| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
The write method already checks and returns how much it managed to fit in.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Also don't send the Disconnected event more than once.
|
| |
|
| |
|
|
|
|
|
|
|
| |
They're inherently protected by the mutex for their respective lists. Should
those mutexes be replaced by rwlocks the individual locks should also be
reinstated, but they're unlikely to be unless a lot of contention starts
happening in the read-only case.
|
|
|
|
| |
For more efficient voice lookups when needed.
|
|
|
|
|
| |
Unfortunately does not include the Lookup* functions, which need the full type
declaration to offset the pointer.
|
| |
|
| |
|
|
|
|
| |
And make the ID a simple index into it (1-base, to avoid ID 0).
|
|
|
|
|
| |
This is now similar to buffers, being stored in groups of 64 in a vector with
the ID providing the array indices.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rather than each buffer being individually allocated with a generated 'thunk'
ID that's used with a uint:ptr map, buffers are allocated in arrays of 64
within a vector. Each group of 64 has an associated 64-bit mask indicating
which are free to use, and the buffer ID is comprised of the two array indices
which directly locate the buffer (no searching, binary or otherwise).
Currently no buffers are actually deallocated after being allocated, though
they are reused. So an app that creates a ton of buffers once, then deletes
them all and uses only a couple from then on, will have a bit of waste, while
an app that's more consistent with the number of used buffers won't be a
problem. This can be improved by removing elements of the containing vector
that contain all-free buffers while there are plenty of other free buffers.
Also, this method can easily be applied to other resources, like sources.
|
| |
|
| |
|
|
|
|
|
| |
Most errors don't yet provide correct object IDs or text messages for the AL
error.
|
|
|
|
| |
And a function to "flush" a mapped buffer
|
|
|
|
|
| |
Don't bother with unnecessary and unused converters, and remove some
unsupported queries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Requires the MAP_READ_BIT or MAP_WRITE_BIT flags to be OR'd with the format
upon a call to alBufferData, to enable mappable storage for the given access
types. This will fail if the format requires internal conversion and doesn't
resemble the original input data, so the app can be guaranteed the size, type,
and layout of the original data is the same as what's in storage.
Then alMapBufferSOFT may be called with appropriate bit flags to get a readable
and/or writable pointer to the buffer's sample storage. alUnmapBufferSOFT must
be called when access is finished. It is currently invalid to map a buffer that
is attached to a source, or to attach a buffer to a source that is currently
mapped. This restriction may be eased in the future, at least to allow read-
only access while in use (perhaps also to allow writing, if coherency can be
achieved).
Currently the access flags occupy the upper 8 bits of a 32-bit bitfield to
avoid clashing with format enum values, which don't use more than 16 or 17
bits. This means any future formats are limited to 24-bit enum values, and also
means only 8 flags are possible when declaring storage. The alternative would
be to add a new function (alBufferStorage?) with a separate flags parameter.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This will be to allow buffer layering, multiple buffers of the same format and
sample rate that are mixed together prior to resampling, filtering, and
panning. This will allow composing sounds from individual components that can
be swapped around on different invocations (e.g. layer SoundA and SoundB on one
instance and SoundA and SoundC on a different instance for a slightly different
sound, then just SoundA for a third instance, and so on). The longest buffer
within the list item determines the length of the list item.
More work needs to be done to fully support it, namely the ability to specity
multiple buffers to layer for static and streaming sources. Also the behavior
of loop points for layered static sources should be worked out. Should also
consider allowing each layer to have a sample offset.
|
| |
|
|
|
|
|
| |
Also keep all free property update structs together in the context instead of
per-object.
|
|
|
|
|
|
|
|
| |
This needs to be handled more automatically by the mixer to work correctly.
Otherwise, requiring a property update on resume can put the source into a
playing state with the mixer never playing it, due to not having valid mixing
parameters and the mixing parameters not getting calculated because no updates
are specified by the app (and forcing an update can break deferred updates).
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
Clang does not allow using C11's atomic_load on const _Atomic variables.
Previously it just disabled use of C11 atomics if atomic_load didn't work on a
const _Atomic variable, but I think I'd prefer to have Clang use C11 atomics
for the added features (more explicit memory ordering) even if it means a few
instances of breaking const.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This removes the need to access a couple more source fields in the mixer, and
also makes the looping and queue fields non-atomic.
|
|
|
|
| |
Also move its declaration and rename it for consistency.
|
| |
|
| |
|