/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005 #include "config.h" #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #if defined(HAVE_STDINT_H) #include typedef int64_t ALint64; #elif defined(HAVE___INT64) typedef __int64 ALint64; #elif (SIZEOF_LONG == 8) typedef long ALint64; #elif (SIZEOF_LONG_LONG == 8) typedef long long ALint64; #endif #ifdef HAVE_SQRTF #define aluSqrt(x) ((ALfloat)sqrtf((float)(x))) #else #define aluSqrt(x) ((ALfloat)sqrt((double)(x))) #endif // fixes for mingw32. #if defined(max) && !defined(__max) #define __max max #endif #if defined(min) && !defined(__min) #define __min min #endif __inline ALuint aluBytesFromFormat(ALenum format) { switch(format) { case AL_FORMAT_MONO8: case AL_FORMAT_STEREO8: case AL_FORMAT_QUAD8: case AL_FORMAT_51CHN8: return 1; case AL_FORMAT_MONO16: case AL_FORMAT_STEREO16: case AL_FORMAT_QUAD16: case AL_FORMAT_51CHN16: return 2; default: return 0; } } __inline ALuint aluChannelsFromFormat(ALenum format) { switch(format) { case AL_FORMAT_MONO8: case AL_FORMAT_MONO16: return 1; case AL_FORMAT_STEREO8: case AL_FORMAT_STEREO16: return 2; case AL_FORMAT_QUAD8: case AL_FORMAT_QUAD16: return 4; case AL_FORMAT_51CHN8: case AL_FORMAT_51CHN16: return 6; default: return 0; } } static __inline ALint aluF2L(ALfloat Value) { if(sizeof(ALint) == 4 && sizeof(double) == 8) { double temp; temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0); return *((ALint*)&temp); } return (ALint)Value; } static __inline ALshort aluF2S(ALfloat Value) { ALint i; i = aluF2L(Value); i = __min( 32767, i); i = __max(-32768, i); return ((ALshort)i); } static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector) { outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1]; outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2]; outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0]; } static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2) { return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] + inVector1[2]*inVector2[2]; } static __inline ALvoid aluNormalize(ALfloat *inVector) { ALfloat length, inverse_length; length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector)); if(length != 0) { inverse_length = 1.0f/length; inVector[0] *= inverse_length; inVector[1] *= inverse_length; inVector[2] *= inverse_length; } } static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3]) { ALfloat result[3]; result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0]; result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1]; result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2]; memcpy(vector, result, sizeof(result)); } static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource, ALenum isMono, ALenum OutputFormat, ALfloat *drysend, ALfloat *wetsend, ALfloat *pitch) { ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3]; ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix; ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3]; ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff; ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain; ALfloat U[3],V[3],N[3]; ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity; ALfloat flVSS, flVLS; ALint DistanceModel; ALfloat Matrix[3][3]; ALint HeadRelative; ALfloat flAttenuation; //Get context properties DopplerFactor = ALContext->DopplerFactor; DistanceModel = ALContext->DistanceModel; DopplerVelocity = ALContext->DopplerVelocity; flSpeedOfSound = ALContext->flSpeedOfSound; //Get listener properties ListenerGain = ALContext->Listener.Gain; memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position)); memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity)); memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward)); memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up)); //Get source properties Pitch = ALSource->flPitch; SourceVolume = ALSource->flGain; memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition)); memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity)); memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation)); MinVolume = ALSource->flMinGain; MaxVolume = ALSource->flMaxGain; MinDist = ALSource->flRefDistance; MaxDist = ALSource->flMaxDistance; Rolloff = ALSource->flRollOffFactor; OuterGain = ALSource->flOuterGain; InnerAngle = ALSource->flInnerAngle; OuterAngle = ALSource->flOuterAngle; HeadRelative = ALSource->bHeadRelative; //Set working variables DryMix = (ALfloat)(1.0f); WetMix = (ALfloat)(0.0f); //Only apply 3D calculations for mono buffers if(isMono != AL_FALSE) { //1. Translate Listener to origin (convert to head relative) if(HeadRelative==AL_FALSE) { Position[0] -= ListenerPosition[0]; Position[1] -= ListenerPosition[1]; Position[2] -= ListenerPosition[2]; } //2. Calculate distance attenuation Distance = aluSqrt(aluDotproduct(Position, Position)); flAttenuation = 1.0f; switch (DistanceModel) { case AL_INVERSE_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if (MaxDist < MinDist) break; //fall-through case AL_INVERSE_DISTANCE: if (MinDist > 0.0f) { if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f) flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist))); } break; case AL_LINEAR_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if (MaxDist < MinDist) break; //fall-through case AL_LINEAR_DISTANCE: Distance=__min(Distance,MaxDist); if (MaxDist != MinDist) flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist)); break; case AL_EXPONENT_DISTANCE_CLAMPED: Distance=__max(Distance,MinDist); Distance=__min(Distance,MaxDist); if (MaxDist < MinDist) break; //fall-through case AL_EXPONENT_DISTANCE: if ((Distance > 0.0f) && (MinDist > 0.0f)) flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff); break; case AL_NONE: default: flAttenuation = 1.0f; break; } // Source Gain + Attenuation DryMix = SourceVolume * flAttenuation; // Clamp to Min/Max Gain DryMix = __min(DryMix,MaxVolume); DryMix = __max(DryMix,MinVolume); WetMix = __min(WetMix,MaxVolume); WetMix = __max(WetMix,MinVolume); //3. Apply directional soundcones SourceToListener[0] = -Position[0]; SourceToListener[1] = -Position[1]; SourceToListener[2] = -Position[2]; aluNormalize(Direction); aluNormalize(SourceToListener); Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f); if(Angle >= InnerAngle && Angle <= OuterAngle) ConeVolume = (1.0f+(OuterGain-1.0f)*(Angle-InnerAngle)/(OuterAngle-InnerAngle)); else if(Angle > OuterAngle) ConeVolume = (1.0f+(OuterGain-1.0f) ); else ConeVolume = 1.0f; //4. Calculate Velocity if(DopplerFactor != 0.0f) { flVLS = aluDotproduct(ListenerVelocity, SourceToListener); flVSS = aluDotproduct(Velocity, SourceToListener); flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor; if (flVSS >= flMaxVelocity) flVSS = (flMaxVelocity - 1.0f); else if (flVSS <= -flMaxVelocity) flVSS = -flMaxVelocity + 1.0f; if (flVLS >= flMaxVelocity) flVLS = (flMaxVelocity - 1.0f); else if (flVLS <= -flMaxVelocity) flVLS = -flMaxVelocity + 1.0f; pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) / ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS)); } else pitch[0] = Pitch; //5. Align coordinate system axes aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector aluNormalize(U); // Normalized Right-vector memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector aluNormalize(V); // Normalized Up-vector memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector aluNormalize(N); // Normalized At-vector Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; aluMatrixVector(Position, Matrix); //6. Convert normalized position into pannings, then into channel volumes aluNormalize(Position); switch(aluChannelsFromFormat(OutputFormat)) { case 1: drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f); //Room wetsend[1] = ListenerGain * WetMix * aluSqrt(1.0f); //Room break; case 2: PanningLR = 0.5f + 0.5f*Position[0]; drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room wetsend[1] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room break; case 4: /* TODO: Add center/lfe channel in spatial calculations? */ case 6: // Apply a scalar so each individual speaker has more weight PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f); PanningLR = __min(1.0f, PanningLR); PanningLR = __max(0.0f, PanningLR); PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f); PanningFB = __min(1.0f, PanningFB); PanningFB = __max(0.0f, PanningFB); drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Direct drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Direct drysend[2] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Direct drysend[3] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Direct wetsend[0] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Room wetsend[1] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Room wetsend[2] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Room wetsend[3] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Room break; default: break; } } else { //1. Multi-channel buffers always play "normal" drysend[0] = SourceVolume * 1.0f * ListenerGain; drysend[1] = SourceVolume * 1.0f * ListenerGain; drysend[2] = SourceVolume * 1.0f * ListenerGain; drysend[3] = SourceVolume * 1.0f * ListenerGain; drysend[4] = SourceVolume * 1.0f * ListenerGain; drysend[5] = SourceVolume * 1.0f * ListenerGain; wetsend[0] = SourceVolume * 0.0f * ListenerGain; wetsend[1] = SourceVolume * 0.0f * ListenerGain; wetsend[2] = SourceVolume * 0.0f * ListenerGain; wetsend[3] = SourceVolume * 0.0f * ListenerGain; wetsend[4] = SourceVolume * 0.0f * ListenerGain; wetsend[5] = SourceVolume * 0.0f * ListenerGain; pitch[0] = Pitch; } } ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format) { static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS]; static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS]; ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; ALuint BlockAlign,BufferSize; ALuint DataSize=0,DataPosInt=0,DataPosFrac=0; ALuint Channels,Bits,Frequency,ulExtraSamples; ALfloat Pitch; ALint Looping,increment,State; ALuint Buffer,fraction; ALuint SamplesToDo; ALsource *ALSource; ALbuffer *ALBuffer; ALfloat value; ALshort *Data; ALuint i,j,k; ALbufferlistitem *BufferListItem; ALuint loop; ALint64 DataSize64,DataPos64; SuspendContext(ALContext); if(buffer) { //Figure output format variables BlockAlign = aluChannelsFromFormat(format); BlockAlign *= aluBytesFromFormat(format); size /= BlockAlign; while(size > 0) { //Setup variables ALSource = (ALContext ? ALContext->Source : NULL); SamplesToDo = min(size, BUFFERSIZE); //Clear mixing buffer memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat)); memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat)); //Actual mixing loop while(ALSource) { j = 0; State = ALSource->state; while(State == AL_PLAYING && j < SamplesToDo) { DataSize = 0; DataPosInt = 0; DataPosFrac = 0; //Get buffer info if((Buffer = ALSource->ulBufferID)) { ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer); Data = ALBuffer->data; Bits = aluBytesFromFormat(ALBuffer->format) * 8; Channels = aluChannelsFromFormat(ALBuffer->format); DataSize = ALBuffer->size; Frequency = ALBuffer->frequency; CalcSourceParams(ALContext, ALSource, (Channels==1) ? AL_TRUE : AL_FALSE, format, DrySend, WetSend, &Pitch); Pitch = (Pitch*Frequency) / ALContext->Frequency; DataSize = DataSize / (Bits*Channels/8); //Get source info DataPosInt = ALSource->position; DataPosFrac = ALSource->position_fraction; //Compute 18.14 fixed point step increment = aluF2L(Pitch*(1L< (MAX_PITCH<queue; for(loop = 0; loop < ALSource->BuffersPlayed; loop++) { if(BufferListItem) BufferListItem = BufferListItem->next; } if (BufferListItem) { if (BufferListItem->next) { if(BufferListItem->next->buffer && ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data) { ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels)); memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples); } } else if (ALSource->bLooping) { if (ALSource->queue->buffer) { if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data) { ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels)); memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples); } } } } BufferSize = min(BufferSize, (SamplesToDo-j)); //Actual sample mixing loop Data += DataPosInt*Channels; while(BufferSize--) { k = DataPosFrac>>FRACTIONBITS; fraction = DataPosFrac&FRACTIONMASK; if(Channels==1) { //First order interpolator value = (ALfloat)((ALshort)(((Data[k]*((1L<>FRACTIONBITS)); //Direct path final mix buffer and panning