calculating
the ambisonic coefficients so that full left panning is reached at -30 degrees
and full right at +30 degrees. This is to retain the expected 60-degree stereo
width. This warping does not apply to B-Format buffer input, although it
otherwise has the same gain responses.
|
|
|
|
|
| |
Perf shows less than 1 percent CPU difference from the higher quality bsinc
resampler, but uses almost twice as much memory (a 128KB lookup table).
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
Unsigned 32-bit offsets actually have some potential overhead on 64-bit targets
for pointer/array accesses due to rules on integer wrapping. No idea how much
impact it has in practice, but it's nice to be correct about it.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
The combined source and listener gains now can't exceed a multiplier of 16
(~24dB). This is to avoid mixes getting out of control with large volume
boosts, which reduces the effective precision given by floating-point.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This necessitates a change in how source updates are handled. Rather than just
being able to update sources when a dependent object state is changed (e.g. a
listener gain change), now all source updates must be proactively provided.
Consequently, apps that do not utilize any deferring (AL_SOFT_defer_updates or
alcSuspendContext/alcProcessContext) may utilize more CPU since it'll be
filling out more update containers for the mixer thread to use.
The upside is that there's less blocking between the app's calling thread and
the mixer thread, particularly for vectors and other multi-value properties
(filters and sends). Deferring behavior when used is also improved, since
updates that shouldn't be applied yet are simply not provided. And when they
are provided, the mixer doesn't have to ignore them, meaning the actual
deferring of a context doesn't have to synchrnously force an update -- the
process call will send any pending updates, which the mixer will apply even if
another deferral occurs before the mixer runs, because it'll still be there
waiting on the next mixer invocation.
There is one slight bug introduced by this commit. When a listener change is
made, or changes to multiple sources while updates are being deferred, it is
possible for the mixer to run while the sources are prepping their updates,
causing some of the source updates to be seen before the other. This will be
fixed in short order.
|
| |
|
| |
|
|
|
|
|
|
| |
Instead of looping over all the coefficients for each channel with multiplies,
when we know only one will have a non-0 factor for ambisonic mixing buffers,
just index the one with a non-0 factor.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This uses a virtual B-Format buffer for mixing, and then uses a dual-band
decoder for improved positional quality. This currently only works with first-
order output since first-order input (from the AL_EXT_BFROMAT extension) would
not sound correct when fed through a second- or third-order decoder.
This also does not currently implement near-field compensation since near-field
rendering effects are not implemented.
|
| |
|
|
|
|
|
| |
This means we track the current params and the target params, rather than the
target params and the stepping. This closer matches the non-HRTF mixers.
|
| |
|
| |
|
|
|
|
|
|
| |
This mixes to a 4-channel first-order ambisonics buffer. With ACN ordering and
N3D scaling, this makes it easy to remain compatible with effects that only
care about mono input since channel 0 is an unattenuated mono signal.
|
| |
|
|
|
|
|
|
| |
This helps the stability of transforms to local space for sources that are at
or near the listener. With a single-precision matrix, even FLT_EPSILON might
not be enough to detect matching positions.
|
|
|
|
|
|
|
|
| |
This is essentially a 12-point sinc resampler, unless it's resampling to a rate
higher than the output, at which point it will vary between 12 and 24 points
and do anti-aliasing to avoid/reduce frequencies going over nyquist.
Code provided by Christopher Fitzgerald.
|
|
|
|
| |
Also better handle the peaking filter gain.
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
This helps avoid different results when looping is toggled within a couple
samples of the loop point, or when a processed buffer is removed while the
source is only a couple samples into the next buffer.
|