/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alSource.h" #include "alBuffer.h" #include "alListener.h" #include "alAuxEffectSlot.h" #include "alu.h" #include "bs2b.h" static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector) { outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1]; outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2]; outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0]; } static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2) { return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] + inVector1[2]*inVector2[2]; } static __inline ALvoid aluNormalize(ALfloat *inVector) { ALfloat length, inverse_length; length = aluSqrt(aluDotproduct(inVector, inVector)); if(length != 0.0f) { inverse_length = 1.0f/length; inVector[0] *= inverse_length; inVector[1] *= inverse_length; inVector[2] *= inverse_length; } } static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4]) { ALfloat temp[4] = { vector[0], vector[1], vector[2], w }; vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0]; vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1]; vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2]; } ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext) { ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume; ALbufferlistitem *BufferListItem; enum DevFmtChannels DevChans; enum FmtChannels Channels; ALfloat DryGain, DryGainHF; ALfloat WetGain[MAX_SENDS]; ALfloat WetGainHF[MAX_SENDS]; ALint NumSends, Frequency; ALboolean DupStereo; ALfloat Pitch; ALfloat cw; ALint i; /* Get device properties */ DevChans = ALContext->Device->FmtChans; DupStereo = ALContext->Device->DuplicateStereo; NumSends = ALContext->Device->NumAuxSends; Frequency = ALContext->Device->Frequency; /* Get listener properties */ ListenerGain = ALContext->Listener.Gain; /* Get source properties */ SourceVolume = ALSource->flGain; MinVolume = ALSource->flMinGain; MaxVolume = ALSource->flMaxGain; Pitch = ALSource->flPitch; /* Calculate the stepping value */ Channels = FmtMono; BufferListItem = ALSource->queue; while(BufferListItem != NULL) { ALbuffer *ALBuffer; if((ALBuffer=BufferListItem->buffer) != NULL) { ALint maxstep = STACK_DATA_SIZE / FrameSizeFromFmt(ALBuffer->FmtChannels, ALBuffer->FmtType); maxstep -= ResamplerPadding[ALSource->Resampler] + ResamplerPrePadding[ALSource->Resampler] + 1; maxstep = min(maxstep, INT_MAX>>FRACTIONBITS); Pitch = Pitch * ALBuffer->Frequency / Frequency; if(Pitch > (ALfloat)maxstep) ALSource->Params.Step = maxstep<Params.Step = Pitch*FRACTIONONE; if(ALSource->Params.Step == 0) ALSource->Params.Step = 1; } Channels = ALBuffer->FmtChannels; break; } BufferListItem = BufferListItem->next; } /* Calculate gains */ DryGain = SourceVolume; DryGain = __min(DryGain,MaxVolume); DryGain = __max(DryGain,MinVolume); DryGainHF = 1.0f; switch(ALSource->DirectFilter.type) { case AL_FILTER_LOWPASS: DryGain *= ALSource->DirectFilter.Gain; DryGainHF *= ALSource->DirectFilter.GainHF; break; } for(i = 0;i < MAXCHANNELS;i++) { ALuint i2; for(i2 = 0;i2 < MAXCHANNELS;i2++) ALSource->Params.DryGains[i][i2] = 0.0f; } switch(Channels) { case FmtMono: ALSource->Params.DryGains[0][FRONT_CENTER] = DryGain * ListenerGain; break; case FmtStereo: if(DupStereo == AL_FALSE) { ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; } else { switch(DevChans) { case DevFmtMono: case DevFmtStereo: ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; break; case DevFmtQuad: case DevFmtX51: DryGain *= aluSqrt(2.0f/4.0f); ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[0][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][BACK_RIGHT] = DryGain * ListenerGain; break; case DevFmtX61: