/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "version.h" #include #include #include #include #include #include #include "alMain.h" #include "alSource.h" #include "alListener.h" #include "alThunk.h" #include "alSource.h" #include "alBuffer.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "bformatdec.h" #include "alu.h" #include "compat.h" #include "threads.h" #include "alstring.h" #include "almalloc.h" #include "backends/base.h" /************************************************ * Backends ************************************************/ struct BackendInfo { const char *name; ALCbackendFactory* (*getFactory)(void); ALCboolean (*Init)(BackendFuncs*); void (*Deinit)(void); void (*Probe)(enum DevProbe); BackendFuncs Funcs; }; #define EmptyFuncs { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL } static struct BackendInfo BackendList[] = { #ifdef HAVE_JACK { "jack", ALCjackBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_PULSEAUDIO { "pulse", ALCpulseBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_ALSA { "alsa", ALCalsaBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_COREAUDIO { "core", NULL, alc_ca_init, alc_ca_deinit, alc_ca_probe, EmptyFuncs }, #endif #ifdef HAVE_OSS { "oss", ALCossBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_SOLARIS { "solaris", ALCsolarisBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_SNDIO { "sndio", ALCsndioBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_QSA { "qsa", NULL, alc_qsa_init, alc_qsa_deinit, alc_qsa_probe, EmptyFuncs }, #endif #ifdef HAVE_MMDEVAPI { "mmdevapi", ALCmmdevBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_DSOUND { "dsound", ALCdsoundBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_WINMM { "winmm", ALCwinmmBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_PORTAUDIO { "port", ALCportBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif #ifdef HAVE_OPENSL { "opensl", ALCopenslBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif { "null", ALCnullBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #ifdef HAVE_WAVE { "wave", ALCwaveBackendFactory_getFactory, NULL, NULL, NULL, EmptyFuncs }, #endif { NULL, NULL, NULL, NULL, NULL, EmptyFuncs } }; #undef EmptyFuncs static struct BackendInfo PlaybackBackend; static struct BackendInfo CaptureBackend; /************************************************ * Functions, enums, and errors ************************************************/ typedef struct ALCfunction { const ALCchar *funcName; ALCvoid *address; } ALCfunction; typedef struct ALCenums { const ALCchar *enumName; ALCenum value; } ALCenums; #define DECL(x) { #x, (ALCvoid*)(x) } static const ALCfunction alcFunctions[] = { DECL(alcCreateContext), DECL(alcMakeContextCurrent), DECL(alcProcessContext), DECL(alcSuspendContext), DECL(alcDestroyContext), DECL(alcGetCurrentContext), DECL(alcGetContextsDevice), DECL(alcOpenDevice), DECL(alcCloseDevice), DECL(alcGetError), DECL(alcIsExtensionPresent), DECL(alcGetProcAddress), DECL(alcGetEnumValue), DECL(alcGetString), DECL(alcGetIntegerv), DECL(alcCaptureOpenDevice), DECL(alcCaptureCloseDevice), DECL(alcCaptureStart), DECL(alcCaptureStop), DECL(alcCaptureSamples), DECL(alcSetThreadContext), DECL(alcGetThreadContext), DECL(alcLoopbackOpenDeviceSOFT), DECL(alcIsRenderFormatSupportedSOFT), DECL(alcRenderSamplesSOFT), DECL(alcDevicePauseSOFT), DECL(alcDeviceResumeSOFT), DECL(alcGetStringiSOFT), DECL(alcResetDeviceSOFT), DECL(alcGetInteger64vSOFT), DECL(alEnable), DECL(alDisable), DECL(alIsEnabled), DECL(alGetString), DECL(alGetBooleanv), DECL(alGetIntegerv), DECL(alGetFloatv), DECL(alGetDoublev), DECL(alGetBoolean), DECL(alGetInteger), DECL(alGetFloat), DECL(alGetDouble), DECL(alGetError), DECL(alIsExtensionPresent), DECL(alGetProcAddress), DECL(alGetEnumValue), DECL(alListenerf), DECL(alListener3f), DECL(alListenerfv), DECL(alListeneri), DECL(alListener3i), DECL(alListeneriv), DECL(alGetListenerf), DECL(alGetListener3f), DECL(alGetListenerfv), DECL(alGetListeneri), DECL(alGetListener3i), DECL(alGetListeneriv), DECL(alGenSources), DECL(alDeleteSources), DECL(alIsSource), DECL(alSourcef), DECL(alSource3f), DECL(alSourcefv), DECL(alSourcei), DECL(alSource3i), DECL(alSourceiv), DECL(alGetSourcef), DECL(alGetSource3f), DECL(alGetSourcefv), DECL(alGetSourcei), DECL(alGetSource3i), DECL(alGetSourceiv), DECL(alSourcePlayv), DECL(alSourceStopv), DECL(alSourceRewindv), DECL(alSourcePausev), DECL(alSourcePlay), DECL(alSourceStop), DECL(alSourceRewind), DECL(alSourcePause), DECL(alSourceQueueBuffers), DECL(alSourceUnqueueBuffers), DECL(alGenBuffers), DECL(alDeleteBuffers), DECL(alIsBuffer), DECL(alBufferData), DECL(alBufferf), DECL(alBuffer3f), DECL(alBufferfv), DECL(alBufferi), DECL(alBuffer3i), DECL(alBufferiv), DECL(alGetBufferf), DECL(alGetBuffer3f), DECL(alGetBufferfv), DECL(alGetBufferi), DECL(alGetBuffer3i), DECL(alGetBufferiv), DECL(alDopplerFactor), DECL(alDopplerVelocity), DECL(alSpeedOfSound), DECL(alDistanceModel), DECL(alGenFilters), DECL(alDeleteFilters), DECL(alIsFilter), DECL(alFilteri), DECL(alFilteriv), DECL(alFilterf), DECL(alFilterfv), DECL(alGetFilteri), DECL(alGetFilteriv), DECL(alGetFilterf), DECL(alGetFilterfv), DECL(alGenEffects), DECL(alDeleteEffects), DECL(alIsEffect), DECL(alEffecti), DECL(alEffectiv), DECL(alEffectf), DECL(alEffectfv), DECL(alGetEffecti), DECL(alGetEffectiv), DECL(alGetEffectf), DECL(alGetEffectfv), DECL(alGenAuxiliaryEffectSlots), DECL(alDeleteAuxiliaryEffectSlots), DECL(alIsAuxiliaryEffectSlot), DECL(alAuxiliaryEffectSloti), DECL(alAuxiliaryEffectSlotiv), DECL(alAuxiliaryEffectSlotf), DECL(alAuxiliaryEffectSlotfv), DECL(alGetAuxiliaryEffectSloti), DECL(alGetAuxiliaryEffectSlotiv), DECL(alGetAuxiliaryEffectSlotf), DECL(alGetAuxiliaryEffectSlotfv), DECL(alDeferUpdatesSOFT), DECL(alProcessUpdatesSOFT), DECL(alSourcedSOFT), DECL(alSource3dSOFT), DECL(alSourcedvSOFT), DECL(alGetSourcedSOFT), DECL(alGetSource3dSOFT), DECL(alGetSourcedvSOFT), DECL(alSourcei64SOFT), DECL(alSource3i64SOFT), DECL(alSourcei64vSOFT), DECL(alGetSourcei64SOFT), DECL(alGetSource3i64SOFT), DECL(alGetSourcei64vSOFT), DECL(alBufferSamplesSOFT), DECL(alGetBufferSamplesSOFT), DECL(alIsBufferFormatSupportedSOFT), { NULL, NULL } }; #undef DECL #define DECL(x) { #x, (x) } static const ALCenums enumeration[] = { DECL(ALC_INVALID), DECL(ALC_FALSE), DECL(ALC_TRUE), DECL(ALC_MAJOR_VERSION), DECL(ALC_MINOR_VERSION), DECL(ALC_ATTRIBUTES_SIZE), DECL(ALC_ALL_ATTRIBUTES), DECL(ALC_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_DEVICE_SPECIFIER), DECL(ALC_ALL_DEVICES_SPECIFIER), DECL(ALC_DEFAULT_ALL_DEVICES_SPECIFIER), DECL(ALC_EXTENSIONS), DECL(ALC_FREQUENCY), DECL(ALC_REFRESH), DECL(ALC_SYNC), DECL(ALC_MONO_SOURCES), DECL(ALC_STEREO_SOURCES), DECL(ALC_CAPTURE_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_SAMPLES), DECL(ALC_CONNECTED), DECL(ALC_EFX_MAJOR_VERSION), DECL(ALC_EFX_MINOR_VERSION), DECL(ALC_MAX_AUXILIARY_SENDS), DECL(ALC_FORMAT_CHANNELS_SOFT), DECL(ALC_FORMAT_TYPE_SOFT), DECL(ALC_MONO_SOFT), DECL(ALC_STEREO_SOFT), DECL(ALC_QUAD_SOFT), DECL(ALC_5POINT1_SOFT), DECL(ALC_6POINT1_SOFT), DECL(ALC_7POINT1_SOFT), DECL(ALC_BYTE_SOFT), DECL(ALC_UNSIGNED_BYTE_SOFT), DECL(ALC_SHORT_SOFT), DECL(ALC_UNSIGNED_SHORT_SOFT), DECL(ALC_INT_SOFT), DECL(ALC_UNSIGNED_INT_SOFT), DECL(ALC_FLOAT_SOFT), DECL(ALC_HRTF_SOFT), DECL(ALC_DONT_CARE_SOFT), DECL(ALC_HRTF_STATUS_SOFT), DECL(ALC_HRTF_DISABLED_SOFT), DECL(ALC_HRTF_ENABLED_SOFT), DECL(ALC_HRTF_DENIED_SOFT), DECL(ALC_HRTF_REQUIRED_SOFT), DECL(ALC_HRTF_HEADPHONES_DETECTED_SOFT), DECL(ALC_HRTF_UNSUPPORTED_FORMAT_SOFT), DECL(ALC_NUM_HRTF_SPECIFIERS_SOFT), DECL(ALC_HRTF_SPECIFIER_SOFT), DECL(ALC_HRTF_ID_SOFT), DECL(ALC_NO_ERROR), DECL(ALC_INVALID_DEVICE), DECL(ALC_INVALID_CONTEXT), DECL(ALC_INVALID_ENUM), DECL(ALC_INVALID_VALUE), DECL(ALC_OUT_OF_MEMORY), DECL(AL_INVALID), DECL(AL_NONE), DECL(AL_FALSE), DECL(AL_TRUE), DECL(AL_SOURCE_RELATIVE), DECL(AL_CONE_INNER_ANGLE), DECL(AL_CONE_OUTER_ANGLE), DECL(AL_PITCH), DECL(AL_POSITION), DECL(AL_DIRECTION), DECL(AL_VELOCITY), DECL(AL_LOOPING), DECL(AL_BUFFER), DECL(AL_GAIN), DECL(AL_MIN_GAIN), DECL(AL_MAX_GAIN), DECL(AL_ORIENTATION), DECL(AL_REFERENCE_DISTANCE), DECL(AL_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAIN), DECL(AL_MAX_DISTANCE), DECL(AL_SEC_OFFSET), DECL(AL_SAMPLE_OFFSET), DECL(AL_BYTE_OFFSET), DECL(AL_SOURCE_TYPE), DECL(AL_STATIC), DECL(AL_STREAMING), DECL(AL_UNDETERMINED), DECL(AL_METERS_PER_UNIT), DECL(AL_LOOP_POINTS_SOFT), DECL(AL_DIRECT_CHANNELS_SOFT), DECL(AL_DIRECT_FILTER), DECL(AL_AUXILIARY_SEND_FILTER), DECL(AL_AIR_ABSORPTION_FACTOR), DECL(AL_ROOM_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAINHF), DECL(AL_DIRECT_FILTER_GAINHF_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAIN_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAINHF_AUTO), DECL(AL_SOURCE_STATE), DECL(AL_INITIAL), DECL(AL_PLAYING), DECL(AL_PAUSED), DECL(AL_STOPPED), DECL(AL_BUFFERS_QUEUED), DECL(AL_BUFFERS_PROCESSED), DECL(AL_FORMAT_MONO8), DECL(AL_FORMAT_MONO16), DECL(AL_FORMAT_MONO_FLOAT32), DECL(AL_FORMAT_MONO_DOUBLE_EXT), DECL(AL_FORMAT_STEREO8), DECL(AL_FORMAT_STEREO16), DECL(AL_FORMAT_STEREO_FLOAT32), DECL(AL_FORMAT_STEREO_DOUBLE_EXT), DECL(AL_FORMAT_MONO_IMA4), DECL(AL_FORMAT_STEREO_IMA4), DECL(AL_FORMAT_MONO_MSADPCM_SOFT), DECL(AL_FORMAT_STEREO_MSADPCM_SOFT), DECL(AL_FORMAT_QUAD8_LOKI), DECL(AL_FORMAT_QUAD16_LOKI), DECL(AL_FORMAT_QUAD8), DECL(AL_FORMAT_QUAD16), DECL(AL_FORMAT_QUAD32), DECL(AL_FORMAT_51CHN8), DECL(AL_FORMAT_51CHN16), DECL(AL_FORMAT_51CHN32), DECL(AL_FORMAT_61CHN8), DECL(AL_FORMAT_61CHN16), DECL(AL_FORMAT_61CHN32), DECL(AL_FORMAT_71CHN8), DECL(AL_FORMAT_71CHN16), DECL(AL_FORMAT_71CHN32), DECL(AL_FORMAT_REAR8), DECL(AL_FORMAT_REAR16), DECL(AL_FORMAT_REAR32), DECL(AL_FORMAT_MONO_MULAW), DECL(AL_FORMAT_MONO_MULAW_EXT), DECL(AL_FORMAT_STEREO_MULAW), DECL(AL_FORMAT_STEREO_MULAW_EXT), DECL(AL_FORMAT_QUAD_MULAW), DECL(AL_FORMAT_51CHN_MULAW), DECL(AL_FORMAT_61CHN_MULAW), DECL(AL_FORMAT_71CHN_MULAW), DECL(AL_FORMAT_REAR_MULAW), DECL(AL_FORMAT_MONO_ALAW_EXT), DECL(AL_FORMAT_STEREO_ALAW_EXT), DECL(AL_FORMAT_BFORMAT2D_8), DECL(AL_FORMAT_BFORMAT2D_16), DECL(AL_FORMAT_BFORMAT2D_FLOAT32), DECL(AL_FORMAT_BFORMAT2D_MULAW), DECL(AL_FORMAT_BFORMAT3D_8), DECL(AL_FORMAT_BFORMAT3D_16), DECL(AL_FORMAT_BFORMAT3D_FLOAT32), DECL(AL_FORMAT_BFORMAT3D_MULAW), DECL(AL_MONO8_SOFT), DECL(AL_MONO16_SOFT), DECL(AL_MONO32F_SOFT), DECL(AL_STEREO8_SOFT), DECL(AL_STEREO16_SOFT), DECL(AL_STEREO32F_SOFT), DECL(AL_QUAD8_SOFT), DECL(AL_QUAD16_SOFT), DECL(AL_QUAD32F_SOFT), DECL(AL_REAR8_SOFT), DECL(AL_REAR16_SOFT), DECL(AL_REAR32F_SOFT), DECL(AL_5POINT1_8_SOFT), DECL(AL_5POINT1_16_SOFT), DECL(AL_5POINT1_32F_SOFT), DECL(AL_6POINT1_8_SOFT), DECL(AL_6POINT1_16_SOFT), DECL(AL_6POINT1_32F_SOFT), DECL(AL_7POINT1_8_SOFT), DECL(AL_7POINT1_16_SOFT), DECL(AL_7POINT1_32F_SOFT), DECL(AL_BFORMAT2D_8_SOFT), DECL(AL_BFORMAT2D_16_SOFT), DECL(AL_BFORMAT2D_32F_SOFT), DECL(AL_BFORMAT3D_8_SOFT), DECL(AL_BFORMAT3D_16_SOFT), DECL(AL_BFORMAT3D_32F_SOFT), DECL(AL_MONO_SOFT), DECL(AL_STEREO_SOFT), DECL(AL_QUAD_SOFT), DECL(AL_REAR_SOFT), DECL(AL_5POINT1_SOFT), DECL(AL_6POINT1_SOFT), DECL(AL_7POINT1_SOFT), DECL(AL_BFORMAT2D_SOFT), DECL(AL_BFORMAT3D_SOFT), DECL(AL_BYTE_SOFT), DECL(AL_UNSIGNED_BYTE_SOFT), DECL(AL_SHORT_SOFT), DECL(AL_UNSIGNED_SHORT_SOFT), DECL(AL_INT_SOFT), DECL(AL_UNSIGNED_INT_SOFT), DECL(AL_FLOAT_SOFT), DECL(AL_DOUBLE_SOFT), DECL(AL_BYTE3_SOFT), DECL(AL_UNSIGNED_BYTE3_SOFT), DECL(AL_MULAW_SOFT), DECL(AL_FREQUENCY), DECL(AL_BITS), DECL(AL_CHANNELS), DECL(AL_SIZE), DECL(AL_INTERNAL_FORMAT_SOFT), DECL(AL_BYTE_LENGTH_SOFT), DECL(AL_SAMPLE_LENGTH_SOFT), DECL(AL_SEC_LENGTH_SOFT), DECL(AL_UNPACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_PACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_SOURCE_RADIUS), DECL(AL_STEREO_ANGLES), DECL(AL_UNUSED), DECL(AL_PENDING), DECL(AL_PROCESSED), DECL(AL_NO_ERROR), DECL(AL_INVALID_NAME), DECL(AL_INVALID_ENUM), DECL(AL_INVALID_VALUE), DECL(AL_INVALID_OPERATION), DECL(AL_OUT_OF_MEMORY), DECL(AL_VENDOR), DECL(AL_VERSION), DECL(AL_RENDERER), DECL(AL_EXTENSIONS), DECL(AL_DOPPLER_FACTOR), DECL(AL_DOPPLER_VELOCITY), DECL(AL_DISTANCE_MODEL), DECL(AL_SPEED_OF_SOUND), DECL(AL_SOURCE_DISTANCE_MODEL), DECL(AL_DEFERRED_UPDATES_SOFT), DECL(AL_GAIN_LIMIT_SOFT), DECL(AL_INVERSE_DISTANCE), DECL(AL_INVERSE_DISTANCE_CLAMPED), DECL(AL_LINEAR_DISTANCE), DECL(AL_LINEAR_DISTANCE_CLAMPED), DECL(AL_EXPONENT_DISTANCE), DECL(AL_EXPONENT_DISTANCE_CLAMPED), DECL(AL_FILTER_TYPE), DECL(AL_FILTER_NULL), DECL(AL_FILTER_LOWPASS), DECL(AL_FILTER_HIGHPASS), DECL(AL_FILTER_BANDPASS), DECL(AL_LOWPASS_GAIN), DECL(AL_LOWPASS_GAINHF), DECL(AL_HIGHPASS_GAIN), DECL(AL_HIGHPASS_GAINLF), DECL(AL_BANDPASS_GAIN), DECL(AL_BANDPASS_GAINHF), DECL(AL_BANDPASS_GAINLF), DECL(AL_EFFECT_TYPE), DECL(AL_EFFECT_NULL), DECL(AL_EFFECT_REVERB), DECL(AL_EFFECT_EAXREVERB), DECL(AL_EFFECT_CHORUS), DECL(AL_EFFECT_DISTORTION), DECL(AL_EFFECT_ECHO), DECL(AL_EFFECT_FLANGER), #if 