/** * OpenAL cross platform audio library * Copyright (C) 2009 by Chris Robinson. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include "AL/al.h" #include "alFilter.h" #include "alAuxEffectSlot.h" #include "alEcho.h" #ifdef HAVE_SQRTF #define aluSqrt(x) ((ALfloat)sqrtf((float)(x))) #else #define aluSqrt(x) ((ALfloat)sqrt((double)(x))) #endif struct ALechoState { ALfloat *SampleBuffer; ALuint BufferLength; // The echo is two tap. The third tap is the offset to write the feedback // and input sample to struct { ALuint offset; } Tap[3]; // The LR gains for the first tap. The second tap uses the reverse ALfloat GainL; ALfloat GainR; ALfloat FeedGain; FILTER iirFilter; ALfloat history[2]; }; // Find the next power of 2. Actually, this will return the input value if // it is already a power of 2. static ALuint NextPowerOf2(ALuint value) { ALuint powerOf2 = 1; if(value) { value--; while(value) { value >>= 1; powerOf2 <<= 1; } } return powerOf2; } ALechoState *EchoCreate(ALCcontext *Context) { ALechoState *state; ALuint i, maxlen; state = malloc(sizeof(*state)); if(!state) return NULL; maxlen = (ALuint)(AL_ECHO_MAX_DELAY * Context->Frequency); maxlen += (ALuint)(AL_ECHO_MAX_LRDELAY * Context->Frequency); // Use the next power of 2 for the buffer length, so the tap offsets can be // wrapped using a mask instead of a modulo state->BufferLength = NextPowerOf2(maxlen+1); state->SampleBuffer = malloc(state->BufferLength * sizeof(ALfloat)); if(!state->SampleBuffer) { free(state); return NULL; } for(i = 0;i < state->BufferLength;i++) state->SampleBuffer[i] = 0.0f; state->Tap[0].offset = 0; state->Tap[1].offset = 0; state->Tap[2].offset = 0; state->GainL = 0.0f; state->GainR = 0.0f; for(i = 0;i < sizeof(state->history)/sizeof(state->history[0]);i++) state->history[i] = 0.0f; state->iirFilter.coeff = 0.0f; return state; } ALvoid EchoDestroy(ALechoState *state) { if(state) { free(state->SampleBuffer); state->SampleBuffer = NULL; free(state); } } ALvoid EchoUpdate(ALCcontext *Context, struct ALeffectslot *Slot, ALeffect *Effect) { ALechoState *state = Slot->EchoState; ALuint newdelay1, newdelay2; ALfloat lrpan, cw, a, g; newdelay1 = (ALuint)(Effect->Echo.Delay * Context->Frequency); newdelay2 = (ALuint)(Effect->Echo.LRDelay * Context->Frequency); state->Tap[0].offset = (state->BufferLength - newdelay1 - 1 + state->Tap[2].offset)%state->BufferLength; state->Tap[1].offset = (state->BufferLength - newdelay1 - newdelay2 - 1 + state->Tap[2].offset)%state->BufferLength; lrpan = Effect->Echo.Spread*0.5f + 0.5f; state->GainL = aluSqrt( lrpan); state->GainR = aluSqrt(1.0f-lrpan); state->FeedGain = Effect->Echo.Feedback; cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Context->Frequency); g = 1.0f - Effect->Echo.Damping; a = 0.0f; if(g < 0.9999f) // 1-epsilon a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g); state->iirFilter.coeff = a; } ALvoid EchoProcess(ALechoState *state, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS]) { ALfloat *history = state->iirFilter.history; const ALfloat a = state->iirFilter.coeff; const ALuint delay = state->BufferLength-1; ALuint tap1off = state->Tap[0].offset; ALuint tap2off = state->Tap[1].offset; ALuint fboff = state->Tap[2].offset; ALfloat samp[2]; ALuint i; for(i = 0;i < SamplesToDo;i++) { // Apply damping samp[0] = state->SampleBuffer[tap2off] + SamplesIn[i]; samp[0] += (history[0]-samp[0]) * a; history[0] = samp[0]; samp[0] += (history[1]-samp[0]) * a; history[1] = samp[0]; // Apply feedback gain and mix in the new sample state->SampleBuffer[fboff] = samp[0] * state->FeedGain; tap1off = (tap1off+1) & delay; tap2off = (tap2off+1) & delay; fboff = (fboff+1) & delay; // Sample first tap samp[0] = state->SampleBuffer[tap1off]*state->GainL; samp[1] = state->SampleBuffer[tap1off]*state->GainR; // Sample second tap. Reverse LR panning samp[0] += state->SampleBuffer[tap2off]*state->GainR; samp[1] += state->SampleBuffer[tap2off]*state->GainL; SamplesOut[i][FRONT_LEFT] += samp[0]; SamplesOut[i][FRONT_RIGHT] += samp[1]; SamplesOut[i][SIDE_LEFT] += samp[0]; SamplesOut[i][SIDE_RIGHT] += samp[1]; SamplesOut[i][BACK_LEFT] += samp[0]; SamplesOut[i][BACK_RIGHT] += samp[1]; } state->Tap[0].offset = tap1off; state->Tap[1].offset = tap2off; state->Tap[2].offset = fboff; }