DryGain *= aluSqrt(2.0f/4.0f); ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[0][SIDE_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][SIDE_RIGHT] = DryGain * ListenerGain; break; case DevFmtX71: DryGain *= aluSqrt(2.0f/6.0f); ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[0][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][BACK_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[0][SIDE_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][SIDE_RIGHT] = DryGain * ListenerGain; break; } } break; case FmtRear: ALSource->Params.DryGains[0][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][BACK_RIGHT] = DryGain * ListenerGain; break; case FmtQuad: ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[2][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[3][BACK_RIGHT] = DryGain * ListenerGain; break; case FmtX51: ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[2][FRONT_CENTER] = DryGain * ListenerGain; ALSource->Params.DryGains[3][LFE] = DryGain * ListenerGain; ALSource->Params.DryGains[4][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[5][BACK_RIGHT] = DryGain * ListenerGain; break; case FmtX61: ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[2][FRONT_CENTER] = DryGain * ListenerGain; ALSource->Params.DryGains[3][LFE] = DryGain * ListenerGain; ALSource->Params.DryGains[4][BACK_CENTER] = DryGain * ListenerGain; ALSource->Params.DryGains[5][SIDE_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[6][SIDE_RIGHT] = DryGain * ListenerGain; break; case FmtX71: ALSource->Params.DryGains[0][FRONT_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[1][FRONT_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[2][FRONT_CENTER] = DryGain * ListenerGain; ALSource->Params.DryGains[3][LFE] = DryGain * ListenerGain; ALSource->Params.DryGains[4][BACK_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[5][BACK_RIGHT] = DryGain * ListenerGain; ALSource->Params.DryGains[6][SIDE_LEFT] = DryGain * ListenerGain; ALSource->Params.DryGains[7][SIDE_RIGHT] = DryGain * ListenerGain; break; } for(i = 0;i < NumSends;i++) { WetGain[i] = SourceVolume; WetGain[i] = __min(WetGain[i],MaxVolume); WetGain[i] = __max(WetGain[i],MinVolume); WetGainHF[i] = 1.0f; switch(ALSource->Send[i].WetFilter.type) { case AL_FILTER_LOWPASS: WetGain[i] *= ALSource->Send[i].WetFilter.Gain; WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF; break; } ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain; } /* Update filter coefficients. Calculations based on the I3DL2 * spec. */ cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency); /* We use two chained one-pole filters, so we need to take the * square root of the squared gain, which is the same as the base * gain. */ ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw); for(i = 0;i < NumSends;i++) { /* We use a one-pole filter, so we need to take the squared gain */ ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw); ALSource->Params.Send[i].iirFilter.coeff = a; } } ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext) { const ALCdevice *Device = ALContext->Device; ALfloat InnerAngle,OuterAngle,Angle,Distance,OrigDist; ALfloat Direction[3],Position[3],SourceToListener[3]; ALfloat Velocity[3],ListenerVel[3]; ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF; ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain; ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound; ALfloat AirAbsorptionFactor; ALbufferlistitem *BufferListItem; ALfloat Attenuation, EffectiveDist; ALfloat RoomAttenuation[MAX_SENDS]; ALfloat MetersPerUnit; ALfloat RoomRolloff[MAX_SENDS]; ALfloat DryGain; ALfloat DryGainHF; ALfloat WetGain[MAX_SENDS]; ALfloat