0 DECL(AL_EFFECT_FREQUENCY_SHIFTER), DECL(AL_EFFECT_VOCAL_MORPHER), DECL(AL_EFFECT_PITCH_SHIFTER), #endif DECL(AL_EFFECT_RING_MODULATOR), #if 0 DECL(AL_EFFECT_AUTOWAH), #endif DECL(AL_EFFECT_COMPRESSOR), DECL(AL_EFFECT_EQUALIZER), DECL(AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT), DECL(AL_EFFECT_DEDICATED_DIALOGUE), DECL(AL_EFFECTSLOT_EFFECT), DECL(AL_EFFECTSLOT_GAIN), DECL(AL_EFFECTSLOT_AUXILIARY_SEND_AUTO), DECL(AL_EFFECTSLOT_NULL), DECL(AL_EAXREVERB_DENSITY), DECL(AL_EAXREVERB_DIFFUSION), DECL(AL_EAXREVERB_GAIN), DECL(AL_EAXREVERB_GAINHF), DECL(AL_EAXREVERB_GAINLF), DECL(AL_EAXREVERB_DECAY_TIME), DECL(AL_EAXREVERB_DECAY_HFRATIO), DECL(AL_EAXREVERB_DECAY_LFRATIO), DECL(AL_EAXREVERB_REFLECTIONS_GAIN), DECL(AL_EAXREVERB_REFLECTIONS_DELAY), DECL(AL_EAXREVERB_REFLECTIONS_PAN), DECL(AL_EAXREVERB_LATE_REVERB_GAIN), DECL(AL_EAXREVERB_LATE_REVERB_DELAY), DECL(AL_EAXREVERB_LATE_REVERB_PAN), DECL(AL_EAXREVERB_ECHO_TIME), DECL(AL_EAXREVERB_ECHO_DEPTH), DECL(AL_EAXREVERB_MODULATION_TIME), DECL(AL_EAXREVERB_MODULATION_DEPTH), DECL(AL_EAXREVERB_AIR_ABSORPTION_GAINHF), DECL(AL_EAXREVERB_HFREFERENCE), DECL(AL_EAXREVERB_LFREFERENCE), DECL(AL_EAXREVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_EAXREVERB_DECAY_HFLIMIT), DECL(AL_REVERB_DENSITY), DECL(AL_REVERB_DIFFUSION), DECL(AL_REVERB_GAIN), DECL(AL_REVERB_GAINHF), DECL(AL_REVERB_DECAY_TIME), DECL(AL_REVERB_DECAY_HFRATIO), DECL(AL_REVERB_REFLECTIONS_GAIN), DECL(AL_REVERB_REFLECTIONS_DELAY), DECL(AL_REVERB_LATE_REVERB_GAIN), DECL(AL_REVERB_LATE_REVERB_DELAY), DECL(AL_REVERB_AIR_ABSORPTION_GAINHF), DECL(AL_REVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_REVERB_DECAY_HFLIMIT), DECL(AL_CHORUS_WAVEFORM), DECL(AL_CHORUS_PHASE), DECL(AL_CHORUS_RATE), DECL(AL_CHORUS_DEPTH), DECL(AL_CHORUS_FEEDBACK), DECL(AL_CHORUS_DELAY), DECL(AL_DISTORTION_EDGE), DECL(AL_DISTORTION_GAIN), DECL(AL_DISTORTION_LOWPASS_CUTOFF), DECL(AL_DISTORTION_EQCENTER), DECL(AL_DISTORTION_EQBANDWIDTH), DECL(AL_ECHO_DELAY), DECL(AL_ECHO_LRDELAY), DECL(AL_ECHO_DAMPING), DECL(AL_ECHO_FEEDBACK), DECL(AL_ECHO_SPREAD), DECL(AL_FLANGER_WAVEFORM), DECL(AL_FLANGER_PHASE), DECL(AL_FLANGER_RATE), DECL(AL_FLANGER_DEPTH), DECL(AL_FLANGER_FEEDBACK), DECL(AL_FLANGER_DELAY), DECL(AL_RING_MODULATOR_FREQUENCY), DECL(AL_RING_MODULATOR_HIGHPASS_CUTOFF), DECL(AL_RING_MODULATOR_WAVEFORM), DECL(AL_COMPRESSOR_ONOFF), DECL(AL_EQUALIZER_LOW_GAIN), DECL(AL_EQUALIZER_LOW_CUTOFF), DECL(AL_EQUALIZER_MID1_GAIN), DECL(AL_EQUALIZER_MID1_CENTER), DECL(AL_EQUALIZER_MID1_WIDTH), DECL(AL_EQUALIZER_MID2_GAIN), DECL(AL_EQUALIZER_MID2_CENTER), DECL(AL_EQUALIZER_MID2_WIDTH), DECL(AL_EQUALIZER_HIGH_GAIN), DECL(AL_EQUALIZER_HIGH_CUTOFF), DECL(AL_DEDICATED_GAIN), { NULL, (ALCenum)0 } }; #undef DECL static const ALCchar alcNoError[] = "No Error"; static const ALCchar alcErrInvalidDevice[] = "Invalid Device"; static const ALCchar alcErrInvalidContext[] = "Invalid Context"; static const ALCchar alcErrInvalidEnum[] = "Invalid Enum"; static const ALCchar alcErrInvalidValue[] = "Invalid Value"; static const ALCchar alcErrOutOfMemory[] = "Out of Memory"; /************************************************ * Global variables ************************************************/ /* Enumerated device names */ static const ALCchar alcDefaultName[] = "OpenAL Soft\0"; static al_string alcAllDevicesList; static al_string alcCaptureDeviceList; /* Default is always the first in the list */ static ALCchar *alcDefaultAllDevicesSpecifier; static ALCchar *alcCaptureDefaultDeviceSpecifier; /* Default context extensions */ static const ALchar alExtList[] = "AL_EXT_ALAW AL_EXT_BFORMAT AL_EXT_DOUBLE AL_EXT_EXPONENT_DISTANCE " "AL_EXT_FLOAT32 AL_EXT_IMA4 AL_EXT_LINEAR_DISTANCE AL_EXT_MCFORMATS " "AL_EXT_MULAW AL_EXT_MULAW_BFORMAT AL_EXT_MULAW_MCFORMATS AL_EXT_OFFSET " "AL_EXT_source_distance_model AL_EXT_SOURCE_RADIUS AL_EXT_STEREO_ANGLES " "AL_LOKI_quadriphonic AL_SOFT_block_alignment AL_SOFT_deferred_updates " "AL_SOFT_direct_channels AL_SOFT_gain_clamp_ex AL_SOFT_loop_points " "AL_SOFT_MSADPCM AL_SOFT_source_latency AL_SOFT_source_length"; static ATOMIC(ALCenum) LastNullDeviceError = ATOMIC_INIT_STATIC(ALC_NO_ERROR); /* Thread-local current context */ static altss_t LocalContext; /* Process-wide current context */ static ATOMIC(ALCcontext*) GlobalContext = ATOMIC_INIT_STATIC(NULL); /* Mixing thread piority level */ ALint RTPrioLevel; FILE *LogFile; #ifdef _DEBUG enum LogLevel LogLevel = LogWarning; #else enum LogLevel LogLevel = LogError; #endif /* Flag to trap ALC device errors */ static ALCboolean TrapALCError = ALC_FALSE; /* One-time configuration init control */ static alonce_flag alc_config_once = AL_ONCE_FLAG_INIT; /* Default effect that applies to sources that don't have an effect on send 0 */ static ALeffect DefaultEffect; /* Flag to specify if alcSuspendContext/alcProcessContext should defer/process * updates. */ static ALCboolean SuspendDefers = ALC_TRUE; /************************************************ * ALC information ************************************************/ static const ALCchar alcNoDeviceExtList[] = "ALC_ENUMERATE_ALL_EXT ALC_ENUMERATION_EXT ALC_EXT_CAPTURE " "ALC_EXT_thread_local_context ALC_SOFT_loopback"; static const ALCchar alcExtensionList[] = "ALC_ENUMERATE_ALL_EXT ALC_ENUMERATION_EXT ALC_EXT_CAPTURE " "ALC_EXT_DEDICATED ALC_EXT_disconnect ALC_EXT_EFX " "ALC_EXT_thread_local_context ALC_SOFTX_device_clock ALC_SOFT_HRTF " "ALC_SOFT_loopback ALC_SOFT_pause_device"; static const ALCint alcMajorVersion = 1; static const ALCint alcMinorVersion = 1; static const ALCint alcEFXMajorVersion = 1; static const ALCint alcEFXMinorVersion = 0; /************************************************ * Device lists ************************************************/ static ATOMIC(ALCdevice*) DeviceList = ATOMIC_INIT_STATIC(NULL); static almtx_t ListLock; static inline void LockLists(void) { int ret = almtx_lock(&ListLock); assert(ret == althrd_success); } static inline void UnlockLists(void) { int ret = almtx_unlock(&ListLock); assert(ret == althrd_success); } /************************************************ * Library initialization ************************************************/ #if defined(_WIN32) static void alc_init(void); static void alc_deinit(void); static void alc_deinit_safe(void); #ifndef AL_LIBTYPE_STATIC BOOL APIENTRY DllMain(HINSTANCE hModule, DWORD reason, LPVOID lpReserved) { switch(reason) { case DLL_PROCESS_ATTACH: /* Pin the DLL so we won't get unloaded until the process terminates */ GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, (WCHAR*)hModule, &hModule); alc_init(); break; case DLL_THREAD_DETACH: break; case DLL_PROCESS_DETACH: if(!lpReserved) alc_deinit(); else alc_deinit_safe(); break; } return TRUE; } #elif defined(_MSC_VER) #pragma section(".CRT$XCU",read) static void alc_constructor(void); static void alc_destructor(void); __declspec(allocate(".CRT$XCU")) void (__cdecl* alc_constructor_)(void) = alc_constructor; static void alc_constructor(void) { atexit(alc_destructor); alc_init(); } static void alc_destructor(void) { alc_deinit(); } #elif defined(HAVE_GCC_DESTRUCTOR) static void alc_init(void) __attribute__((constructor)); static void alc_deinit(void) __attribute__((destructor)); #else #error "No static initialization available on this platform!" #endif #elif defined(HAVE_GCC_DESTRUCTOR) static void alc_init(void) __attribute__((constructor)); static void alc_deinit(void) __attribute__((destructor)); #else #error "No global initialization available on this platform!" #endif static void ReleaseThreadCtx(void *ptr); static void alc_init(void) { const char *str; int ret; LogFile = stderr; AL_STRING_INIT(alcAllDevicesList); AL_STRING_INIT(alcCaptureDeviceList); str = getenv("__ALSOFT_HALF_ANGLE_CONES"); if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1)) ConeScale *= 0.5f; str = getenv("__ALSOFT_REVERSE_Z"); if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1)) ZScale *= -1.0f; ret = altss_create(&LocalContext, ReleaseThreadCtx); assert(ret == althrd_success); ret = almtx_init(&ListLock, almtx_recursive); assert(ret == althrd_success); ThunkInit(); } static void alc_initconfig(void) { const char *devs, *str; ALuint capfilter; float valf; int i, n; str = getenv("ALSOFT_LOGLEVEL"); if(str) { long lvl = strtol(str, NULL, 0); if(lvl >= NoLog && lvl <= LogRef) LogLevel = lvl; } str = getenv("ALSOFT_LOGFILE"); if(str && str[0]) { FILE *logfile = al_fopen(str, "wt"); if(logfile) LogFile = logfile; else ERR("Failed to open log file '%s'\n", str); } TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH, ALSOFT_GIT_BRANCH); { char buf[1024] = ""; int len = snprintf(buf, sizeof(buf), "%s", BackendList[0].name); for(i = 1;BackendList[i].name;i++) len += snprintf(buf+len, sizeof(buf)-len, ", %s", BackendList[i].name); TRACE("Supported backends: %s\n", buf); } ReadALConfig(); str = getenv("__ALSOFT_SUSPEND_CONTEXT"); if(str && *str) { if(strcasecmp(str, "ignore") == 0) { SuspendDefers = ALC_FALSE; TRACE("Selected context suspend behavior, \"ignore\"\n"); } else ERR("Unhandled context suspend behavior setting: \"%s\"\n", str); } capfilter = 0; #if defined(HAVE_SSE4_1) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1; #elif defined(HAVE_SSE3) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3; #elif defined(HAVE_SSE2) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2; #elif defined(HAVE_SSE) capfilter |= CPU_CAP_SSE; #endif #ifdef HAVE_NEON capfilter |= CPU_CAP_NEON; #endif if(ConfigValueStr(NULL, NULL, "disable-cpu-exts", &str)) { if(strcasecmp(str, "all") == 0) capfilter = 0; else { size_t len; const char *next = str; do { str = next; while(isspace(str[0])) str++; next = strchr(str, ','); if(!str[0] || str[0] == ',') continue; len = (next ? ((size_t)(next-str)) : strlen(str)); while(len > 0 && isspace(str[len-1])) len--; if(len == 3 && strncasecmp(str, "sse", len) == 0) capfilter &= ~CPU_CAP_SSE; else if(len == 4 && strncasecmp(str, "sse2", len) == 0) capfilter &= ~CPU_CAP_SSE2; else if(len == 4 && strncasecmp(str, "sse3", len) == 0) capfilter &= ~CPU_CAP_SSE3; else if(len == 6 && strncasecmp(str, "sse4.1", len) == 0) capfilter &= ~CPU_CAP_SSE4_1; else if(len == 4 && strncasecmp(str, "neon", len) == 0) capfilter &= ~CPU_CAP_NEON; else WARN("Invalid CPU extension \"%s\"\n", str); } while(next++); } } FillCPUCaps(capfilter); #ifdef _WIN32 RTPrioLevel = 1; #else RTPrioLevel = 0; #endif ConfigValueInt(NULL, NULL, "rt-prio", &RTPrioLevel); aluInitMixer(); str = getenv("ALSOFT_TRAP_ERROR"); if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1)) { TrapALError = AL_TRUE; TrapALCError = AL_TRUE; } else { str = getenv("ALSOFT_TRAP_AL_ERROR"); if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1)) TrapALError = AL_TRUE; TrapALError = GetConfigValueBool(NULL, NULL, "trap-al-error", TrapALError); str = getenv("ALSOFT_TRAP_ALC_ERROR"); if(str && (strcasecmp(str, "true") == 0 || strtol(str, NULL, 0) == 1)) TrapALCError = ALC_TRUE; TrapALCError = GetConfigValueBool(NULL, NULL, "trap-alc-error", TrapALCError); } if(ConfigValueFloat(NULL, "reverb", "boost", &valf)) ReverbBoost *= powf(10.0f, valf / 20.0f); EmulateEAXReverb = GetConfigValueBool(NULL, "reverb", "emulate-eax", AL_FALSE); if(((devs=getenv("ALSOFT_DRIVERS")) && devs[0]) || ConfigValueStr(NULL, NULL, "drivers", &devs)) { int n; size_t len; const char *next = devs; int