/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "alMain.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alError.h" #include "alu.h" /* Filters implementation is based on the "Cookbook formulae for audio * * EQ biquad filter coefficients" by Robert Bristow-Johnson * * http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */ typedef enum ALEQFilterType { LOWPASS, BANDPASS, } ALEQFilterType; typedef struct ALEQFilter { ALEQFilterType type; ALfloat x[2]; /* History of two last input samples */ ALfloat y[2]; /* History of two last output samples */ ALfloat a[3]; /* Transfer function coefficients "a" */ ALfloat b[3]; /* Transfer function coefficients "b" */ } ALEQFilter; typedef struct ALdistortionState { /* Must be first in all effects! */ ALeffectState state; /* Effect gains for each channel */ ALfloat Gain[MaxChannels]; /* Effect parameters */ ALEQFilter bandpass; ALEQFilter lowpass; ALfloat frequency; ALfloat attenuation; ALfloat edge_coeff; /* Oversample data */ ALfloat oversample_buffer[BUFFERSIZE][4]; } ALdistortionState; static ALvoid DistortionDestroy(ALeffectState *effect) { ALdistortionState *state = (ALdistortionState*)effect; free(state); } static ALboolean DistortionDeviceUpdate(ALeffectState *effect, ALCdevice *Device) { ALdistortionState *state = (ALdistortionState*)effect; state->frequency = (ALfloat)Device->Frequency; return AL_TRUE; } static ALvoid DistortionUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot) { ALdistortionState *state = (ALdistortionState*)effect; ALfloat gain = sqrtf(1.0f / Device->NumChan) * Slot->Gain; ALuint it; ALfloat w0; ALfloat alpha; ALfloat bandwidth; ALfloat cutoff; ALfloat edge; for(it = 0; it < Device->NumChan; it++) { enum Channel chan = Device->Speaker2Chan[it]; state->Gain[chan] = gain; } /* Store distorted signal attenuation settings */ state->attenuation = Slot->effect.Distortion.Gain; /* Store waveshaper edge settings */ edge = sinf(Slot->effect.Distortion.Edge * (F_PI/2.0f)); state->edge_coeff = 2.0f * edge / (1.0f-edge); /* Lowpass filter */ cutoff = Slot->effect.Distortion.LowpassCutoff; /* Bandwidth value is constant in octaves */ bandwidth = (cutoff / 2.0f) / (cutoff * 0.67f); w0 = 2.0f * F_PI * cutoff / (state->frequency * 4.0f); alpha = sinf(w0) * sinhf(logf(2.0f) / 2.0f * bandwidth * w0 / sinf(w0)); state->lowpass.b[0] = (1.0f - cosf(w0)) / 2.0f; state->lowpass.b[1] = 1.0f - cosf(w0); state->lowpass.b[2] = (1.0f - cosf(w0)) / 2.0f; state->lowpass.a[0] = 1.0f + alpha; state->lowpass.a[1] = -2.0f * cosf(w0); state->lowpass.a[2] = 1.0f - alpha; /* Bandpass filter */ cutoff = Slot->effect.Distortion.EQCenter; /* Convert bandwidth in Hz to octaves */ bandwidth = Slot->effect.Distortion.EQBandwidth / (cutoff * 0.67f); w0 = 2.0f * F_PI * cutoff / (state->frequency * 4.0f); alpha = sinf(w0) * sinhf(logf(2.0f) / 2.0f * bandwidth * w0 / sinf(w0)); state->bandpass.b[0] = alpha; state->bandpass.b[1] = 0; state->bandpass.b[2] = -alpha; state->bandpass.a[0] = 1.0f + alpha; state->bandpass.a[1] = -2.0f * cosf(w0); state->bandpass.a[2] = 1.0f - alpha; } static ALvoid DistortionProcess(ALeffectState *effect, ALuint SamplesToDo, const ALfloat *RESTRICT SamplesIn, ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE]) { ALdistortionState *state = (ALdistortionState*)effect; float *RESTRICT oversample_buffer = &state->oversample_buffer[0][0]; ALfloat tempsmp; ALuint it; ALuint kt; /* Perform 4x oversampling to avoid aliasing. */ /* Oversampling greatly improves distortion */ /* quality and allows to implement lowpass and */ /* bandpass filters using high frequencies, at */ /* which classic IIR filters became unstable. */ /* Fill oversample buffer using zero stuffing */ for(it = 0; it < SamplesToDo; it++) { oversample_buffer[it*4 + 0] = SamplesIn[it]; oversample_buffer[it*4 + 1] = 0.0f; oversample_buffer[it*4 + 2] = 0.0f; oversample_buffer[it*4 + 3] = 0.0f; } /* First step, do lowpass filtering of original signal, */ /* additionally perform buffer interpolation and lowpass */ /* cutoff for oversampling (which is fortunately first */ /* step of distortion). So combine three operations into */ /* the one. */ for(it = 0; it < SamplesToDo * 4; it++) { tempsmp = state->lowpass.b[0] / state->lowpass.a[0] * oversample_buffer[it] + state->lowpass.b[1] / state->lowpass.a[0] * state->lowpass.x[0] + state->lowpass.b[2] / state->lowpass.a[0] * state->lowpass.x[1] - state->lowpass.a[1] / state->lowpass.a[0] * state->lowpass.y[0] - state->lowpass.a[2] / state->lowpass.a[0] * state->lowpass.y[1]; state->lowpass.x[1] = state->lowpass.x[0]; state->lowpass.x[0] = oversample_buffer[it]; state->lowpass.y[1] = state->lowpass.y[0]; state->lowpass.y[0] = tempsmp; /* Restore