WetGainHF[MAX_SENDS]; ALfloat DirGain, AmbientGain; const ALfloat *SpeakerGain; ALfloat Pitch; ALfloat length; ALuint Frequency; ALint NumSends; ALint pos, s, i; ALfloat cw; DryGainHF = 1.0f; for(i = 0;i < MAX_SENDS;i++) WetGainHF[i] = 1.0f; //Get context properties DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor; DopplerVelocity = ALContext->DopplerVelocity; SpeedOfSound = ALContext->flSpeedOfSound; NumSends = Device->NumAuxSends; Frequency = Device->Frequency; //Get listener properties ListenerGain = ALContext->Listener.Gain; MetersPerUnit = ALContext->Listener.MetersPerUnit; memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity)); //Get source properties SourceVolume = ALSource->flGain; memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition)); memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation)); memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity)); MinVolume = ALSource->flMinGain; MaxVolume = ALSource->flMaxGain; MinDist = ALSource->flRefDistance; MaxDist = ALSource->flMaxDistance; Rolloff = ALSource->flRollOffFactor; InnerAngle = ALSource->flInnerAngle; OuterAngle = ALSource->flOuterAngle; OuterGainHF = ALSource->OuterGainHF; AirAbsorptionFactor = ALSource->AirAbsorptionFactor; //1. Translate Listener to origin (convert to head relative) if(ALSource->bHeadRelative == AL_FALSE) { ALfloat U[3],V[3],N[3]; ALfloat Matrix[4][4]; // Build transform matrix memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector aluNormalize(N); // Normalized At-vector memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector aluNormalize(V); // Normalized Up-vector aluCrossproduct(N, V, U); // Right-vector aluNormalize(U); // Normalized Right-vector Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f; Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f; Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f; Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f; // Translate position Position[0] -= ALContext->Listener.Position[0]; Position[1] -= ALContext->Listener.Position[1]; Position[2] -= ALContext->Listener.Position[2]; // Transform source position and direction into listener space aluMatrixVector(Position, 1.0f, Matrix); aluMatrixVector(Direction, 0.0f, Matrix); // Transform source and listener velocity into listener space aluMatrixVector(Velocity, 0.0f, Matrix); aluMatrixVector(ListenerVel, 0.0f, Matrix); } else ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f; SourceToListener[0] = -Position[0]; SourceToListener[1] = -Position[1]; SourceToListener[2] = -Position[2]; aluNormalize(SourceToListener); aluNormalize(Direction); //2. Calculate distance attenuation Distance = aluSqrt(aluDotproduct(Position, Position)); OrigDist = Distance; Attenuation = 1.0f; for(i = 0;i < NumSends;i++) { RoomAttenuation[i] = 1.0f; RoomRolloff[i] = ALSource->RoomRolloffFactor; if(ALSource->Send[i].Slot && (ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB || ALSource->Send[i].Slot->effect.type == AL_EFFECT_EAXREVERB)) RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor; } switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel : ALContext->DistanceModel) { case AL_INVERSE_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if(MaxDist < MinDist) break; //fall-through case AL_INVERSE_DISTANCE: if(MinDist > 0.0f) { if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f) Attenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist))); for(i = 0;i < NumSends;i++) { if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f) RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist))); } } break; case AL_LINEAR_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if(MaxDist < MinDist) break; //fall-through case AL_LINEAR_DISTANCE: if(MaxDist != MinDist) { Attenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist)); Attenuation = __max(Attenuation, 0.0f); for(i = 0;i < NumSends;i++) { RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist)); RoomAttenuation[i] = __max(RoomAttenuation[i], 0.0f); } } break; case AL_EXPONENT_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if(MaxDist < MinDist) break; //fall-through case AL_EXPONENT_DISTANCE: if(Distance > 0.0f && MinDist > 0.0f) { Attenuation = aluPow(Distance/MinDist, -Rolloff); for(i = 0;i < NumSends;i++) RoomAttenuation[i] = aluPow(Distance/MinDist, -RoomRolloff[i]); } break; case AL_NONE: break; } // Source Gain + Attenuation DryGain = SourceVolume * Attenuation; for(i = 0;i < NumSends;i++) WetGain[i] = SourceVolume * RoomAttenuation[i]; EffectiveDist = 0.0f; if(MinDist > 0.0f && Attenuation < 1.0f) EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit; // Distance-based air absorption if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f) { ALfloat absorb; // Absorption calculation is done in dB absorb = (AirAbsorptionFactor*AIRABSORBGAINDBHF) * EffectiveDist; // Convert dB to linear gain before applying absorb = aluPow(10.0f, absorb/20.0f); DryGainHF *= absorb; } //3. Apply directional soundcones Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI; if(Angle >= InnerAngle && Angle <= OuterAngle) { ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle); ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale); ConeHF = (1.0f+(OuterGainHF-1.0f)*scale); } else if(Angle > OuterAngle) { ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)); ConeHF = (1.0f+(OuterGainHF-1.0f)); } else { ConeVolume = 1.0f; ConeHF = 1.0f; } // Apply some high-frequency attenuation for sources behind the listener // NOTE: This should be aluDotproduct({0,0,-1}, ListenerToSource), however // that is equivalent to aluDotproduct({0,0,1}, SourceToListener), which is // the same as SourceToListener[2] Angle = aluAcos(SourceToListener[2]) * 180.0f/M_PI; // Sources within the minimum distance attenuate less if(OrigDist < MinDist) Angle *= OrigDist/MinDist; if(Angle > 90.0f) { ALfloat scale = (Angle-90.0f) / (180.1f-90.0f); // .1 to account for fp errors ConeHF *= 1.0f - (Device->HeadDampen*scale); } DryGain *= ConeVolume; if(ALSource->DryGainHFAuto) DryGainHF *= ConeHF; // Clamp to Min/Max Gain DryGain = __min(DryGain,MaxVolume); DryGain = __max(DryGain,MinVolume); for(i = 0;i < NumSends;i++) { ALeffectslot *Slot = ALSource->Send[i].Slot; if(!Slot || Slot->effect.type == AL_EFFECT_NULL) { ALSource->Params.Send[i].WetGain = 0.0f; WetGainHF[i] = 1.0f; continue; } if(Slot->AuxSendAuto) { if(ALSource->WetGainAuto) WetGain[i] *= ConeVolume; if(ALSource->WetGainHFAuto) WetGainHF[i] *= ConeHF; // Clamp to Min/Max Gain WetGain[i] = __min(WetGain[i],MaxVolume); WetGain[i] = __max(WetGain[i],MinVolume); if(Slot->effect.type == AL_EFFECT_REVERB || Slot->effect.type == AL_EFFECT_EAXREVERB) { /* Apply a decay-time transformation to the wet path, based on * the attenuation of the dry path. * * Using the approximate (effective) source to listener * distance, the initial decay of the reverb effect is * calculated and applied to the wet path. */ WetGain[i] *= aluPow(10.0f, EffectiveDist / (SPEEDOFSOUNDMETRESPERSEC * Slot->effect.Reverb.DecayTime) * -60.0 / 20.0); WetGainHF[i] *= aluPow(Slot->effect.Reverb.AirAbsorptionGainHF, AirAbsorptionFactor * EffectiveDist); } } else { /* If the slot's auxiliary send auto is off, the data sent to the * effect slot is the same as the dry path, sans filter effects */ WetGain[i] = DryGain; WetGainHF[i] = DryGainHF; } switch(ALSource->Send[i].WetFilter.type) { case AL_FILTER_LOWPASS: WetGain[i] *= ALSource->Send[i].WetFilter.Gain; WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF; break; } ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain; } // Apply filter gains and filters switch(ALSource->DirectFilter.type) { case AL_FILTER_LOWPASS: DryGain *= ALSource->DirectFilter.Gain; DryGainHF *= ALSource->DirectFilter.GainHF; break; } DryGain *= ListenerGain; // Calculate Velocity Pitch = ALSource->flPitch; if(DopplerFactor != 0.0f) { ALfloat VSS, VLS; ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) / DopplerFactor; VSS = aluDotproduct(Velocity, SourceToListener); if(VSS >= MaxVelocity) VSS = (MaxVelocity - 1.0f); else if(VSS <= -MaxVelocity) VSS = -MaxVelocity + 1.0f; VLS = aluDotproduct(ListenerVel, SourceToListener); if(VLS >= MaxVelocity) VLS = (MaxVelocity - 1.0f); else if(VLS <= -MaxVelocity) VLS = -MaxVelocity + 1.0f; Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) / ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS)); } BufferListItem = ALSource->queue; while(BufferListItem != NULL) { ALbuffer *ALBuffer; if((ALBuffer=BufferListItem->buffer) != NULL) { ALint maxstep = STACK_DATA_SIZE / FrameSizeFromFmt(ALBuffer->FmtChannels, ALBuffer->FmtType); maxstep -= ResamplerPadding[ALSource->Resampler] + ResamplerPrePadding[ALSource->Resampler] + 1; maxstep = min(maxstep, INT_MAX>>FRACTIONBITS); Pitch = Pitch * ALBuffer->Frequency / Frequency; if(Pitch > (ALfloat)maxstep) ALSource->Params.Step = maxstep<Params.Step = Pitch*FRACTIONONE; if(ALSource->Params.Step == 0) ALSource->Params.Step = 1; } break; } BufferListItem = BufferListItem->next; } // Use energy-preserving panning algorithm for multi-speaker playback length = __max(OrigDist, MinDist); if(length > 0.0f) { ALfloat invlen = 1.0f/length; Position[0] *= invlen; Position[1] *= invlen; Position[2] *= invlen; } pos = aluCart2LUTpos(-Position[2], Position[0]); SpeakerGain = &Device->PanningLUT[MAXCHANNELS * pos]; DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]); // elevation adjustment for directional gain. this sucks, but // has low complexity AmbientGain = aluSqrt(1.0/Device->NumChan); for(s = 0;s < MAXCHANNELS;s++) { ALuint s2; for(s2 = 0;s2 < MAXCHANNELS;s2++) ALSource->Params.DryGains[s][s2] = 0.0f; } for(s = 0;s < (ALsizei)Device->NumChan;s++) { Channel chan = Device->Speaker2Chan[s]; ALfloat gain = AmbientGain + (SpeakerGain[chan]-AmbientGain)*DirGain; ALSource->Params.DryGains[0][chan] = DryGain * gain; } /* Update filter coefficients. */ cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency); /* Spatialized sources use four chained one-pole filters, so we need to * take the fourth root of the squared gain, which is the same as the * square root of the base gain. */ ALSource->Params.iirFilter.coeff = lpCoeffCalc(aluSqrt(DryGainHF), cw); for(i = 0;i < NumSends;i++) { /* The wet path uses two chained one-pole filters, so take the * base gain (square root of the squared gain) */ ALSource->Params.Send[i].iirFilter.coeff = lpCoeffCalc(WetGainHF[i], cw); } } static __inline ALfloat aluF2F(ALfloat val) { return val; } static __inline ALushort aluF2US(ALfloat val) { if(val > 1.0f) return 65535; if(val < -1.0f) return 0; return (ALint)(val*32767.0f) + 32768; } static __inline ALshort aluF2S(ALfloat val) { if(val > 1.0f) return 32767; if(val < -1.0f) return -32768; return (ALint)(val*32767.0f); } static __inline ALubyte aluF2UB(ALfloat val) { ALushort i = aluF2US(val); return i>>8; } static __inline ALbyte aluF2B(ALfloat val) { ALshort i = aluF2S(val); return i>>8; } static const Channel MonoChans[] = { FRONT_CENTER }; static