| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Designed for apps that either don't change the listener's AL_GAIN, or don't
allow the listener's AL_GAIN to go above 1. This allows the volume to still be
increased further than such apps may allow, if users find it too quiet.
Be aware that increasing this can easily cause clipping. The gain limit
reported by AL_GAIN_LIMIT_SOFT is also affected by this.
|
| |
|
|
|
|
|
|
| |
It's the only implementation currently, so there's no point to having it stored
as a function pointer in the filter struct. Even if there were SIMD versions,
it'd be a global selection, not per-instance.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
No idea if it was really gaining us anything, but removing it fixes a crash I
was getting with libs built with Clang.
|
| |
|
| |
|
|
|
|
| |
They were causing GCC's built-in atomic cmpxchg to complain.
|
|
|
|
| |
To help avoid redundant manual definitions.
|
| |
|
|
|
|
| |
As per the current AL_SOFT_gain_clamp_ex proposal.
|
| |
|
|
|
|
|
|
| |
The combined source and listener gains now can't exceed a multiplier of 16
(~24dB). This is to avoid mixes getting out of control with large volume
boosts, which reduces the effective precision given by floating-point.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This appears to be how Creative's Windows drivers handle it, and is necessary
for at least the Windows version of UT2k4 (otherwise it tries to play a source
while suspended, checks and sees it's stopped, then kills it before it's given
a chance to start playing).
Consequently, the internal properties it gets mixed with are determined by what
the source properties are at the time of the play call, and the listener
properties at the time of the suspend call.
This does not change alDeferUpdatesSOFT, which will still hold the play state
change until alProcessUpdatesSOFT.
|
| |
|
|
|
|
|
|
|
|
| |
Note that this now also causes all playing sources to update when an effect
slot is updated. This is a bit wasteful, as it should only need to re-update
sources that are using the effect slot (and only when a relevant property is
changed), but it's good enough. Especially with deferring since all playing
sources are going to get updated on the process call anyway.
|
|
|
|
|
|
|
|
| |
This allows us to not have to play around with trying to avoid duplicate state
pointers, since the reference count will ensure they're deleted as appropriate.
The only caveat is that the mixer is not allowed to decrement references, since
that can cause the object to be freed (which the mixer code is not allowed to
do).
|
|
|
|
|
| |
This is mostly just reorganizing the effects to call the Construct method which
initializes the ref count.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
The source's voice holds a copy of the last properties it received, so listener
updates can make sources recalculate internal properties from that stored copy.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Last time this attempted to average the HRIRs according to their contribution
to a given B-Format channel as if they were loudspeakers, as well as averaging
the HRIR delays. The latter part resulted in the loss of the ITD (inter-aural
time delay), a key component of HRTF.
This time, the HRIRs are averaged similar to above, except instead of averaging
the delays, they're applied to the resulting coefficients (for example, a delay
of 8 would apply the HRIR starting at the 8th sample of the target HRIR). This
does roughly double the IR length, as the largest delay is about 35 samples
while the filter is normally 32 samples. However, this is still smaller the
original data set IR (which was 256 samples), it also only needs to be applied
to 4 channels for first-order ambisonics, rather than the 8-channel cube. So
it's doing twice as much work per sample, but only working on half the number
of samples.
Additionally, since the resulting HRIRs no longer rely on an extra delay line,
a more efficient HRTF mixing function can be made that doesn't use one. Such a
function can also avoid the per-sample stepping parameters the original uses.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Certain operations on the buffer queue depend on the loop state to behave
properly, so it should not be deferred until the async voice update occurs.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Currently incomplete, as second- and third-order output will not correctly
handle B-Format input buffers. A standalone up-sampler will be needed, similar
to the high-quality decoder.
Also, output is ACN ordering with SN3D normalization. A config option will
eventually be provided to change this if desired.
|
| |
|
| |
|
|
|
|
|
| |
It's been disabled forever, and I have no idea how to make it work properly.
Better to just redo it when making something that works.
|
| |
|
| |
|
|
|
|
|
| |
This value should be enough to hold IDs for most apps without needing to
reallocate it, while not being unnecessarily large (4KB).
|
| |
|
| |
|
| |
|
| |
|