endlist, delitem; i = 0; do { devs = next; while(isspace(devs[0])) devs++; next = strchr(devs, ','); delitem = (devs[0] == '-'); if(devs[0] == '-') devs++; if(!devs[0] || devs[0] == ',') { endlist = 0; continue; } endlist = 1; len = (next ? ((size_t)(next-devs)) : strlen(devs)); while(len > 0 && isspace(devs[len-1])) len--; for(n = i;BackendList[n].name;n++) { if(len == strlen(BackendList[n].name) && strncmp(BackendList[n].name, devs, len) == 0) { if(delitem) { do { BackendList[n] = BackendList[n+1]; ++n; } while(BackendList[n].name); } else { struct BackendInfo Bkp = BackendList[n]; while(n > i) { BackendList[n] = BackendList[n-1]; --n; } BackendList[n] = Bkp; i++; } break; } } } while(next++); if(endlist) { BackendList[i].name = NULL; BackendList[i].getFactory = NULL; BackendList[i].Init = NULL; BackendList[i].Deinit = NULL; BackendList[i].Probe = NULL; } } for(i = 0;(BackendList[i].Init || BackendList[i].getFactory) && (!PlaybackBackend.name || !CaptureBackend.name);i++) { if(BackendList[i].getFactory) { ALCbackendFactory *factory = BackendList[i].getFactory(); if(!V0(factory,init)()) { WARN("Failed to initialize backend \"%s\"\n", BackendList[i].name); continue; } TRACE("Initialized backend \"%s\"\n", BackendList[i].name); if(!PlaybackBackend.name && V(factory,querySupport)(ALCbackend_Playback)) { PlaybackBackend = BackendList[i]; TRACE("Added \"%s\" for playback\n", PlaybackBackend.name); } if(!CaptureBackend.name && V(factory,querySupport)(ALCbackend_Capture)) { CaptureBackend = BackendList[i]; TRACE("Added \"%s\" for capture\n", CaptureBackend.name); } continue; } if(!BackendList[i].Init(&BackendList[i].Funcs)) { WARN("Failed to initialize backend \"%s\"\n", BackendList[i].name); continue; } TRACE("Initialized backend \"%s\"\n", BackendList[i].name); if(BackendList[i].Funcs.OpenPlayback && !PlaybackBackend.name) { PlaybackBackend = BackendList[i]; TRACE("Added \"%s\" for playback\n", PlaybackBackend.name); } if(BackendList[i].Funcs.OpenCapture && !CaptureBackend.name) { CaptureBackend = BackendList[i]; TRACE("Added \"%s\" for capture\n", CaptureBackend.name); } } { ALCbackendFactory *factory = ALCloopbackFactory_getFactory(); V0(factory,init)(); } if(!PlaybackBackend.name) WARN("No playback backend available!\n"); if(!CaptureBackend.name) WARN("No capture backend available!\n"); if(ConfigValueStr(NULL, NULL, "excludefx", &str)) { size_t len; const char *next = str; do { str = next; next = strchr(str, ','); if(!str[0] || next == str) continue; len = (next ? ((size_t)(next-str)) : strlen(str)); for(n = 0;EffectList[n].name;n++) { if(len == strlen(EffectList[n].name) && strncmp(EffectList[n].name, str, len) == 0) DisabledEffects[EffectList[n].type] = AL_TRUE; } } while(next++); } InitEffectFactoryMap(); InitEffect(&DefaultEffect); str = getenv("ALSOFT_DEFAULT_REVERB"); if((str && str[0]) || ConfigValueStr(NULL, NULL, "default-reverb", &str)) LoadReverbPreset(str, &DefaultEffect); } #define DO_INITCONFIG() alcall_once(&alc_config_once, alc_initconfig) #ifdef __ANDROID__ #include static JavaVM *gJavaVM; static pthread_key_t gJVMThreadKey; static void CleanupJNIEnv(void* UNUSED(ptr)) { JCALL0(gJavaVM,DetachCurrentThread)(); } void *Android_GetJNIEnv(void) { if(!gJavaVM) { WARN("gJavaVM is NULL!\n"); return NULL; } /* http://developer.android.com/guide/practices/jni.html * * All threads are Linux threads, scheduled by the kernel. They're usually * started from managed code (using Thread.start), but they can also be * created elsewhere and then attached to the JavaVM. For example, a thread * started with pthread_create can be attached with the JNI * AttachCurrentThread or AttachCurrentThreadAsDaemon functions. Until a * thread is attached, it has no JNIEnv, and cannot make JNI calls. * Attaching a natively-created thread causes a java.lang.Thread object to * be constructed and added to the "main" ThreadGroup, making it visible to * the debugger. Calling AttachCurrentThread on an already-attached thread * is a no-op. */ JNIEnv *env = pthread_getspecific(gJVMThreadKey); if(!env) { int status = JCALL(gJavaVM,AttachCurrentThread)(&env, NULL); if(status < 0) { ERR("Failed to attach current thread\n"); return NULL; } pthread_setspecific(gJVMThreadKey, env); } return env; } /* Automatically called by JNI. */ JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void* UNUSED(reserved)) { void *env; int err; gJavaVM = jvm; if(JCALL(gJavaVM,GetEnv)(&env, JNI_VERSION_1_4) != JNI_OK) { ERR("Failed to get JNIEnv with JNI_VERSION_1_4\n"); return JNI_ERR; } /* Create gJVMThreadKey so we can keep track of the JNIEnv assigned to each * thread. The JNIEnv *must* be detached before the thread is destroyed. */ if((err=pthread_key_create(&gJVMThreadKey, CleanupJNIEnv)) != 0) ERR("pthread_key_create failed: %d\n", err); pthread_setspecific(gJVMThreadKey, env); return JNI_VERSION_1_4; } #endif /************************************************ * Library deinitialization ************************************************/ static void alc_cleanup(void) { ALCdevice *dev; AL_STRING_DEINIT(alcAllDevicesList); AL_STRING_DEINIT(alcCaptureDeviceList); free(alcDefaultAllDevicesSpecifier); alcDefaultAllDevicesSpecifier = NULL; free(alcCaptureDefaultDeviceSpecifier); alcCaptureDefaultDeviceSpecifier = NULL; if((dev=ATOMIC_EXCHANGE_SEQ(ALCdevice*, &DeviceList, NULL)) != NULL) { ALCuint num = 0; do { num++; } while((dev=dev->next) != NULL); ERR("%u device%s not closed\n", num, (num>1)?"s":""); } DeinitEffectFactoryMap(); } static void alc_deinit_safe(void) { alc_cleanup(); FreeHrtfs(); FreeALConfig(); ThunkExit(); almtx_destroy(&ListLock); altss_delete(LocalContext); if(LogFile != stderr) fclose(LogFile); LogFile = NULL; } static void alc_deinit(void) { int i; alc_cleanup(); memset(&PlaybackBackend, 0, sizeof(PlaybackBackend)); memset(&CaptureBackend, 0, sizeof(CaptureBackend)); for(i = 0;BackendList[i].Deinit || BackendList[i].getFactory;i++) { if(!BackendList[i].getFactory) BackendList[i].Deinit(); else { ALCbackendFactory *factory = BackendList[i].getFactory(); V0(factory,deinit)(); } } { ALCbackendFactory *factory = ALCloopbackFactory_getFactory(); V0(factory,deinit)(); } alc_deinit_safe(); } /************************************************ * Device enumeration ************************************************/ static void ProbeDevices(al_string *list, struct BackendInfo *backendinfo, enum DevProbe type) { DO_INITCONFIG(); LockLists(); al_string_clear(list); if(backendinfo->Probe) backendinfo->Probe(type); else if(backendinfo->getFactory) { ALCbackendFactory *factory = backendinfo->getFactory(); V(factory,probe)(type); } UnlockLists(); } static void ProbeAllDevicesList(void) { ProbeDevices(&alcAllDevicesList, &PlaybackBackend, ALL_DEVICE_PROBE); } static void ProbeCaptureDeviceList(void) { ProbeDevices(&alcCaptureDeviceList, &CaptureBackend, CAPTURE_DEVICE_PROBE); } static void AppendDevice(const ALCchar *name, al_string *devnames) { size_t len = strlen(name); if(len > 0) al_string_append_range(devnames, name, name+len+1); } void AppendAllDevicesList(const ALCchar *name) { AppendDevice(name, &alcAllDevicesList); } void AppendCaptureDeviceList(const ALCchar *name) { AppendDevice(name, &alcCaptureDeviceList); } /************************************************ * Device format information ************************************************/ const ALCchar *DevFmtTypeString(enum DevFmtType type) { switch(type) { case DevFmtByte: return "Signed Byte"; case DevFmtUByte: return "Unsigned Byte"; case DevFmtShort: return "Signed Short"; case DevFmtUShort: return "Unsigned Short"; case DevFmtInt: return "Signed Int"; case DevFmtUInt: return "Unsigned Int"; case DevFmtFloat: return "Float"; } return "(unknown type)"; } const ALCchar *DevFmtChannelsString(enum DevFmtChannels chans) { switch(chans) { case DevFmtMono: return "Mono"; case DevFmtStereo: return "Stereo"; case DevFmtQuad: return "Quadraphonic"; case DevFmtX51: return "5.1 Surround"; case DevFmtX51Rear: return "5.1 Surround (Rear)"; case DevFmtX61: return "6.1 Surround"; case DevFmtX71: return "7.1 Surround"; case DevFmtAmbi1: return "Ambisonic (1st Order)"; case DevFmtAmbi2: return "Ambisonic (2nd Order)"; case DevFmtAmbi3: return "Ambisonic (3rd Order)"; } return "(unknown channels)"; } extern inline ALsizei FrameSizeFromDevFmt(enum DevFmtChannels chans, enum DevFmtType type); ALsizei BytesFromDevFmt(enum DevFmtType type) { switch(type) { case DevFmtByte: return sizeof(ALbyte); case DevFmtUByte: return sizeof(ALubyte); case DevFmtShort: return sizeof(ALshort); case DevFmtUShort: return sizeof(ALushort); case DevFmtInt: return sizeof(ALint); case DevFmtUInt: return sizeof(ALuint); case DevFmtFloat: return sizeof(ALfloat); } return 0; } ALsizei ChannelsFromDevFmt(enum DevFmtChannels chans) { switch(chans) { case DevFmtMono: return 1; case DevFmtStereo: return 2; case DevFmtQuad: return 4; case DevFmtX51: return 6; case DevFmtX51Rear: return 6; case DevFmtX61: return 7; case DevFmtX71: return 8; case DevFmtAmbi1: return 4; case DevFmtAmbi2: return 9; case DevFmtAmbi3: return 16; } return 0; } static ALboolean DecomposeDevFormat(ALenum format, enum DevFmtChannels *chans, enum DevFmtType *type) { static const struct { ALenum format; enum DevFmtChannels channels; enum DevFmtType type; } list[] = { { AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte }, { AL_FORMAT_MONO16, DevFmtMono, DevFmtShort }, { AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat }, { AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte }, { AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort }, { AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat }, { AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte }, { AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort }, { AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat }, { AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte }, { AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort }, { AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat }, { AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte }, { AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort }, { AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat }, { AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte }, { AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort }, { AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat }, }; ALuint i; for(i = 0;i < COUNTOF(list);i++) { if(list[i].format == format) { *chans = list[i].channels; *type = list[i].type; return AL_TRUE; } } return AL_FALSE; } static ALCboolean IsValidALCType(ALCenum type) { switch(type) { case ALC_BYTE_SOFT: case ALC_UNSIGNED_BYTE_SOFT: case ALC_SHORT_SOFT: case ALC_UNSIGNED_SHORT_SOFT: case ALC_INT_SOFT: case ALC_UNSIGNED_INT_SOFT: case ALC_FLOAT_SOFT: return ALC_TRUE; } return ALC_FALSE; } static ALCboolean IsValidALCChannels(ALCenum channels) { switch(channels) { case ALC_MONO_SOFT: case ALC_STEREO_SOFT: case ALC_QUAD_SOFT: case ALC_5POINT1_SOFT: case ALC_6POINT1_SOFT: case ALC_7POINT1_SOFT: return ALC_TRUE; } return ALC_FALSE; } /************************************************ * Miscellaneous ALC helpers ************************************************/ void ALCdevice_Lock(ALCdevice *device) { V0(device->Backend,lock)(); } void ALCdevice_Unlock(ALCdevice *device) { V0(device->Backend,unlock)(); } /* SetDefaultWFXChannelOrder * * Sets the default channel order used by WaveFormatEx. */ void SetDefaultWFXChannelOrder(ALCdevice *device) { ALuint i; for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) device->RealOut.ChannelName[i] = InvalidChannel; switch(device->FmtChans) { case DevFmtMono: device->RealOut.ChannelName[0] = FrontCenter; break; case DevFmtStereo: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; break; case DevFmtQuad: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = BackLeft; device->RealOut.ChannelName[3] = BackRight; break; case DevFmtX51: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = FrontCenter; device->RealOut.ChannelName[3] = LFE; device->RealOut.ChannelName[4] = SideLeft; device->RealOut.ChannelName[5] = SideRight; break; case