const Channel StereoChans[] = { FRONT_LEFT, FRONT_RIGHT }; static const Channel QuadChans[] = { FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT }; static const Channel X51Chans[] = { FRONT_LEFT, FRONT_RIGHT, FRONT_CENTER, LFE, BACK_LEFT, BACK_RIGHT }; static const Channel X61Chans[] = { FRONT_LEFT, FRONT_LEFT, FRONT_CENTER, LFE, BACK_CENTER, SIDE_LEFT, SIDE_RIGHT }; static const Channel X71Chans[] = { FRONT_LEFT, FRONT_RIGHT, FRONT_CENTER, LFE, BACK_LEFT, BACK_RIGHT, SIDE_LEFT, SIDE_RIGHT }; #define DECL_TEMPLATE(T, chans,N, func) \ static void Write_##T##_##chans(ALCdevice *device, T *buffer, ALuint SamplesToDo)\ { \ ALfloat (*DryBuffer)[MAXCHANNELS] = device->DryBuffer; \ ALfloat (*Matrix)[MAXCHANNELS] = device->ChannelMatrix; \ const ALuint *ChanMap = device->DevChannels; \ ALuint i, j, c; \ \ for(i = 0;i < SamplesToDo;i++) \ { \ for(j = 0;j < N;j++) \ { \ ALfloat samp = 0.0f; \ for(c = 0;c < MAXCHANNELS;c++) \ samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \ buffer[ChanMap[chans[j]]] = func(samp); \ } \ buffer += N; \ } \ } DECL_TEMPLATE(ALfloat, MonoChans,1, aluF2F) DECL_TEMPLATE(ALfloat, QuadChans,4, aluF2F) DECL_TEMPLATE(ALfloat, X51Chans,6, aluF2F) DECL_TEMPLATE(ALfloat, X61Chans,7, aluF2F) DECL_TEMPLATE(ALfloat, X71Chans,8, aluF2F) DECL_TEMPLATE(ALushort, MonoChans,1, aluF2US) DECL_TEMPLATE(ALushort, QuadChans,4, aluF2US) DECL_TEMPLATE(ALushort, X51Chans,6, aluF2US) DECL_TEMPLATE(ALushort, X61Chans,7, aluF2US) DECL_TEMPLATE(ALushort, X71Chans,8, aluF2US) DECL_TEMPLATE(ALshort, MonoChans,1, aluF2S) DECL_TEMPLATE(ALshort, QuadChans,4, aluF2S) DECL_TEMPLATE(ALshort, X51Chans,6, aluF2S) DECL_TEMPLATE(ALshort, X61Chans,7, aluF2S) DECL_TEMPLATE(ALshort, X71Chans,8, aluF2S) DECL_TEMPLATE(ALubyte, MonoChans,1, aluF2UB) DECL_TEMPLATE(ALubyte, QuadChans,4, aluF2UB) DECL_TEMPLATE(ALubyte, X51Chans,6, aluF2UB) DECL_TEMPLATE(ALubyte, X61Chans,7, aluF2UB) DECL_TEMPLATE(ALubyte, X71Chans,8, aluF2UB) DECL_TEMPLATE(ALbyte, MonoChans,1, aluF2B) DECL_TEMPLATE(ALbyte, QuadChans,4, aluF2B) DECL_TEMPLATE(ALbyte, X51Chans,6, aluF2B) DECL_TEMPLATE(ALbyte, X61Chans,7, aluF2B) DECL_TEMPLATE(ALbyte, X71Chans,8, aluF2B) #undef DECL_TEMPLATE #define DECL_TEMPLATE(T, chans,N, func) \ static void Write_##T##_##chans(ALCdevice *device, T *buffer, ALuint SamplesToDo)\ { \ ALfloat (*DryBuffer)[MAXCHANNELS] = device->DryBuffer; \ ALfloat (*Matrix)[MAXCHANNELS] = device->ChannelMatrix; \ const ALuint *ChanMap = device->DevChannels; \ ALuint i, j, c; \ \ if(device->Bs2b) \ { \ for(i = 0;i < SamplesToDo;i++) \ { \ float samples[2] = { 0.0f, 0.0f }; \ for(c = 0;c < MAXCHANNELS;c++) \ { \ samples[0] += DryBuffer[i][c]*Matrix[c][FRONT_LEFT]; \ samples[1] += DryBuffer[i][c]*Matrix[c][FRONT_RIGHT]; \ } \ bs2b_cross_feed(device->Bs2b, samples); \ ((T*)buffer)[ChanMap[FRONT_LEFT]] = func(samples[0]); \ ((T*)buffer)[ChanMap[FRONT_RIGHT]] = func(samples[1]); \ buffer = ((T*)buffer) + 2; \ } \ } \ else \ { \ for(i = 0;i < SamplesToDo;i++) \ { \ for(j = 0;j < N;j++) \ { \ ALfloat samp = 0.0f; \ for(c = 0;c < MAXCHANNELS;c++) \ samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \ ((T*)buffer)[ChanMap[chans[j]]] = func(samp); \ } \ buffer = ((T*)buffer) + N; \ } \ } \ } DECL_TEMPLATE(ALfloat, StereoChans,2, aluF2F) DECL_TEMPLATE(ALushort, StereoChans,2, aluF2US) DECL_TEMPLATE(ALshort, StereoChans,2, aluF2S) DECL_TEMPLATE(ALubyte, StereoChans,2, aluF2UB) DECL_TEMPLATE(ALbyte, StereoChans,2, aluF2B) #undef DECL_TEMPLATE #define DECL_TEMPLATE(T, func) \ static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \ { \ switch(device->FmtChans) \ { \ case DevFmtMono: \ Write_##T##_MonoChans(device, buffer, SamplesToDo); \ break; \ case DevFmtStereo: \ Write_##T##_StereoChans(device, buffer, SamplesToDo); \ break; \ case DevFmtQuad: \ Write_##T##_QuadChans(device, buffer, SamplesToDo); \ break; \ case DevFmtX51: \ Write_##T##_X51Chans(device, buffer, SamplesToDo); \ break; \ case DevFmtX61: \ Write_##T##_X61Chans(device, buffer, SamplesToDo); \ break; \ case DevFmtX71: \ Write_##T##_X71Chans(device, buffer, SamplesToDo); \ break; \ } \ } DECL_TEMPLATE(ALfloat, aluF2F) DECL_TEMPLATE(ALushort, aluF2US) DECL_TEMPLATE(ALshort, aluF2S) DECL_TEMPLATE(ALubyte, aluF2UB) DECL_TEMPLATE(ALbyte, aluF2B) #undef DECL_TEMPLATE ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size) { ALuint SamplesToDo; ALeffectslot *ALEffectSlot; ALCcontext **ctx, **ctx_end; ALsource **src, **src_end; int fpuState; ALuint i, c; ALsizei e; #if defined(HAVE_FESETROUND) fpuState = fegetround(); fesetround(FE_TOWARDZERO); #elif defined(HAVE__CONTROLFP) fpuState = _controlfp(_RC_CHOP, _MCW_RC); #else (void)fpuState; #endif while(size > 0) { /* Setup variables */ SamplesToDo = min(size, BUFFERSIZE); /* Clear mixing buffer */ memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat)); SuspendContext(NULL); ctx = device->Contexts; ctx_end = ctx + device->NumContexts; while(ctx != ctx_end) { SuspendContext(*ctx); src = (*ctx)->ActiveSources; src_end = src + (*ctx)->ActiveSourceCount; while(src != src_end) { if((*src)->state != AL_PLAYING) { --((*ctx)->ActiveSourceCount); *src = *(--src_end); continue; } if((*src)->NeedsUpdate) { ALsource_Update(*src, *ctx); (*src)->NeedsUpdate = AL_FALSE; } MixSource(*src, device, SamplesToDo); src++; } /* effect slot processing */ for(e = 0;e < (*ctx)->EffectSlotMap.size;e++) { ALEffectSlot = (*ctx)->EffectSlotMap.array[e].value; for(i = 0;i < SamplesToDo;i++) { ALEffectSlot->ClickRemoval[0] -= ALEffectSlot->ClickRemoval[0] / 256.0f; ALEffectSlot->WetBuffer[i] += ALEffectSlot->ClickRemoval[0]; } for(i = 0;i < 1;i++) { ALEffectSlot->ClickRemoval[i] += ALEffectSlot->PendingClicks[i]; ALEffectSlot->PendingClicks[i] = 0.0f; } ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, SamplesToDo, ALEffectSlot->WetBuffer, device->DryBuffer); for(i = 0;i < SamplesToDo;i++) ALEffectSlot->WetBuffer[i] = 0.0f; } ProcessContext(*ctx); ctx++; } ProcessContext(NULL); //Post processing loop for(i = 0;i < SamplesToDo;i++) { for(c = 0;c < MAXCHANNELS;c++) { device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f; device->DryBuffer[i][c] += device->ClickRemoval[c]; } } for(i = 0;i < MAXCHANNELS;i++) { device->ClickRemoval[i] += device->PendingClicks[i]; device->PendingClicks[i] = 0.0f; } switch(device->FmtType) { case DevFmtByte: Write_ALbyte(device, buffer, SamplesToDo); break; case DevFmtUByte: Write_ALubyte(device, buffer, SamplesToDo); break; case DevFmtShort: Write_ALshort(device, buffer, SamplesToDo); break; case DevFmtUShort: Write_ALushort(device, buffer, SamplesToDo); break; case DevFmtFloat: Write_ALfloat(device, buffer, SamplesToDo); break; } size -= SamplesToDo; } #if defined(HAVE_FESETROUND) fesetround(fpuState); #elif defined(HAVE__CONTROLFP) _controlfp(fpuState, _MCW_RC); #endif } ALvoid aluHandleDisconnect(ALCdevice *device) { ALuint i; SuspendContext(NULL); for(i = 0;i < device->NumContexts;i++) { ALCcontext *Context = device->Contexts[i]; ALsource *source; ALsizei pos; SuspendContext(Context); for(pos = 0;pos < Context->SourceMap.size;pos++) { source = Context->SourceMap.array[pos].value; if(source->state == AL_PLAYING) { source->state = AL_STOPPED; source->BuffersPlayed = source->BuffersInQueue; source->position = 0; source->position_fraction = 0; } } ProcessContext(Context); } device->Connected = ALC_FALSE; ProcessContext(NULL); }