DryBuffer[j][0] += value*DrySend[0]; DryBuffer[j][1] += value*DrySend[1]; DryBuffer[j][2] += value*DrySend[2]; DryBuffer[j][3] += value*DrySend[3]; //Room path final mix buffer and panning WetBuffer[j][0] += value*WetSend[0]; WetBuffer[j][1] += value*WetSend[1]; WetBuffer[j][2] += value*WetSend[2]; WetBuffer[j][3] += value*WetSend[3]; } else { //First order interpolator (left) value = (ALfloat)((ALshort)(((Data[k*2 ]*((1L<>FRACTIONBITS)); //Direct path final mix buffer and panning (left) DryBuffer[j][0] += value*DrySend[0]; //Room path final mix buffer and panning (left) WetBuffer[j][0] += value*WetSend[0]; //First order interpolator (right) value = (ALfloat)((ALshort)(((Data[k*2+1]*((1L<>FRACTIONBITS)); //Direct path final mix buffer and panning (right) DryBuffer[j][1] += value*DrySend[1]; //Room path final mix buffer and panning (right) WetBuffer[j][1] += value*WetSend[1]; } DataPosFrac += increment; j++; } DataPosInt += (DataPosFrac>>FRACTIONBITS); DataPosFrac = (DataPosFrac&FRACTIONMASK); //Update source info ALSource->position = DataPosInt; ALSource->position_fraction = DataPosFrac; } //Handle looping sources if(!Buffer || DataPosInt >= DataSize) { //queueing if(ALSource->queue) { Looping = ALSource->bLooping; if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1)) { BufferListItem = ALSource->queue; for(loop = 0; loop <= ALSource->BuffersPlayed; loop++) { if(BufferListItem) { if(!Looping) BufferListItem->bufferstate = PROCESSED; BufferListItem = BufferListItem->next; } } if(!Looping) ALSource->BuffersProcessed++; if(BufferListItem) ALSource->ulBufferID = BufferListItem->buffer; ALSource->position = DataPosInt-DataSize; ALSource->position_fraction = DataPosFrac; ALSource->BuffersPlayed++; } else { if(!Looping) { /* alSourceStop */ ALSource->state = AL_STOPPED; ALSource->inuse = AL_FALSE; ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue; BufferListItem = ALSource->queue; while(BufferListItem != NULL) { BufferListItem->bufferstate = PROCESSED; BufferListItem = BufferListItem->next; } } else { /* alSourceRewind */ /* alSourcePlay */ ALSource->state = AL_PLAYING; ALSource->inuse = AL_TRUE; ALSource->play = AL_TRUE; ALSource->BuffersPlayed = 0; ALSource->BufferPosition = 0; ALSource->lBytesPlayed = 0; ALSource->BuffersProcessed = 0; BufferListItem = ALSource->queue; while(BufferListItem != NULL) { BufferListItem->bufferstate = PENDING; BufferListItem = BufferListItem->next; } ALSource->ulBufferID = ALSource->queue->buffer; ALSource->position = DataPosInt-DataSize; ALSource->position_fraction = DataPosFrac; } } } } //Get source state State = ALSource->state; } ALSource = ALSource->next; } //Post processing loop switch(format) { case AL_FORMAT_MONO8: for(i = 0;i < SamplesToDo;i++) { *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1])>>8)+128); buffer = ((ALubyte*)buffer) + 1; } break; case AL_FORMAT_STEREO8: for(i = 0;i < SamplesToDo*2;i++) { *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1])>>8)+128); buffer = ((ALubyte*)buffer) + 1; } break; case AL_FORMAT_QUAD8: for(i = 0;i < SamplesToDo*4;i++) { *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3])>>8)+128); buffer = ((ALubyte*)buffer) + 1; } break; case AL_FORMAT_51CHN8: for(i = 0;i < SamplesToDo*6;i++) { *((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i/6][i%6]+WetBuffer[i/6][i%6])>>8)+128); buffer = ((ALubyte*)buffer) + 1; } break; case AL_FORMAT_MONO16: for(i = 0;i < SamplesToDo;i++) { *((ALshort*)buffer) = aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1]); buffer = ((ALshort*)buffer) + 1; } break; case AL_FORMAT_STEREO16: default: for(i = 0;i < SamplesToDo*2;i++) { *((ALshort*)buffer) = aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1]); buffer = ((ALshort*)buffer) + 1; } break; case AL_FORMAT_QUAD16: for(i = 0;i < SamplesToDo*4;i++) { *((ALshort*)buffer) = aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3]); buffer = ((ALshort*)buffer) + 1; } break; case AL_FORMAT_51CHN16: for(i = 0;i < SamplesToDo*6;i++) { *((ALshort*)buffer) = aluF2S(DryBuffer[i/6][i%6]+WetBuffer[i/6][i%6]); buffer = ((ALshort*)buffer) + 1; } break; } size -= SamplesToDo; } } ProcessContext(ALContext); }