DevFmtX51Rear: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = FrontCenter; device->RealOut.ChannelName[3] = LFE; device->RealOut.ChannelName[4] = BackLeft; device->RealOut.ChannelName[5] = BackRight; break; case DevFmtX61: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = FrontCenter; device->RealOut.ChannelName[3] = LFE; device->RealOut.ChannelName[4] = BackCenter; device->RealOut.ChannelName[5] = SideLeft; device->RealOut.ChannelName[6] = SideRight; break; case DevFmtX71: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = FrontCenter; device->RealOut.ChannelName[3] = LFE; device->RealOut.ChannelName[4] = BackLeft; device->RealOut.ChannelName[5] = BackRight; device->RealOut.ChannelName[6] = SideLeft; device->RealOut.ChannelName[7] = SideRight; break; case DevFmtAmbi1: device->RealOut.ChannelName[0] = Aux0; device->RealOut.ChannelName[1] = Aux1; device->RealOut.ChannelName[2] = Aux2; device->RealOut.ChannelName[3] = Aux3; break; case DevFmtAmbi2: device->RealOut.ChannelName[0] = Aux0; device->RealOut.ChannelName[1] = Aux1; device->RealOut.ChannelName[2] = Aux2; device->RealOut.ChannelName[3] = Aux3; device->RealOut.ChannelName[4] = Aux4; device->RealOut.ChannelName[5] = Aux5; device->RealOut.ChannelName[6] = Aux6; device->RealOut.ChannelName[7] = Aux7; device->RealOut.ChannelName[8] = Aux8; break; case DevFmtAmbi3: device->RealOut.ChannelName[0] = Aux0; device->RealOut.ChannelName[1] = Aux1; device->RealOut.ChannelName[2] = Aux2; device->RealOut.ChannelName[3] = Aux3; device->RealOut.ChannelName[4] = Aux4; device->RealOut.ChannelName[5] = Aux5; device->RealOut.ChannelName[6] = Aux6; device->RealOut.ChannelName[7] = Aux7; device->RealOut.ChannelName[8] = Aux8; device->RealOut.ChannelName[9] = Aux9; device->RealOut.ChannelName[10] = Aux10; device->RealOut.ChannelName[11] = Aux11; device->RealOut.ChannelName[12] = Aux12; device->RealOut.ChannelName[13] = Aux13; device->RealOut.ChannelName[14] = Aux14; device->RealOut.ChannelName[15] = Aux15; break; } } /* SetDefaultChannelOrder * * Sets the default channel order used by most non-WaveFormatEx-based APIs. */ void SetDefaultChannelOrder(ALCdevice *device) { ALuint i; for(i = 0;i < MAX_OUTPUT_CHANNELS;i++) device->RealOut.ChannelName[i] = InvalidChannel; switch(device->FmtChans) { case DevFmtX51Rear: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = BackLeft; device->RealOut.ChannelName[3] = BackRight; device->RealOut.ChannelName[4] = FrontCenter; device->RealOut.ChannelName[5] = LFE; return; case DevFmtX71: device->RealOut.ChannelName[0] = FrontLeft; device->RealOut.ChannelName[1] = FrontRight; device->RealOut.ChannelName[2] = BackLeft; device->RealOut.ChannelName[3] = BackRight; device->RealOut.ChannelName[4] = FrontCenter; device->RealOut.ChannelName[5] = LFE; device->RealOut.ChannelName[6] = SideLeft; device->RealOut.ChannelName[7] = SideRight; return; /* Same as WFX order */ case DevFmtMono: case DevFmtStereo: case DevFmtQuad: case DevFmtX51: case DevFmtX61: case DevFmtAmbi1: case DevFmtAmbi2: case DevFmtAmbi3: SetDefaultWFXChannelOrder(device); break; } } extern inline ALint GetChannelIndex(const enum Channel names[MAX_OUTPUT_CHANNELS], enum Channel chan); /* ALCcontext_DeferUpdates * * Defers/suspends updates for the given context's listener and sources. This * does *NOT* stop mixing, but rather prevents certain property changes from * taking effect. */ void ALCcontext_DeferUpdates(ALCcontext *context, ALenum type) { ATOMIC_STORE_SEQ(&context->DeferUpdates, type); } /* ALCcontext_ProcessUpdates * * Resumes update processing after being deferred. */ void ALCcontext_ProcessUpdates(ALCcontext *context) { ALCdevice *device = context->Device; ReadLock(&context->PropLock); if(ATOMIC_EXCHANGE_SEQ(ALenum, &context->DeferUpdates, AL_FALSE)) { ALsizei pos; uint updates; /* Tell the mixer to stop applying updates, then wait for any active * updating to finish, before providing updates. */ ATOMIC_STORE_SEQ(&context->HoldUpdates, AL_TRUE); while(((updates=ReadRef(&context->UpdateCount))&1) != 0) althrd_yield(); UpdateListenerProps(context); UpdateAllEffectSlotProps(context); LockUIntMapRead(&context->SourceMap); V0(device->Backend,lock)(); for(pos = 0;pos < context->SourceMap.size;pos++) { ALsource *Source = context->SourceMap.values[pos]; ALenum new_state; if((Source->state == AL_PLAYING || Source->state == AL_PAUSED) && Source->OffsetType != AL_NONE) { WriteLock(&Source->queue_lock); ApplyOffset(Source); WriteUnlock(&Source->queue_lock); } new_state = Source->new_state; Source->new_state = AL_NONE; if(new_state) SetSourceState(Source, context, new_state); } V0(device->Backend,unlock)(); UnlockUIntMapRead(&context->SourceMap); UpdateAllSourceProps(context); /* Now with all updates declared, let the mixer continue applying them * so they all happen at once. */ ATOMIC_STORE_SEQ(&context->HoldUpdates, AL_FALSE); } ReadUnlock(&context->PropLock); } /* alcSetError * * Stores the latest ALC device error */ static void alcSetError(ALCdevice *device, ALCenum errorCode) { if(TrapALCError) { #ifdef _WIN32 /* DebugBreak() will cause an exception if there is no debugger */ if(IsDebuggerPresent()) DebugBreak(); #elif defined(SIGTRAP) raise(SIGTRAP); #endif } if(device) ATOMIC_STORE_SEQ(&device->LastError, errorCode); else ATOMIC_STORE_SEQ(&LastNullDeviceError, errorCode); } /* UpdateClockBase * * Updates the device's base clock time with however many samples have been * done. This is used so frequency changes on the device don't cause the time * to jump forward or back. */ static inline void UpdateClockBase(ALCdevice *device) { device->ClockBase += device->SamplesDone * DEVICE_CLOCK_RES / device->Frequency; device->SamplesDone = 0; } /* UpdateDeviceParams * * Updates device parameters according to the attribute list (caller is * responsible for holding the list lock). */ static ALCenum UpdateDeviceParams(ALCdevice *device, const ALCint *attrList) { ALCcontext *context; enum HrtfRequestMode hrtf_appreq = Hrtf_Default; enum HrtfRequestMode hrtf_userreq = Hrtf_Default; enum DevFmtChannels oldChans; enum DevFmtType oldType; ALCuint oldFreq; FPUCtl oldMode; ALCsizei hrtf_id = -1; size_t size; // Check for attributes if(device->Type == Loopback) { enum { GotFreq = 1<<0, GotChans = 1<<1, GotType = 1<<2, GotAll = GotFreq|GotChans|GotType }; ALCuint freq, numMono, numStereo, numSends; enum DevFmtChannels schans; enum DevFmtType stype; ALCuint attrIdx = 0; ALCint gotFmt = 0; if(!attrList) { WARN("Missing attributes for loopback device\n"); return ALC_INVALID_VALUE; } numMono = device->NumMonoSources; numStereo = device->NumStereoSources; numSends = device->NumAuxSends; schans = device->FmtChans; stype = device->FmtType; freq = device->Frequency; #define TRACE_ATTR(a, v) TRACE("Loopback %s = %d\n", #a, v) while(attrList[attrIdx]) { if(attrList[attrIdx] == ALC_FORMAT_CHANNELS_SOFT) { ALCint val = attrList[attrIdx + 1]; TRACE_ATTR(ALC_FORMAT_CHANNELS_SOFT, val); if(!IsValidALCChannels(val) || !ChannelsFromDevFmt(val)) return ALC_INVALID_VALUE; schans = val; gotFmt |= GotChans; } if(attrList[attrIdx] == ALC_FORMAT_TYPE_SOFT) { ALCint val = attrList[attrIdx + 1]; TRACE_ATTR(ALC_FORMAT_TYPE_SOFT, val); if(!IsValidALCType(val) || !BytesFromDevFmt(val)) return ALC_INVALID_VALUE; stype = val; gotFmt |= GotType; } if(attrList[attrIdx] == ALC_FREQUENCY) { freq = attrList[attrIdx + 1]; TRACE_ATTR(ALC_FREQUENCY, freq); if(freq < MIN_OUTPUT_RATE) return ALC_INVALID_VALUE; gotFmt |= GotFreq; } if(attrList[attrIdx] == ALC_STEREO_SOURCES) { numStereo = attrList[attrIdx + 1]; TRACE_ATTR(ALC_STEREO_SOURCES, numStereo); if(numStereo > device->SourcesMax) numStereo = device->SourcesMax; numMono = device->SourcesMax - numStereo; } if(attrList[attrIdx] == ALC_MAX_AUXILIARY_SENDS) { numSends = attrList[attrIdx + 1]; TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends); } if(attrList[attrIdx] == ALC_HRTF_SOFT) { TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]); if(attrList[attrIdx + 1] == ALC_FALSE) hrtf_appreq = Hrtf_Disable; else if(attrList[attrIdx + 1] == ALC_TRUE) hrtf_appreq = Hrtf_Enable; else hrtf_appreq = Hrtf_Default; } if(attrList[attrIdx] == ALC_HRTF_ID_SOFT) { hrtf_id = attrList[attrIdx + 1]; TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id); } attrIdx += 2; } #undef TRACE_ATTR if(gotFmt != GotAll) { WARN("Missing format for loopback device\n"); return ALC_INVALID_VALUE; } ConfigValueUInt(NULL, NULL, "sends", &numSends); numSends = minu(MAX_SENDS, numSends); if((device->Flags&DEVICE_RUNNING)) V0(device->Backend,stop)(); device->Flags &= ~DEVICE_RUNNING; UpdateClockBase(device); device->Frequency = freq; device->FmtChans = schans; device->FmtType = stype; device->NumMonoSources = numMono; device->NumStereoSources = numStereo; device->NumAuxSends = numSends; } else if(attrList && attrList[0]) { ALCuint freq, numMono, numStereo, numSends; ALCuint attrIdx = 0; /* If a context is already running on the device, stop playback so the * device attributes can be updated. */ if((device->Flags&DEVICE_RUNNING)) V0(device->Backend,stop)(); device->Flags &= ~DEVICE_RUNNING; freq = device->Frequency; numMono = device->NumMonoSources; numStereo = device->NumStereoSources; numSends = device->NumAuxSends; #define TRACE_ATTR(a, v) TRACE("%s = %d\n", #a, v) while(attrList[attrIdx]) { if(attrList[attrIdx] == ALC_FREQUENCY) { freq = attrList[attrIdx + 1]; device->Flags |= DEVICE_FREQUENCY_REQUEST; TRACE_ATTR(ALC_FREQUENCY, freq); } if(attrList[attrIdx] == ALC_STEREO_SOURCES) { numStereo = attrList[attrIdx + 1]; TRACE_ATTR(ALC_STEREO_SOURCES, numStereo); if(numStereo > device->SourcesMax) numStereo = device->SourcesMax; numMono = device->SourcesMax - numStereo; } if(attrList[attrIdx] == ALC_MAX_AUXILIARY_SENDS) { numSends = attrList[attrIdx + 1]; TRACE_ATTR(ALC_MAX_AUXILIARY_SENDS, numSends); } if(attrList[attrIdx] == ALC_HRTF_SOFT) { TRACE_ATTR(ALC_HRTF_SOFT, attrList[attrIdx + 1]); if(attrList[attrIdx + 1] == ALC_FALSE) hrtf_appreq = Hrtf_Disable; else if(attrList[attrIdx + 1] == ALC_TRUE) hrtf_appreq = Hrtf_Enable; else hrtf_appreq = Hrtf_Default; } if(attrList[attrIdx] == ALC_HRTF_ID_SOFT) { hrtf_id = attrList[attrIdx + 1]; TRACE_ATTR(ALC_HRTF_ID_SOFT, hrtf_id); } attrIdx += 2; } #undef TRACE_ATTR ConfigValueUInt(al_string_get_cstr(device->DeviceName), NULL, "frequency", &freq); freq = maxu(freq, MIN_OUTPUT_RATE); ConfigValueUInt(al_string_get_cstr(device->DeviceName), NULL, "sends", &numSends); numSends = minu(MAX_SENDS, numSends); UpdateClockBase(device); device->UpdateSize = (ALuint64)device->UpdateSize * freq / device->Frequency; /* SSE and Neon do best with the update size being a multiple of 4 */ if((CPUCapFlags&(CPU_CAP_SSE|CPU_CAP_NEON)) != 0) device->UpdateSize = (device->UpdateSize+3)&~3; device->Frequency = freq; device->NumMonoSources = numMono; device->NumStereoSources = numStereo; device->NumAuxSends = numSends; } if((device->Flags&DEVICE_RUNNING)) return ALC_NO_ERROR; al_free(device->Uhj_Encoder); device->Uhj_Encoder = NULL; al_free(device->Bs2b); device->Bs2b = NULL; al_free(device->Dry.Buffer); device->Dry.Buffer = NULL; device->Dry.NumChannels = 0; device->FOAOut.Buffer = NULL; device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; UpdateClockBase(device); /************************************************************************* * Update device format request if HRTF is requested */ device->Hrtf.Status = ALC_HRTF_DISABLED_SOFT; if(device->Type != Loopback) { const char *hrtf; if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "hrtf", &hrtf)) { if(strcasecmp(hrtf, "true") == 0) hrtf_userreq = Hrtf_Enable; else if(strcasecmp(hrtf, "false") == 0) hrtf_userreq = Hrtf_Disable; else if(strcasecmp(hrtf, "auto") != 0) ERR("Unexpected hrtf value: %s\n", hrtf); } if(hrtf_userreq == Hrtf_Enable || (hrtf_userreq != Hrtf_Disable && hrtf_appreq == Hrtf_Enable)) { if(VECTOR_SIZE(device->Hrtf.List) == 0) { VECTOR_DEINIT(device->Hrtf.List); device->Hrtf.List = EnumerateHrtf(device->DeviceName); } if(VECTOR_SIZE(device->Hrtf.List) > 0) { device->FmtChans = DevFmtStereo; if(hrtf_id >= 0 && (size_t)hrtf_id < VECTOR_SIZE(device->Hrtf.List)) device->Frequency = VECTOR_ELEM(device->Hrtf.List, hrtf_id).hrtf->sampleRate; else device->Frequency = VECTOR_ELEM(device->Hrtf.List, 0).hrtf->sampleRate; device->Flags |= DEVICE_CHANNELS_REQUEST | DEVICE_FREQUENCY_REQUEST; } else { hrtf_userreq = Hrtf_Default; hrtf_appreq = Hrtf_Disable; device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; } } } else if(hrtf_appreq == Hrtf_Enable) { size_t i = VECTOR_SIZE(device->Hrtf.List); /* Loopback device. We don't need to match to a specific HRTF entry * here. If the requested ID matches, we'll pick that later, if not, * we'll try to auto-select one anyway. Just make sure one exists * that'll work. */ if(device->FmtChans == DevFmtStereo) { if(VECTOR_SIZE(device->Hrtf.List) == 0) { VECTOR_DEINIT(device->Hrtf.List); device->Hrtf.List = EnumerateHrtf(device->DeviceName); } for(i = 0;i < VECTOR_SIZE(device->Hrtf.List);i++) { const struct Hrtf *hrtf = VECTOR_ELEM(device->Hrtf.List, i).hrtf; if(hrtf->sampleRate == device->Frequency) break; } } if(i == VECTOR_SIZE(device->Hrtf.List)) { ERR("Requested format not HRTF compatible: %s, %uhz\n", DevFmtChannelsString(device->FmtChans), device->Frequency); hrtf_appreq = Hrtf_Disable; device->Hrtf.Status = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT; } } oldFreq = device->Frequency; oldChans = device->FmtChans; oldType = device->FmtType; TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u update size x%d\n", (device->Flags&DEVICE_CHANNELS_REQUEST)?"