signal power by multiplying sample by amount of oversampling */ oversample_buffer[it] = tempsmp * 4.0f; } for(it = 0; it < SamplesToDo * 4; it++) { ALfloat smp = oversample_buffer[it]; ALfloat fc = state->edge_coeff; /* Second step, do distortion using waveshaper function */ /* to emulate signal processing during tube overdriving. */ /* Three steps of waveshaping are intended to modify */ /* waveform without boost/clipping/attenuation process. */ smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)) * -1.0f; smp = (1.0f + fc) * smp/(1.0f + fc*fabsf(smp)); /* Third step, do bandpass filtering of distorted signal */ tempsmp = state->bandpass.b[0] / state->bandpass.a[0] * smp + state->bandpass.b[1] / state->bandpass.a[0] * state->bandpass.x[0] + state->bandpass.b[2] / state->bandpass.a[0] * state->bandpass.x[1] - state->bandpass.a[1] / state->bandpass.a[0] * state->bandpass.y[0] - state->bandpass.a[2] / state->bandpass.a[0] * state->bandpass.y[1]; state->bandpass.x[1] = state->bandpass.x[0]; state->bandpass.x[0] = smp; state->bandpass.y[1] = state->bandpass.y[0]; state->bandpass.y[0] = tempsmp; smp = tempsmp; /* Fourth step, final, do attenuation and perform decimation, */ /* store only one sample out of 4. */ if(!(it&3)) { smp *= state->attenuation; for(kt = 0; kt < MaxChannels; kt++) SamplesOut[kt][it>>2] += state->Gain[kt] * smp; } } } ALeffectState *DistortionCreate(void) { ALdistortionState *state; state = malloc(sizeof(*state)); if(!state) return NULL; state->state.Destroy = DistortionDestroy; state->state.DeviceUpdate = DistortionDeviceUpdate; state->state.Update = DistortionUpdate; state->state.Process = DistortionProcess; state->bandpass.type = BANDPASS; state->lowpass.type = LOWPASS; /* Initialize sample history only on filter creation to avoid */ /* sound clicks if filter settings were changed in runtime. */ state->bandpass.x[0] = 0.0f; state->bandpass.x[1] = 0.0f; state->lowpass.y[0] = 0.0f; state->lowpass.y[1] = 0.0f; return &state->state; } void distortion_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val) { effect=effect; val=val; switch(param) { default: alSetError(context, AL_INVALID_ENUM); break; } } void distortion_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals) { distortion_SetParami(effect, context, param, vals[0]); } void distortion_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val) { switch(param) { case AL_DISTORTION_EDGE: if(val >= AL_DISTORTION_MIN_EDGE && val <= AL_DISTORTION_MAX_EDGE) effect->Distortion.Edge = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_DISTORTION_GAIN: if(val >= AL_DISTORTION_MIN_GAIN && val <= AL_DISTORTION_MAX_GAIN) effect->Distortion.Gain = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_DISTORTION_LOWPASS_CUTOFF: if(val >= AL_DISTORTION_MIN_LOWPASS_CUTOFF && val <= AL_DISTORTION_MAX_LOWPASS_CUTOFF) effect->Distortion.LowpassCutoff = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_DISTORTION_EQCENTER: if(val >= AL_DISTORTION_MIN_EQCENTER && val <= AL_DISTORTION_MAX_EQCENTER) effect->Distortion.EQCenter = val; else alSetError(context, AL_INVALID_VALUE); break; case AL_DISTORTION_EQBANDWIDTH: if(val >= AL_DISTORTION_MIN_EQBANDWIDTH && val <= AL_DISTORTION_MAX_EQBANDWIDTH) effect->Distortion.EQBandwidth = val; else alSetError(context, AL_INVALID_VALUE); break; default: alSetError(context, AL_INVALID_ENUM); break; } } void distortion_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals) { distortion_SetParamf(effect, context, param, vals[0]); } void distortion_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val) { effect=effect; val=val; switch(param) { default: alSetError(context, AL_INVALID_ENUM); break; } } void distortion_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals) { distortion_GetParami(effect, context, param, vals); } void distortion_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val) { switch(param) { case AL_DISTORTION_EDGE: *val = effect->Distortion.Edge; break; case AL_DISTORTION_GAIN: *val = effect->Distortion.Gain; break; case AL_DISTORTION_LOWPASS_CUTOFF: *val = effect->Distortion.LowpassCutoff; break; case AL_DISTORTION_EQCENTER: *val = effect->Distortion.EQCenter; break; case AL_DISTORTION_EQBANDWIDTH: *val = effect->Distortion.EQBandwidth; break; default: alSetError(context, AL_INVALID_ENUM); break; } } void distortion_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals) { distortion_GetParamf(effect, context, param, vals); }