*":"", DevFmtChannelsString(device->FmtChans), (device->Flags&DEVICE_SAMPLE_TYPE_REQUEST)?"*":"", DevFmtTypeString(device->FmtType), (device->Flags&DEVICE_FREQUENCY_REQUEST)?"*":"", device->Frequency, device->UpdateSize, device->NumUpdates ); if(V0(device->Backend,reset)() == ALC_FALSE) return ALC_INVALID_DEVICE; if(device->FmtChans != oldChans && (device->Flags&DEVICE_CHANNELS_REQUEST)) { ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans), DevFmtChannelsString(device->FmtChans)); device->Flags &= ~DEVICE_CHANNELS_REQUEST; } if(device->FmtType != oldType && (device->Flags&DEVICE_SAMPLE_TYPE_REQUEST)) { ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType), DevFmtTypeString(device->FmtType)); device->Flags &= ~DEVICE_SAMPLE_TYPE_REQUEST; } if(device->Frequency != oldFreq && (device->Flags&DEVICE_FREQUENCY_REQUEST)) { ERR("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency); device->Flags &= ~DEVICE_FREQUENCY_REQUEST; } if((device->UpdateSize&3) != 0) { if((CPUCapFlags&CPU_CAP_SSE)) WARN("SSE performs best with multiple of 4 update sizes (%u)\n", device->UpdateSize); if((CPUCapFlags&CPU_CAP_NEON)) WARN("NEON performs best with multiple of 4 update sizes (%u)\n", device->UpdateSize); } TRACE("Post-reset: %s, %s, %uhz, %u update size x%d\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->NumUpdates ); aluInitRenderer(device, hrtf_id, hrtf_appreq, hrtf_userreq); /* Allocate extra channels for any post-filter output. */ size = device->Dry.NumChannels * sizeof(device->Dry.Buffer[0]); if((device->AmbiDecoder && bformatdec_getOrder(device->AmbiDecoder) >= 2)) size += (ChannelsFromDevFmt(device->FmtChans)+4) * sizeof(device->Dry.Buffer[0]); else if(device->Hrtf.Handle || device->Uhj_Encoder || device->AmbiDecoder) { size += ChannelsFromDevFmt(device->FmtChans) * sizeof(device->Dry.Buffer[0]); if(device->AmbiUp) size += 4 * sizeof(device->Dry.Buffer[0]); } else if(device->AmbiUp) size += 4 * sizeof(device->Dry.Buffer[0]); TRACE("Allocating "SZFMT" channels, "SZFMT" bytes\n", size/sizeof(device->Dry.Buffer[0]), size); device->Dry.Buffer = al_calloc(16, size); if(!device->Dry.Buffer) { ERR("Failed to allocate "SZFMT" bytes for mix buffer\n", size); return ALC_INVALID_DEVICE; } if(device->Hrtf.Handle || device->Uhj_Encoder || device->AmbiDecoder) { device->RealOut.Buffer = device->Dry.Buffer + device->Dry.NumChannels; device->RealOut.NumChannels = ChannelsFromDevFmt(device->FmtChans); } else { device->RealOut.Buffer = device->Dry.Buffer; device->RealOut.NumChannels = device->Dry.NumChannels; } if((device->AmbiDecoder && bformatdec_getOrder(device->AmbiDecoder) >= 2) || device->AmbiUp) { /* Higher-order rendering requires upsampling first-order content, so * make sure to mix it separately. */ device->FOAOut.Buffer = device->RealOut.Buffer + device->RealOut.NumChannels; device->FOAOut.NumChannels = 4; } else { device->FOAOut.Buffer = device->Dry.Buffer; device->FOAOut.NumChannels = device->Dry.NumChannels; } TRACE("Channel config, Dry: %d, FOA: %d, Real: %d\n", device->Dry.NumChannels, device->FOAOut.NumChannels, device->RealOut.NumChannels); SetMixerFPUMode(&oldMode); if(device->DefaultSlot) { ALeffectslot *slot = device->DefaultSlot; ALeffectState *state = slot->Effect.State; state->OutBuffer = device->Dry.Buffer; state->OutChannels = device->Dry.NumChannels; if(V(state,deviceUpdate)(device) == AL_FALSE) { RestoreFPUMode(&oldMode); return ALC_INVALID_DEVICE; } UpdateEffectSlotProps(slot); } context = ATOMIC_LOAD_SEQ(&device->ContextList); while(context) { ALsizei pos; ReadLock(&context->PropLock); LockUIntMapRead(&context->EffectSlotMap); for(pos = 0;pos < context->EffectSlotMap.size;pos++) { ALeffectslot *slot = context->EffectSlotMap.values[pos]; ALeffectState *state = slot->Effect.State; state->OutBuffer = device->Dry.Buffer; state->OutChannels = device->Dry.NumChannels; if(V(state,deviceUpdate)(device) == AL_FALSE) { UnlockUIntMapRead(&context->EffectSlotMap); ReadUnlock(&context->PropLock); RestoreFPUMode(&oldMode); return ALC_INVALID_DEVICE; } UpdateEffectSlotProps(slot); } UnlockUIntMapRead(&context->EffectSlotMap); LockUIntMapRead(&context->SourceMap); for(pos = 0;pos < context->SourceMap.size;pos++) { ALsource *source = context->SourceMap.values[pos]; ALuint s = device->NumAuxSends; while(s < MAX_SENDS) { if(source->Send[s].Slot) DecrementRef(&source->Send[s].Slot->ref); source->Send[s].Slot = NULL; source->Send[s].Gain = 1.0f; source->Send[s].GainHF = 1.0f; source->Send[s].HFReference = LOWPASSFREQREF; source->Send[s].GainLF = 1.0f; source->Send[s].LFReference = HIGHPASSFREQREF; s++; } source->NeedsUpdate = AL_TRUE; } UnlockUIntMapRead(&context->SourceMap); UpdateListenerProps(context); ReadUnlock(&context->PropLock); context = context->next; } RestoreFPUMode(&oldMode); if(!(device->Flags&DEVICE_PAUSED)) { if(V0(device->Backend,start)() == ALC_FALSE) return ALC_INVALID_DEVICE; device->Flags |= DEVICE_RUNNING; } return ALC_NO_ERROR; } /* FreeDevice * * Frees the device structure, and destroys any objects the app failed to * delete. Called once there's no more references on the device. */ static ALCvoid FreeDevice(ALCdevice *device) { TRACE("%p\n", device); V0(device->Backend,close)(); DELETE_OBJ(device->Backend); device->Backend = NULL; almtx_destroy(&device->BackendLock); if(device->DefaultSlot) { DeinitEffectSlot(device->DefaultSlot); device->DefaultSlot = NULL; } if(device->BufferMap.size > 0) { WARN("(%p) Deleting %d Buffer%s\n", device, device->BufferMap.size, (device->BufferMap.size==1)?"":"s"); ReleaseALBuffers(device); } ResetUIntMap(&device->BufferMap); if(device->EffectMap.size > 0) { WARN("(%p) Deleting %d Effect%s\n", device, device->EffectMap.size, (device->EffectMap.size==1)?"":"s"); ReleaseALEffects(device); } ResetUIntMap(&device->EffectMap); if(device->FilterMap.size > 0) { WARN("(%p) Deleting %d Filter%s\n", device, device->FilterMap.size, (device->FilterMap.size==1)?"":"s"); ReleaseALFilters(device); } ResetUIntMap(&device->FilterMap); AL_STRING_DEINIT(device->Hrtf.Name); FreeHrtfList(&device->Hrtf.List); al_free(device->Bs2b); device->Bs2b = NULL; al_free(device->Uhj_Encoder); device->Uhj_Encoder = NULL; bformatdec_free(device->AmbiDecoder); device->AmbiDecoder = NULL; ambiup_free(device->AmbiUp); device->AmbiUp = NULL; AL_STRING_DEINIT(device->DeviceName); al_free(device->Dry.Buffer); device->Dry.Buffer = NULL; device->Dry.NumChannels = 0; device->FOAOut.Buffer = NULL; device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; al_free(device); } void ALCdevice_IncRef(ALCdevice *device) { uint ref; ref = IncrementRef(&device->ref); TRACEREF("%p increasing refcount to %u\n", device, ref); } void ALCdevice_DecRef(ALCdevice *device) { uint ref; ref = DecrementRef(&device->ref); TRACEREF("%p decreasing refcount to %u\n", device, ref); if(ref == 0) FreeDevice(device); } /* VerifyDevice * * Checks if the device handle is valid, and increments its ref count if so. */ static ALCboolean VerifyDevice(ALCdevice **device) { ALCdevice *tmpDevice; LockLists(); tmpDevice = ATOMIC_LOAD_SEQ(&DeviceList); while(tmpDevice) { if(tmpDevice == *device) { ALCdevice_IncRef(tmpDevice); UnlockLists(); return ALC_TRUE; } tmpDevice = tmpDevice->next; } UnlockLists(); *device = NULL; return ALC_FALSE; } /* InitContext * * Initializes context fields */ static ALvoid InitContext(ALCcontext *Context) { ALlistener *listener = Context->Listener; //Initialise listener listener->Gain = 1.0f; listener->MetersPerUnit = 1.0f; listener->Position[0] = 0.0f; listener->Position[1] = 0.0f; listener->Position[2] = 0.0f; listener->Velocity[0] = 0.0f; listener->Velocity[1] = 0.0f; listener->Velocity[2] = 0.0f; listener->Forward[0] = 0.0f; listener->Forward[1] = 0.0f; listener->Forward[2] = -1.0f; listener->Up[0] = 0.0f; listener->Up[1] = 1.0f; listener->Up[2] = 0.0f; aluMatrixfSet(&listener->Params.Matrix, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); aluVectorSet(&listener->Params.Velocity, 0.0f, 0.0f, 0.0f, 0.0f); listener->Params.Gain = 1.0f; listener->Params.MetersPerUnit = 1.0f; listener->Params.DopplerFactor = 1.0f; listener->Params.SpeedOfSound = SPEEDOFSOUNDMETRESPERSEC; ATOMIC_INIT(&listener->Update, NULL); ATOMIC_INIT(&listener->FreeList, NULL); //Validate Context InitRef(&Context->UpdateCount, 0); ATOMIC_INIT(&Context->HoldUpdates, AL_FALSE); Context->GainBoost = 1.0f; RWLockInit(&Context->PropLock); ATOMIC_INIT(&Context->LastError, AL_NO_ERROR); InitUIntMap(&Context->SourceMap, Context->Device->SourcesMax); InitUIntMap(&Context->EffectSlotMap, Context->Device->AuxiliaryEffectSlotMax); //Set globals Context->DistanceModel = DefaultDistanceModel; Context->SourceDistanceModel = AL_FALSE; Context->DopplerFactor = 1.0f; Context->DopplerVelocity = 1.0f; Context->SpeedOfSound = SPEEDOFSOUNDMETRESPERSEC; ATOMIC_INIT(&Context->DeferUpdates, AL_FALSE); Context->ExtensionList = alExtList; } /* FreeContext * * Cleans up the context, and destroys any remaining objects the app failed to * delete. Called once there's no more references on the context. */ static void FreeContext(ALCcontext *context) { ALlistener *listener = context->Listener; struct ALlistenerProps *lprops; size_t count; TRACE("%p\n", context); if(context->SourceMap.size > 0) { WARN("(%p) Deleting %d Source%s\n", context, context->SourceMap.size, (context->SourceMap.size==1)?"":"s"); ReleaseALSources(context); } ResetUIntMap(&context->SourceMap); if(context->EffectSlotMap.size > 0) { WARN("(%p) Deleting %d AuxiliaryEffectSlot%s\n", context, context->EffectSlotMap.size, (context->EffectSlotMap.size==1)?"":"s"); ReleaseALAuxiliaryEffectSlots(context); } ResetUIntMap(&context->EffectSlotMap); al_free(context->Voices); context->Voices = NULL; context->VoiceCount = 0; context->MaxVoices = 0; if((lprops=ATOMIC_LOAD(&listener->Update, almemory_order_acquire)) != NULL) { TRACE("Freed unapplied listener update %p\n", lprops); al_free(lprops); } count = 0; lprops = ATOMIC_LOAD(&listener->FreeList, almemory_order_acquire); while(lprops) { struct ALlistenerProps *next = ATOMIC_LOAD(&lprops->next, almemory_order_acquire); al_free(lprops); lprops = next; ++count; } TRACE("Freed "SZFMT" listener property object%s\n", count, (count==1)?"":"s"); ALCdevice_DecRef(context->Device); context->Device = NULL; //Invalidate context memset(context, 0, sizeof(ALCcontext)); al_free(context); } /* ReleaseContext * * Removes the context reference from the given device and removes it from * being current on the running thread or globally. */ static void ReleaseContext(ALCcontext *context, ALCdevice *device) { ALCcontext *origctx; if(altss_get(LocalContext) == context) { WARN("%p released while current on thread\n", context); altss_set(LocalContext, NULL); ALCcontext_DecRef(context); } origctx = context; if(ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCcontext*, &GlobalContext, &origctx, NULL)) ALCcontext_DecRef(context); ALCdevice_Lock(device); origctx = context; if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCcontext*, &device->ContextList, &origctx, context->next)) { ALCcontext *volatile*list = &origctx->next; while(*list) { if(*list == context) { *list = (*list)->next; break; } list = &(*list)->next; } } ALCdevice_Unlock(device); ALCcontext_DecRef(context); } void ALCcontext_IncRef(ALCcontext *context) { uint ref = IncrementRef(&context->ref); TRACEREF("%p increasing refcount to %u\n", context, ref); } void ALCcontext_DecRef(ALCcontext *context) { uint ref = DecrementRef(&context->ref); TRACEREF("%p decreasing refcount to %u\n", context, ref); if(ref == 0) FreeContext(context); } static void ReleaseThreadCtx(void *ptr) { ALCcontext *context = ptr; uint ref = DecrementRef(&context->ref); TRACEREF("%p decreasing refcount to %u\n", context, ref); ERR("Context %p current for thread being destroyed, possible leak!\n", context); } /* VerifyContext * * Checks that the given context is valid, and increments its reference count. */ static ALCboolean VerifyContext(ALCcontext **context) { ALCdevice *dev; LockLists(); dev = ATOMIC_LOAD_SEQ(&DeviceList); while(dev) { ALCcontext *ctx = ATOMIC_LOAD(&dev->ContextList, almemory_order_acquire); while(ctx) { if(ctx == *context) { ALCcontext_IncRef(ctx); UnlockLists(); return ALC_TRUE; } ctx = ctx->next; } dev = dev->next; } UnlockLists(); *context = NULL; return ALC_FALSE; } /* GetContextRef * * Returns the currently active context for this thread, and adds a reference * without locking it. */ ALCcontext *GetContextRef(void) { ALCcontext *context; context = altss_get(LocalContext); if(context) ALCcontext_IncRef(context); else { LockLists(); context = ATOMIC_LOAD_SEQ(&GlobalContext); if(context) ALCcontext_IncRef(context); UnlockLists(); } return context; } /************************************************ * Standard ALC functions ************************************************/ /* alcGetError * * Return last ALC generated error code for the given device */ ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device) { ALCenum errorCode; if(VerifyDevice(&device)) { errorCode = ATOMIC_EXCHANGE_SEQ(ALCenum, &device->LastError, ALC_NO_ERROR); ALCdevice_DecRef(device); } else errorCode = ATOMIC_EXCHANGE_SEQ(ALCenum, &LastNullDeviceError, ALC_NO_ERROR); return errorCode; } /* alcSuspendContext * * Suspends updates for the given context */ ALC_API ALCvoid ALC_APIENTRY alcSuspendContext(ALCcontext *context) { if(!SuspendDefers) return; if(!VerifyContext(&context)) alcSetError(NULL, ALC_INVALID_CONTEXT); else { ALCcontext_DeferUpdates(context, DeferAllowPlay); ALCcontext_DecRef(context); } } /* alcProcessContext * * Resumes processing updates for the given context */ ALC_API ALCvoid ALC_APIENTRY alcProcessContext(ALCcontext *context) { if(!SuspendDefers) return; if(!VerifyContext(&context)) alcSetError(NULL, ALC_INVALID_CONTEXT); else { ALCcontext_ProcessUpdates(context); ALCcontext_DecRef(context); } } /* alcGetString * * Returns information about the device, and error strings */ ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param) { const ALCchar *value = NULL; switch(param) { case ALC_NO_ERROR: value = alcNoError; break; case ALC_INVALID_ENUM: value = alcErrInvalidEnum; break; case ALC_INVALID_VALUE: value = alcErrInvalidValue; break; case ALC_INVALID_DEVICE: value = alcErrInvalidDevice; break; case ALC_INVALID_CONTEXT: value = alcErrInvalidContext; break; case ALC_OUT_OF_MEMORY: value = alcErrOutOfMemory; break; case ALC_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_ALL_DEVICES_SPECIFIER: if(VerifyDevice(&Device)) { value = al_string_get_cstr(Device->DeviceName); ALCdevice_DecRef(Device); } else { ProbeAllDevicesList(); value = al_string_get_cstr(alcAllDevicesList); } break; case ALC_CAPTURE_DEVICE_SPECIFIER: if(VerifyDevice(&Device)) { value = al_string_get_cstr(Device->DeviceName); ALCdevice_DecRef(Device); } else { ProbeCaptureDeviceList(); value = al_string_get_cstr(alcCaptureDeviceList); } break; /* Default devices are always first in the list */ case ALC_DEFAULT_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_DEFAULT_ALL_DEVICES_SPECIFIER: if(al_string_empty(alcAllDevicesList)) ProbeAllDevicesList(); VerifyDevice(&Device); free(alcDefaultAllDevicesSpecifier); alcDefaultAllDevicesSpecifier = strdup(al_string_get_cstr(alcAllDevicesList)); if(!alcDefaultAllDevicesSpecifier) alcSetError(Device, ALC_OUT_OF_MEMORY); value = alcDefaultAllDevicesSpecifier; if(Device) ALCdevice_DecRef(Device); break; case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER: if(al_string_empty(alcCaptureDeviceList)) ProbeCaptureDeviceList(); VerifyDevice(&Device); free(alcCaptureDefaultDeviceSpecifier); alcCaptureDefaultDeviceSpecifier = strdup(al_string_get_cstr(alcCaptureDeviceList)); if(!alcCaptureDefaultDeviceSpecifier) alcSetError(Device, ALC_OUT_OF_MEMORY); value = alcCaptureDefaultDeviceSpecifier; if(Device) ALCdevice_DecRef(Device); break; case ALC_EXTENSIONS: if(!VerifyDevice(&Device)) value = alcNoDeviceExtList; else { value = alcExtensionList; ALCdevice_DecRef(Device); } break; case ALC_HRTF_SPECIFIER_SOFT: if(!VerifyDevice(&Device)) alcSetError(NULL, ALC_INVALID_DEVICE); else { almtx_lock(&Device->BackendLock); value = (Device->Hrtf.Handle ? al_string_get_cstr(Device->Hrtf.Name) : ""); almtx_unlock(&Device->BackendLock); ALCdevice_DecRef(Device); } break; default: VerifyDevice(&Device); alcSetError(Device, ALC_INVALID_ENUM); if(Device) ALCdevice_DecRef(Device); break; } return value; } static ALCsizei GetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) { ALCsizei i; if(size <= 0 || values == NULL) { alcSetError(device, ALC_INVALID_VALUE); return 0; } if(!device) { switch(param) { case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_ATTRIBUTES_SIZE: case ALC_ALL_ATTRIBUTES: case ALC_FREQUENCY: case ALC_REFRESH: case ALC_SYNC: case ALC_MONO_SOURCES: case ALC_STEREO_SOURCES: case ALC_CAPTURE_SAMPLES: case ALC_FORMAT_CHANNELS_SOFT: case ALC_FORMAT_TYPE_SOFT: alcSetError(NULL, ALC_INVALID_DEVICE); return 0; default: alcSetError(NULL, ALC_INVALID_ENUM); return 0; } return 0; } if(device->Type == Capture) { switch(param) { case ALC_CAPTURE_SAMPLES: almtx_lock(&device->BackendLock); values[0] = V0(device->Backend,availableSamples)(); almtx_unlock(&device->BackendLock); return 1; case ALC_CONNECTED: values[0] = device->Connected; return 1; default: alcSetError(device, ALC_INVALID_ENUM); return 0; } return 0; } /* render device */ switch(param) { case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_EFX_MAJOR_VERSION: values[0] = alcEFXMajorVersion; return 1; case ALC_EFX_MINOR_VERSION: values[0] = alcEFXMinorVersion; return 1; case ALC_ATTRIBUTES_SIZE: values[0] = 17; return 1; case ALC_ALL_ATTRIBUTES: if(size < 17) { alcSetError(device, ALC_INVALID_VALUE); return 0; } i = 0; almtx_lock(&device->BackendLock); values[i++] = ALC_FREQUENCY; values[i++] = device->Frequency; if(device->Type != Loopback) { values[i++] = ALC_REFRESH; values[i++] = device->Frequency / device->UpdateSize; values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = device->FmtChans; values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = device->FmtType; } values[i++] = ALC_MONO_SOURCES; values[i++] = device->NumMonoSources; values[i++] = ALC_STEREO_SOURCES; values[i++] = device->NumStereoSources; values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = device->NumAuxSends; values[i++] = ALC_HRTF_SOFT; values[i++] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = device->Hrtf.Status; almtx_unlock(&device->BackendLock); values[i++] = 0; return i; case ALC_FREQUENCY: values[0] = device->Frequency; return 1; case ALC_REFRESH: if(device->Type == Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } almtx_lock(&device->BackendLock); values[0] = device->Frequency / device->UpdateSize; almtx_unlock(&device->BackendLock); return 1; case ALC_SYNC: if(device->Type == Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = ALC_FALSE; return 1; case ALC_FORMAT_CHANNELS_SOFT: if(device->Type != Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = device->FmtChans; return 1; case ALC_FORMAT_TYPE_SOFT: if(device->Type != Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = device->FmtType; return 1; case ALC_MONO_SOURCES: values[0] = device->NumMonoSources; return 1; case ALC_STEREO_SOURCES: values[0] = device->NumStereoSources; return 1; case ALC_MAX_AUXILIARY_SENDS: values[0] = device->NumAuxSends; return 1; case ALC_CONNECTED: values[0] = device->Connected; return 1; case ALC_HRTF_SOFT: values[0] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE); return 1; case ALC_HRTF_STATUS_SOFT: values[0] = device->Hrtf.Status; return 1; case ALC_NUM_HRTF_SPECIFIERS_SOFT: almtx_lock(&device->BackendLock); FreeHrtfList(&device->Hrtf.List); device->Hrtf.List = EnumerateHrtf(device->DeviceName); values[0] = (ALCint)VECTOR_SIZE(device->Hrtf.List); almtx_unlock(&device->BackendLock); return 1; default: alcSetError(device, ALC_INVALID_ENUM); return 0; } return 0; } /* alcGetIntegerv * * Returns information about the device and the version of OpenAL */ ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) { VerifyDevice(&device); if(size <= 0 || values == NULL) alcSetError(device, ALC_INVALID_VALUE); else GetIntegerv(device, param, size, values); if(device) ALCdevice_DecRef(device); } ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values) { ALCint *ivals; ALsizei i; VerifyDevice(&device); if(size <= 0 || values == NULL) alcSetError(device, ALC_INVALID_VALUE); else if(!device || device->Type == Capture) { ivals = malloc(size * sizeof(ALCint)); size = GetIntegerv(device, pname, size, ivals); for(i = 0;i < size;i++) values[i] = ivals[i]; free(ivals); } else /* render device */ { ClockLatency clock; ALuint64 basecount; ALuint samplecount; ALuint refcount; switch(pname) { case ALC_ATTRIBUTES_SIZE: *values = 21; break; case ALC_ALL_ATTRIBUTES: if(size < 21) alcSetError(device, ALC_INVALID_VALUE); else { i = 0; almtx_lock(&device->BackendLock); values[i++] = ALC_FREQUENCY; values[i++] = device->Frequency; if(device->Type != Loopback) { values[i++] = ALC_REFRESH; values[i++] = device->Frequency / device->UpdateSize; values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = device->FmtChans; values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = device->FmtType; } values[i++] = ALC_MONO_SOURCES; values[i++] = device->NumMonoSources; values[i++] = ALC_STEREO_SOURCES; values[i++] = device->NumStereoSources; values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = device->NumAuxSends; values[i++] = ALC_HRTF_SOFT; values[i++] = (device->Hrtf.Handle ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = device->Hrtf.Status; clock = V0(device->Backend,getClockLatency)(); values[i++] = ALC_DEVICE_CLOCK_SOFT; values[i++] = clock.ClockTime; values[i++] = ALC_DEVICE_LATENCY_SOFT; values[i++] = clock.Latency; almtx_unlock(&device->BackendLock); values[i++] = 0; } break; case ALC_DEVICE_CLOCK_SOFT: almtx_lock(&device->BackendLock); do { while(((refcount=ReadRef(&device->MixCount))&1) != 0) althrd_yield(); basecount = device->ClockBase; samplecount = device->SamplesDone; } while(refcount != ReadRef(&device->MixCount)); *values = basecount + (samplecount*DEVICE_CLOCK_RES/device->Frequency); almtx_unlock(&device->BackendLock); break; case ALC_DEVICE_LATENCY_SOFT: { almtx_lock(&device->BackendLock); clock = V0(device->Backend,getClockLatency)(); almtx_unlock(&device->BackendLock); *values = clock.Latency; } break; case ALC_DEVICE_CLOCK_LATENCY_SOFT: if(size < 2) alcSetError(device, ALC_INVALID_VALUE); else { ClockLatency clock; almtx_lock(&device->BackendLock); clock = V0(device->Backend,getClockLatency)(); almtx_unlock(&device->BackendLock); values[0] = clock.ClockTime; values[1] = clock.Latency; } break; default: ivals = malloc(size * sizeof(ALCint)); size = GetIntegerv(device, pname, size, ivals); for(i = 0;i < size;i++) values[i] = ivals[i]; free(ivals); break; } } if(device) ALCdevice_DecRef(device); } /* alcIsExtensionPresent * * Determines if there is support for a particular extension */ ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName) { ALCboolean bResult = ALC_FALSE; VerifyDevice(&device); if(!extName) alcSetError(device, ALC_INVALID_VALUE); else { size_t len = strlen(extName); const char *ptr = (device ? alcExtensionList : alcNoDeviceExtList); while(ptr && *ptr) { if(strncasecmp(ptr, extName, len) == 0 && (ptr[len] == '\0' || isspace(ptr[len]))) { bResult = ALC_TRUE; break; } if((ptr=strchr(ptr, ' ')) != NULL) { do { ++ptr; } while(isspace(*ptr)); } } } if(device) ALCdevice_DecRef(device); return bResult; } /* alcGetProcAddress * * Retrieves the function address for a particular extension function */ ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName) { ALCvoid *ptr = NULL; if(!funcName) { VerifyDevice(&device); alcSetError(device, ALC_INVALID_VALUE); if(device) ALCdevice_DecRef(device); } else { ALsizei i = 0; while(alcFunctions[i].funcName && strcmp(alcFunctions[i].funcName, funcName) != 0) i++; ptr = alcFunctions[i].address; } return ptr; } /* alcGetEnumValue * * Get the value for a particular ALC enumeration name */ ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName) { ALCenum val = 0; if(!enumName) { VerifyDevice(&device); alcSetError(device, ALC_INVALID_VALUE); if(device) ALCdevice_DecRef(device); } else { ALsizei i = 0; while(enumeration[i].enumName && strcmp(enumeration[i].enumName, enumName) != 0) i++; val = enumeration[i].value; } return val; } /* alcCreateContext * * Create and attach a context to the given device. */ ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList) { ALCcontext *ALContext; ALfloat valf; ALCenum err; LockLists(); if(!VerifyDevice(&device) || device->Type == Capture || !device->Connected) { UnlockLists(); alcSetError(device, ALC_INVALID_DEVICE); if(device) ALCdevice_DecRef(device); return NULL; } almtx_lock(&device->BackendLock); UnlockLists(); ATOMIC_STORE_SEQ(&device->LastError, ALC_NO_ERROR); ALContext = al_calloc(16, sizeof(ALCcontext)+sizeof(ALlistener)); if(ALContext) { InitRef(&ALContext->ref, 1); ALContext->Listener = (ALlistener*)ALContext->_listener_mem; ATOMIC_INIT(&ALContext->ActiveAuxSlotList, NULL); ALContext->VoiceCount = 0; ALContext->MaxVoices = 256; ALContext->Voices = al_calloc(16, ALContext->MaxVoices * sizeof(ALContext->Voices[0])); } if(!ALContext || !ALContext->Voices) { almtx_unlock(&device->BackendLock); if(ALContext) { al_free(ALContext->Voices); ALContext->Voices = NULL; al_free(ALContext); ALContext = NULL; } alcSetError(device, ALC_OUT_OF_MEMORY); ALCdevice_DecRef(device); return NULL; } if((err=UpdateDeviceParams(device, attrList)) != ALC_NO_ERROR) { almtx_unlock(&device->BackendLock); al_free(ALContext->Voices); ALContext->Voices = NULL; al_free(ALContext); ALContext = NULL; alcSetError(device, err); if(err == ALC_INVALID_DEVICE) { V0(device->Backend,lock)(); aluHandleDisconnect(device); V0(device->Backend,unlock)(); } ALCdevice_DecRef(device); return NULL; } ALContext->Device = device; ALCdevice_IncRef(device); InitContext(ALContext); if(ConfigValueFloat(al_string_get_cstr(device->DeviceName), NULL, "volume-adjust", &valf)) { if(!isfinite(valf)) ERR("volume-adjust must be finite: %f\n", valf); else { ALfloat db = clampf(valf, -24.0f, 24.0f); if(db != valf) WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f); ALContext->GainBoost = powf(10.0f, db/20.0f); TRACE("volume-adjust gain: %f\n", ALContext->GainBoost); } } UpdateListenerProps(ALContext); { ALCcontext *head = ATOMIC_LOAD_SEQ(&device->ContextList); do { ALContext->next = head; } while(ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCcontext*, &device->ContextList, &head, ALContext) == 0); } almtx_unlock(&device->BackendLock); ALCdevice_DecRef(device); TRACE("Created context %p\n", ALContext); return ALContext; } /* alcDestroyContext * * Remove a context from its device */ ALC_API ALCvoid ALC_APIENTRY alcDestroyContext(ALCcontext *context) { ALCdevice *Device; LockLists(); /* alcGetContextsDevice sets an error for invalid contexts */ Device = alcGetContextsDevice(context); if(Device) { almtx_lock(&Device->BackendLock); ReleaseContext(context, Device); if(!ATOMIC_LOAD_SEQ(&Device->ContextList)) { V0(Device->Backend,stop)(); Device->Flags &= ~DEVICE_RUNNING; } almtx_unlock(&Device->BackendLock); } UnlockLists(); } /* alcGetCurrentContext * * Returns the currently active context on the calling thread */ ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void) { ALCcontext *Context = altss_get(LocalContext); if(!Context) Context = ATOMIC_LOAD_SEQ(&GlobalContext); return Context; } /* alcGetThreadContext * * Returns the currently active thread-local context */ ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void) { return altss_get(LocalContext); } /* alcMakeContextCurrent * * Makes the given context the active process-wide context, and removes the * thread-local context for the calling thread. */ ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context) { /* context must be valid or NULL */ if(context && !VerifyContext(&context)) { alcSetError(NULL, ALC_INVALID_CONTEXT); return ALC_FALSE; } /* context's reference count is already incremented */ context = ATOMIC_EXCHANGE_SEQ(ALCcontext*, &GlobalContext, context); if(context) ALCcontext_DecRef(context); if((context=altss_get(LocalContext)) != NULL) { altss_set(LocalContext, NULL); ALCcontext_DecRef(context); } return ALC_TRUE; } /* alcSetThreadContext * * Makes the given context the active context for the current thread */ ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context) { ALCcontext *old; /* context must be valid or NULL */ if(context && !VerifyContext(&context)) { alcSetError(NULL, ALC_INVALID_CONTEXT); return ALC_FALSE; } /* context's reference count is already incremented */ old = altss_get(LocalContext); altss_set(LocalContext, context); if(old) ALCcontext_DecRef(old); return ALC_TRUE; } /* alcGetContextsDevice * * Returns the device that a particular context is attached to */ ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context) { ALCdevice *Device; if(!VerifyContext(&Context)) { alcSetError(NULL, ALC_INVALID_CONTEXT); return NULL; } Device = Context->Device; ALCcontext_DecRef(Context); return Device; } /* alcOpenDevice * * Opens the named device. */ ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) { const ALCchar *fmt; ALCdevice *device; ALCenum err; DO_INITCONFIG(); if(!PlaybackBackend.name) { alcSetError(NULL, ALC_INVALID_VALUE); return NULL; } if(deviceName && (!deviceName[0] || strcasecmp(deviceName, alcDefaultName) == 0 || strcasecmp(deviceName, "openal-soft") == 0 #ifdef _WIN32 /* Some old Windows apps hardcode these expecting OpenAL to use a * specific audio API, even when they're not enumerated. Creative's * router effectively ignores them too. */ || strcasecmp(deviceName, "DirectSound3D") == 0 || strcasecmp(deviceName, "DirectSound") == 0 || strcasecmp(deviceName, "MMSYSTEM") == 0 #endif )) deviceName = NULL; device = al_calloc(16, sizeof(ALCdevice)+sizeof(ALeffectslot)); if(!device) { alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } //Validate device InitRef(&device->ref, 1); device->Connected = ALC_TRUE; device->Type = Playback; ATOMIC_INIT(&device->LastError, ALC_NO_ERROR); device->Flags = 0; device->Bs2b = NULL; device->Uhj_Encoder = NULL; VECTOR_INIT(device->Hrtf.List); AL_STRING_INIT(device->Hrtf.Name); device->Render_Mode = NormalRender; AL_STRING_INIT(device->DeviceName); device->Dry.Buffer = NULL; device->Dry.NumChannels = 0; device->FOAOut.Buffer = NULL; device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; ATOMIC_INIT(&device->ContextList, NULL); device->ClockBase = 0; device->SamplesDone = 0; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 4; device->NumAuxSends = MAX_SENDS; InitUIntMap(&device->BufferMap, ~0); InitUIntMap(&device->EffectMap, ~0); InitUIntMap(&device->FilterMap, ~0); //Set output format device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; device->Frequency = DEFAULT_OUTPUT_RATE; device->IsHeadphones = AL_FALSE; device->AmbiFmt = AmbiFormat_Default; device->NumUpdates = 4; device->UpdateSize = 1024; if(!PlaybackBackend.getFactory) device->Backend = create_backend_wrapper(device, &PlaybackBackend.Funcs, ALCbackend_Playback); else { ALCbackendFactory *factory = PlaybackBackend.getFactory(); device->Backend = V(factory,createBackend)(device, ALCbackend_Playback); } if(!device->Backend) { al_free(device); alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } if(ConfigValueStr(deviceName, NULL, "channels", &fmt)) { static const struct { const char name[16]; enum DevFmtChannels chans; } chanlist[] = { { "mono", DevFmtMono }, { "stereo", DevFmtStereo }, { "quad", DevFmtQuad }, { "surround51", DevFmtX51 }, { "surround61", DevFmtX61 }, { "surround71", DevFmtX71 }, { "surround51rear", DevFmtX51Rear }, { "ambi1", DevFmtAmbi1 }, { "ambi2", DevFmtAmbi2 }, { "ambi3", DevFmtAmbi3 }, }; size_t i; for(i = 0;i < COUNTOF(chanlist);i++) { if(strcasecmp(chanlist[i].name, fmt) == 0) { device->FmtChans = chanlist[i].chans; device->Flags |= DEVICE_CHANNELS_REQUEST; break; } } if(i == COUNTOF(chanlist)) ERR("Unsupported channels: %s\n", fmt); } if(ConfigValueStr(deviceName, NULL, "sample-type", &fmt)) { static const struct { const char name[16]; enum DevFmtType type; } typelist[] = { { "int8", DevFmtByte }, { "uint8", DevFmtUByte }, { "int16", DevFmtShort }, { "uint16", DevFmtUShort }, { "int32", DevFmtInt }, { "uint32", DevFmtUInt }, { "float32", DevFmtFloat }, }; size_t i; for(i = 0;i < COUNTOF(typelist);i++) { if(strcasecmp(typelist[i].name, fmt) == 0) { device->FmtType = typelist[i].type; device->Flags |= DEVICE_SAMPLE_TYPE_REQUEST; break; } } if(i == COUNTOF(typelist)) ERR("Unsupported sample-type: %s\n", fmt); } if(ConfigValueUInt(deviceName, NULL, "frequency", &device->Frequency)) { device->Flags |= DEVICE_FREQUENCY_REQUEST; if(device->Frequency < MIN_OUTPUT_RATE) ERR("%uhz request clamped to %uhz minimum\n", device->Frequency, MIN_OUTPUT_RATE); device->Frequency = maxu(device->Frequency, MIN_OUTPUT_RATE); } ConfigValueUInt(deviceName, NULL, "periods", &device->NumUpdates); device->NumUpdates = clampu(device->NumUpdates, 2, 16); ConfigValueUInt(deviceName, NULL, "period_size", &device->UpdateSize); device->UpdateSize = clampu(device->UpdateSize, 64, 8192); if((CPUCapFlags&(CPU_CAP_SSE|CPU_CAP_NEON)) != 0) device->UpdateSize = (device->UpdateSize+3)&~3; ConfigValueUInt(deviceName, NULL, "sources", &device->SourcesMax); if(device->SourcesMax == 0) device->SourcesMax = 256; ConfigValueUInt(deviceName, NULL, "slots", &device->AuxiliaryEffectSlotMax); if(device->AuxiliaryEffectSlotMax == 0) device->AuxiliaryEffectSlotMax = 4; ConfigValueUInt(deviceName, NULL, "sends", &device->NumAuxSends); if(device->NumAuxSends > MAX_SENDS) device->NumAuxSends = MAX_SENDS; device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; // Find a playback device to open if((err=V(device->Backend,open)(deviceName)) != ALC_NO_ERROR) { DELETE_OBJ(device->Backend); al_free(device); alcSetError(NULL, err); return NULL; } almtx_init(&device->BackendLock, almtx_plain); if(ConfigValueStr(al_string_get_cstr(device->DeviceName), NULL, "ambi-format", &fmt)) { if(strcasecmp(fmt, "fuma") == 0) device->AmbiFmt = AmbiFormat_FuMa; else if(strcasecmp(fmt, "acn+sn3d") == 0) device->AmbiFmt = AmbiFormat_ACN_SN3D; else if(strcasecmp(fmt, "acn+n3d") == 0) device->AmbiFmt = AmbiFormat_ACN_N3D; else ERR("Unsupported ambi-format: %s\n", fmt); } if(DefaultEffect.type != AL_EFFECT_NULL) { device->DefaultSlot = (ALeffectslot*)device->_slot_mem; if(InitEffectSlot(device->DefaultSlot) != AL_NO_ERROR) { device->DefaultSlot = NULL; ERR("Failed to initialize the default effect slot\n"); } else { aluInitEffectPanning(device->DefaultSlot); if(InitializeEffect(device, device->DefaultSlot, &DefaultEffect) != AL_NO_ERROR) { DeinitEffectSlot(device->DefaultSlot); device->DefaultSlot = NULL; ERR("Failed to initialize the default effect\n"); } } } { ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList); do { device->next = head; } while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device)); } TRACE("Created device %p, \"%s\"\n", device, al_string_get_cstr(device->DeviceName)); return device; } /* alcCloseDevice * * Closes the given device. */ ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device) { ALCdevice *iter, *origdev; ALCcontext *ctx; LockLists(); iter = ATOMIC_LOAD_SEQ(&DeviceList); do { if(iter == device) break; } while((iter=iter->next) != NULL); if(!iter || iter->Type == Capture) { alcSetError(iter, ALC_INVALID_DEVICE); UnlockLists(); return ALC_FALSE; } almtx_lock(&device->BackendLock); origdev = device; if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCdevice*, &DeviceList, &origdev, device->next)) { ALCdevice *volatile*list = &origdev->next; while(*list) { if(*list == device) { *list = (*list)->next; break; } list = &(*list)->next; } } UnlockLists(); ctx = ATOMIC_LOAD_SEQ(&device->ContextList); while(ctx != NULL) { ALCcontext *next = ctx->next; WARN("Releasing context %p\n", ctx); ReleaseContext(ctx, device); ctx = next; } if((device->Flags&DEVICE_RUNNING)) V0(device->Backend,stop)(); device->Flags &= ~DEVICE_RUNNING; almtx_unlock(&device->BackendLock); ALCdevice_DecRef(device); return ALC_TRUE; } /************************************************ * ALC capture functions ************************************************/ ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples) { ALCdevice *device = NULL; ALCenum err; DO_INITCONFIG(); if(!CaptureBackend.name) { alcSetError(NULL, ALC_INVALID_VALUE); return NULL; } if(samples <= 0) { alcSetError(NULL, ALC_INVALID_VALUE); return NULL; } if(deviceName && (!deviceName[0] || strcasecmp(deviceName, alcDefaultName) == 0 || strcasecmp(deviceName, "openal-soft") == 0)) deviceName = NULL; device = al_calloc(16, sizeof(ALCdevice)); if(!device) { alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } //Validate device InitRef(&device->ref, 1); device->Connected = ALC_TRUE; device->Type = Capture; VECTOR_INIT(device->Hrtf.List); AL_STRING_INIT(device->Hrtf.Name); AL_STRING_INIT(device->DeviceName); device->Dry.Buffer = NULL; device->Dry.NumChannels = 0; device->FOAOut.Buffer = NULL; device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; InitUIntMap(&device->BufferMap, ~0); InitUIntMap(&device->EffectMap, ~0); InitUIntMap(&device->FilterMap, ~0); if(!CaptureBackend.getFactory) device->Backend = create_backend_wrapper(device, &CaptureBackend.Funcs, ALCbackend_Capture); else { ALCbackendFactory *factory = CaptureBackend.getFactory(); device->Backend = V(factory,createBackend)(device, ALCbackend_Capture); } if(!device->Backend) { al_free(device); alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } device->Flags |= DEVICE_FREQUENCY_REQUEST; device->Frequency = frequency; device->Flags |= DEVICE_CHANNELS_REQUEST | DEVICE_SAMPLE_TYPE_REQUEST; if(DecomposeDevFormat(format, &device->FmtChans, &device->FmtType) == AL_FALSE) { al_free(device); alcSetError(NULL, ALC_INVALID_ENUM); return NULL; } device->IsHeadphones = AL_FALSE; device->AmbiFmt = AmbiFormat_Default; device->UpdateSize = samples; device->NumUpdates = 1; if((err=V(device->Backend,open)(deviceName)) != ALC_NO_ERROR) { al_free(device); alcSetError(NULL, err); return NULL; } almtx_init(&device->BackendLock, almtx_plain); { ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList); do { device->next = head; } while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device)); } TRACE("Created device %p, \"%s\"\n", device, al_string_get_cstr(device->DeviceName)); return device; } ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device) { ALCdevice *iter, *origdev; LockLists(); iter = ATOMIC_LOAD_SEQ(&DeviceList); do { if(iter == device) break; } while((iter=iter->next) != NULL); if(!iter || iter->Type != Capture) { alcSetError(iter, ALC_INVALID_DEVICE); UnlockLists(); return ALC_FALSE; } origdev = device; if(!ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALCdevice*, &DeviceList, &origdev, device->next)) { ALCdevice *volatile*list = &origdev->next; while(*list) { if(*list == device) { *list = (*list)->next; break; } list = &(*list)->next; } } UnlockLists(); ALCdevice_DecRef(device); return ALC_TRUE; } ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device) { if(!VerifyDevice(&device) || device->Type != Capture) alcSetError(device, ALC_INVALID_DEVICE); else { almtx_lock(&device->BackendLock); if(!device->Connected) alcSetError(device, ALC_INVALID_DEVICE); else if(!(device->Flags&DEVICE_RUNNING)) { if(V0(device->Backend,start)()) device->Flags |= DEVICE_RUNNING; else { aluHandleDisconnect(device); alcSetError(device, ALC_INVALID_DEVICE); } } almtx_unlock(&device->BackendLock); } if(device) ALCdevice_DecRef(device); } ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device) { if(!VerifyDevice(&device) || device->Type != Capture) alcSetError(device, ALC_INVALID_DEVICE); else { almtx_lock(&device->BackendLock); if((device->Flags&DEVICE_RUNNING)) V0(device->Backend,stop)(); device->Flags &= ~DEVICE_RUNNING; almtx_unlock(&device->BackendLock); } if(device) ALCdevice_DecRef(device); } ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) { if(!VerifyDevice(&device) || device->Type != Capture) alcSetError(device, ALC_INVALID_DEVICE); else { ALCenum err = ALC_INVALID_VALUE; almtx_lock(&device->BackendLock); if(samples >= 0 && V0(device->Backend,availableSamples)() >= (ALCuint)samples) err = V(device->Backend,captureSamples)(buffer, samples); almtx_unlock(&device->BackendLock); if(err != ALC_NO_ERROR) alcSetError(device, err); } if(device) ALCdevice_DecRef(device); } /************************************************ * ALC loopback functions ************************************************/ /* alcLoopbackOpenDeviceSOFT * * Open a loopback device, for manual rendering. */ ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName) { ALCbackendFactory *factory; ALCdevice *device; DO_INITCONFIG(); /* Make sure the device name, if specified, is us. */ if(deviceName && strcmp(deviceName, alcDefaultName) != 0) { alcSetError(NULL, ALC_INVALID_VALUE); return NULL; } device = al_calloc(16, sizeof(ALCdevice)); if(!device) { alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } //Validate device InitRef(&device->ref, 1); device->Connected = ALC_TRUE; device->Type = Loopback; ATOMIC_INIT(&device->LastError, ALC_NO_ERROR); device->Flags = 0; VECTOR_INIT(device->Hrtf.List); AL_STRING_INIT(device->Hrtf.Name); device->Bs2b = NULL; device->Uhj_Encoder = NULL; device->Render_Mode = NormalRender; AL_STRING_INIT(device->DeviceName); device->Dry.Buffer = NULL; device->Dry.NumChannels = 0; device->FOAOut.Buffer = NULL; device->FOAOut.NumChannels = 0; device->RealOut.Buffer = NULL; device->RealOut.NumChannels = 0; ATOMIC_INIT(&device->ContextList, NULL); device->ClockBase = 0; device->SamplesDone = 0; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 4; device->NumAuxSends = MAX_SENDS; InitUIntMap(&device->BufferMap, ~0); InitUIntMap(&device->EffectMap, ~0); InitUIntMap(&device->FilterMap, ~0); factory = ALCloopbackFactory_getFactory(); device->Backend = V(factory,createBackend)(device, ALCbackend_Loopback); if(!device->Backend) { al_free(device); alcSetError(NULL, ALC_OUT_OF_MEMORY); return NULL; } almtx_init(&device->BackendLock, almtx_plain); //Set output format device->NumUpdates = 0; device->UpdateSize = 0; device->Frequency = DEFAULT_OUTPUT_RATE; device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; device->IsHeadphones = AL_FALSE; device->AmbiFmt = AmbiFormat_Default; ConfigValueUInt(NULL, NULL, "sources", &device->SourcesMax); if(device->SourcesMax == 0) device->SourcesMax = 256; ConfigValueUInt(NULL, NULL, "slots", &device->AuxiliaryEffectSlotMax); if(device->AuxiliaryEffectSlotMax == 0) device->AuxiliaryEffectSlotMax = 4; ConfigValueUInt(NULL, NULL, "sends", &device->NumAuxSends); if(device->NumAuxSends > MAX_SENDS) device->NumAuxSends = MAX_SENDS; device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; // Open the "backend" V(device->Backend,open)("Loopback"); { ALCdevice *head = ATOMIC_LOAD_SEQ(&DeviceList); do { device->next = head; } while(!ATOMIC_COMPARE_EXCHANGE_WEAK_SEQ(ALCdevice*, &DeviceList, &head, device)); } TRACE("Created device %p\n", device); return device; } /* alcIsRenderFormatSupportedSOFT * * Determines if the loopback device supports the given format for rendering. */ ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type) { ALCboolean ret = ALC_FALSE; if(!VerifyDevice(&device) || device->Type != Loopback) alcSetError(device, ALC_INVALID_DEVICE); else if(freq <= 0) alcSetError(device, ALC_INVALID_VALUE); else { if(IsValidALCType(type) && BytesFromDevFmt(type) > 0 && IsValidALCChannels(channels) && ChannelsFromDevFmt(channels) > 0 && freq >= MIN_OUTPUT_RATE) ret = ALC_TRUE; } if(device) ALCdevice_DecRef(device); return ret; } /* alcRenderSamplesSOFT * * Renders some samples into a buffer, using the format last set by the * attributes given to alcCreateContext. */ FORCE_ALIGN ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) { if(!VerifyDevice(&device) || device->Type != Loopback) alcSetError(device, ALC_INVALID_DEVICE); else if(samples < 0 || (samples > 0 && buffer == NULL)) alcSetError(device, ALC_INVALID_VALUE); else aluMixData(device, buffer, samples); if(device) ALCdevice_DecRef(device); } /************************************************ * ALC DSP pause/resume functions ************************************************/ /* alcDevicePauseSOFT * * Pause the DSP to stop audio processing. */ ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device) { if(!VerifyDevice(&device) || device->Type != Playback) alcSetError(device, ALC_INVALID_DEVICE); else { almtx_lock(&device->BackendLock); if((device->Flags&DEVICE_RUNNING)) V0(device->Backend,stop)(); device->Flags &= ~DEVICE_RUNNING; device->Flags |= DEVICE_PAUSED; almtx_unlock(&device->BackendLock); } if(device) ALCdevice_DecRef(device); } /* alcDeviceResumeSOFT * * Resume the DSP to restart audio processing. */ ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device) { if(!VerifyDevice(&device) || device->Type != Playback) alcSetError(device, ALC_INVALID_DEVICE); else { almtx_lock(&device->BackendLock); if((device->Flags&DEVICE_PAUSED)) { device->Flags &= ~DEVICE_PAUSED; if(ATOMIC_LOAD_SEQ(&device->ContextList) != NULL) { if(V0(device->Backend,start)() != ALC_FALSE) device->Flags |= DEVICE_RUNNING; else { alcSetError(device, ALC_INVALID_DEVICE); V0(device->Backend,lock)(); aluHandleDisconnect(device); V0(device->Backend,unlock)(); } } } almtx_unlock(&device->BackendLock); } if(device) ALCdevice_DecRef(device); } /************************************************ * ALC HRTF functions ************************************************/ /* alcGetStringiSOFT * * Gets a string parameter at the given index. */ ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index) { const ALCchar *str = NULL; if(!VerifyDevice(&device) || device->Type == Capture) alcSetError(device, ALC_INVALID_DEVICE); else switch(paramName) { case ALC_HRTF_SPECIFIER_SOFT: if(index >= 0 && (size_t)index < VECTOR_SIZE(device->Hrtf.List)) str = al_string_get_cstr(VECTOR_ELEM(device->Hrtf.List, index).name); else alcSetError(device, ALC_INVALID_VALUE); break; default: alcSetError(device, ALC_INVALID_ENUM); break; } if(device) ALCdevice_DecRef(device); return str; } /* alcResetDeviceSOFT * * Resets the given device output, using the specified attribute list. */ ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs) { ALCenum err; LockLists(); if(!VerifyDevice(&device) || device->Type == Capture || !device->Connected) { UnlockLists(); alcSetError(device, ALC_INVALID_DEVICE); if(device) ALCdevice_DecRef(device); return ALC_FALSE; } almtx_lock(&device->BackendLock); UnlockLists(); err = UpdateDeviceParams(device, attribs); almtx_unlock(&device->BackendLock); if(err != ALC_NO_ERROR) { alcSetError(device, err); if(err == ALC_INVALID_DEVICE) { V0(device->Backend,lock)(); aluHandleDisconnect(device); V0(device->Backend,unlock)(); } ALCdevice_DecRef(device); return ALC_FALSE; } ALCdevice_DecRef(device); return ALC_TRUE; }